首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With reciprocal rearing experiments, we tested the hypothesis that adaptive differences in host-use traits among soapberry bug populations have a genetic basis. These experiments were conducted with two host races from Florida, an ancestral-type one on a native host plant species and a derived one on a recently introduced plant species (colonized mainly post-1950), on whose seed crops this insect depends for growth and reproduction. Compared to the native host species, the introduced host produces larger seed crops over a much briefer annual period. Its seeds are also significantly higher in lipids and lower in nitrogen. The bug populations exhibit greater juvenile survivorship on their home hosts; that is, the derived population survives better on seeds of the introduced host than does its ancestral-type counterpart, and vice versa. Regardless of the rearing host, populations from the introduced host lay much smaller eggs, and fecundity measures show a more complex pattern than does survivorship: the ancestral-type population produces eggs at the same rate on each host, while the derived population is less fecund on the native host and exhibits enhanced fecundity on the introduced host. These results indicate that the population differences are evolved rather than host-induced. They appear to be adaptive responses to host differences in the spatial and temporal distribution of seed availability and nutritional quality, and show that increased performance on the alien host has evolved with surprising speed and magnitude, with concomitant reductions in performance on the original host.  相似文献   

2.
Extrinsic, host-associated environmental factors may influence postmating isolation between herbivorous insect populations and represent a fundamentally ecological cause of speciation. We investigated this issue in experiments on hybrids between the host races of Eurosta solidaginis, a fly that induces galls on the goldenrods Solidago altissima and S. gigantea. To do so, we measured the performance of parental host races and their hybrids on five genotypes of S. gigantea and nine genotypes of S. altissima to test hypotheses about how variation in plant genotype affects performance (i.e., fitness) and potentially influences gene flow between these host races. We found that rates of gall induction and of survival to adult emergence by hybrid larvae were significantly lower than those of both parental host races on both host species, adding support to the hypothesis that there is partial postmating isolation between the host races. Hybrid flies significantly varied in their performance across plant genotypes of both host species. A significant interaction between the effects of plant genotype and mating treatment (parental vs. hybrid crosses) on larval performance indicated that the relative suitability of particular plant genotypes differed between the parental host races and their hybrids. These patterns illustrate a poor correspondence between optimal parental and hybrid environments, consistent with the hypothesis that these host races are partially isolated due to extrinsic (ecological) factors. Based on these findings, we discuss the possibility that plant genotypes in which hybrid performance is high can facilitate hybridization and gene flow between partially reproductively isolated populations of herbivorous insects, thus affecting the dynamics of ecological speciation.  相似文献   

3.
The tendency of insect species to evolve specialization to one or a few plant species is probably a major reason for the remarkable diversity of herbivorous insects. The suggested explanations for this general trend toward specialization include a range of evolutionary mechanisms, whose relative importance is debated. Here we address two potentially important mechanisms: (i) how variation in the geographic distribution of host use may lead to the evolution of local adaptation and specialization; (ii) how selection for specialization may lead to the evolution of trade‐offs in performance between different hosts. We performed a quantitative genetic experiment of larval performance in three different populations of the alpine leaf beetle Oreina elongata reared on two of its main host plants. Due to differences in host availability, each population represents a distinctly different selective regime in terms of host use including selection for specialization on one or the other host as well as selection for utilizing both hosts during the larval stage. The results suggest that selection for specialization has lead to some degree of local adaptations in host use: both single‐host population had higher larval growth rate on their respective native host plant genus, while there was no difference between plant treatments in the two‐host population. However, differences between host plant treatments within populations were generally small and the degree of local adaptation in performance traits seems to be relatively limited. Genetic correlations in performance traits between the hosts ranged from zero in the two‐host population to significantly positive in the single‐host populations. This suggests that selection for specialization in single host populations typically also increased performance on the alternative host that is not naturally encountered. Moreover, the lack of a positive genetic correlation in the two host‐population give support for the hypothesis that performance trade‐offs between two host plants may typically evolve when a population have adapted to both these plants. We conclude that although there is selection for specialization in larval performance traits it seems as if the genetic architecture of these traits have limited the divergence between populations in relative performance on the two hosts.  相似文献   

4.
The European corn borer (ECB), Ostrinia nubilalis, is a major pest of maize crops. In Europe, two sympatric host races are found: one feeds on maize (Zea mays) and the other mainly on mugwort (Artemisia vulgaris). The two host races are genetically differentiated, seldom crossing in the laboratory or in the field, and females preferentially lay eggs on their native host species. We conducted two independent experiments, in field and greenhouse conditions, to determine whether the two host races are locally adapted to their host species. The effect of larval density and the performance of hybrids were also investigated. Despite some differences in overall larval feeding performance, both experiments revealed consistent patterns of local adaptation for survival and for larval weight in males. In females the same trend was observed but with weaker statistical support. F1 hybrids did not seem to be disadvantaged compared with the two parental races. Overall, our results showed that both host races are physiologically adapted to their native host. The fitness trade-off between the two host plants provides a potential driving force for ecological speciation in this species.  相似文献   

5.
Determining the extent and causes of barriers to gene flow between genetically divergent populations or races of single species is an important complement to post facto analyses of the causes of reproductive isolation between recognized species. Sympatric populations of pea aphids (Acyrthosiphon pisum Harris, Homoptera: Aphididae) on alfalfa and red clover are highly genetically divergent and locally adapted. Here, hierarchical estimates of population structure based on Fst suggest that gene exchange between closely adjacent aphid populations on the two hosts is highly restricted relative to that among fields of the same host plant. Although these host-associated races are presently considered to be the same subspecies, they appear to be significantly reproductively isolated, suggesting incipient speciation. Habitat (host) choice was investigated as the first in a temporal series of factors that could reduce gene exchange between these sympatric populations. Field studies of winged colonists to newly planted fields of each host suggest pronounced habitat fidelity. This result was verified using replicated observations of the host choice behavior of different aphid genotypes for which the relative demographic performance on each host was known. These laboratory observations of behavior revealed a strong genetic correlation between habitat choice (or acceptance) and the relative performance in each habitat. Because mating occurs on the host plant, habitat choice in this system leads to assortative mating and is therefore a major cause of reproductive isolation between the sympatric pea aphid populations on alfalfa and clover. However, the extent of dispersal between hosts estimated from the field study of winged colonists (9–11%) is too great to be consistent with the genetic divergence estimated between the races. This suggests that barriers to gene flow other than host choice also exist, such as selection against migrants or hybrids in the parental environments, hybrid sterility, or hybrid breakdown.  相似文献   

6.
The development of host races, genetically distinct populations of the same species with different hosts, is considered to be the initial stage of ecological speciation. Ecological and biological differences consistent with host race formation have been reported between water‐oat and rice‐associated populations of Chilo suppressalis. In order to confirm whether these differences have a genetic basis, we conducted experiments to determine the extent to which various life‐history traits and the time of peak mating activity of these populations were influenced by the species of host plant larvae were raised on. Individuals from each population were reared for three consecutive generations on either water‐oat fruit pulp or rice seedlings. Descendants of both populations had higher larval survival rates, shorter larval developmental periods, higher pupal weight, and longer adult forewings, when reared on water‐oats than when reared on rice. The time of peak of mating activity differed between the descendants of each population, irrespective of whether they were raised on water‐oats or rice. These results indicate that although some life‐history traits of host‐associated populations of C. suppressalis are influenced by the host plant larvae are raised on, time of peak mating activity is not. Because it is a stable, objective, phenotypic trait, further research on difference in the time of peak mating activity between host‐associated populations of C. suppressalis should be conducted to clarify the mechanism responsible for host race formation in this species.  相似文献   

7.
Exotic plant invasions are widely observed to have strong biogeographic patterns with invasive species occurring at higher abundances in their introduced range when compared with their native range. However, only few field studies have validated this assumption by comparing plant populations of multiple species in their native and introduced ranges and have evaluated to what extent changes in sexual and clonal reproduction potentially have contributed to the success of plant invasions. Here, we present the results of a comparative field study in both the native (Germany) and the introduced (New Zealand, NZ) ranges of six clonal plant species with different invasive status: Achillea millefolium L., Pilosella officinarum Vaill., Hypericum perforatum L., Prunella vulgaris L., Leucanthemum vulgare Lam. and Lotus pedunculatus Cav. We hypothesized that all six species show better performance in introduced NZ than in native German populations and tested if population structures investigated at different scales provide a useful tool to identify differences between native and introduced occurrences. In 10 populations per species and country we assessed plant density and flowering proportion at the population scale and around individual plants, thereby identifying the ‘crowdedness’ of the populations. Furthermore, we collected individual plants and determined the number of attached clonal organs and plant biomass. For all six species crowdedness in NZ populations was higher than in German populations. Additionally, overall population density of four species and the production of clonal organs (expressed as total number or per biomass ratio) of three species were higher in NZ than in Germany. When measured around individual plants, the flowering proportion was higher in native German populations of Pilosella officinarum, Hypericum perforatum and Leucanthemum vulgare. Although the study species differed in their invasive status, our findings show that for all six species performance was better in introduced than in native populations. Furthermore, this study emphasizes that multiple measures of plant performance, different spatial scales and differences among species should be taken into account when trying to identify biogeographic differences in the performance of weed species.  相似文献   

8.
Host range expansion of herbivorous insects is a key event in ecological speciation and insect pest management. However, the mechanistic processes are relatively unknown because it is difficult to observe the ongoing host range expansion in natural population. In this study, we focused on the ongoing host range expansion in introduced populations of the ragweed leaf beetle, Ophraella communa, to estimate the evolutionary process of host plant range expansion of a herbivorous insect. In the native range of North America, O. communa does not utilize Ambrosia trifida, as a host plant, but this plant is extensively utilized in the beetle's introduced range. Larval performance and adult preference experiments demonstrated that native O. communa beetles show better survival on host plant individuals from introduced plant populations than those from native plant populations and they also oviposit on the introduced plant, but not on the native plant. Introduced O. communa beetles showed significantly higher performance on and preference for both introduced and native A. trifida plants, when compared with native O. communa. These results indicate the contemporary evolution of host plant range expansion of introduced O. communa and suggest that the evolutionary change of both the host plant and the herbivorous insect involved in the host range expansion.  相似文献   

9.
Introduced plant species that became successful invaders appear often more vigorous and taller than their conspecifics in the native range. Reasons postulated to explain this better performance in the introduced range include more favourable environmental conditions and release from natural enemies and pathogens. According to the Evolution of Increased Competitive Ability hypothesis (EICA hypothesis) there is a trade‐off between investment into defence against herbivores and pathogens, and investment into a stronger competitive ability. In this study, we conducted field surveys to investigate whether populations of the invasive perennial Solidago gigantea Ait (Asteraceae) differ with respect to growth and size in the native and introduced range, respectively. We assessed size and morphological variation of 46 populations in the native North American range and 45 populations in the introduced European range. Despite considerable variation between populations within continents, there were pronounced differences between continents. The average population size, density and total plant biomass were larger in European than in American populations. Climatic differences and latitude explained only a small proportion of the total variation between the two continents. The results show that introduced plants can be very distinct in their growth form and size from conspecifics in the native range. The apparently better performance of this invasive species in Europe may be the result of changed selection pressures, as implied by the EICA hypothesis.  相似文献   

10.
The aim of the present study was to evaluate—in a geographic perspective—the role of host plant as a determinant of habitat quality for Lopinga achine, a satyrine butterfly endangered over much of its European range. Laboratory trials were performed to record host choices made by the ovipositing females as well as by neonate larvae. In rearing experiments, growth performance and mortality on different host plants was determined. Oviposition was found to be indiscriminate but larvae were shown to be able to choose between host plants, with the choices made broadly consistent with growth performance of the larvae on particular hosts. Nevertheless, most grasses and sedges offered were found to support larval development reasonably well. No clear superiority of the previously suggested primary host plant Carex montana could be shown. Importantly, no differences in host plant relationships were found between the populations of Sweden, western Estonia and eastern Estonia. In particular, the larvae originating from eastern Estonian populations developed on C. montana equally well even if the plant is absent from their native habitat. In the context of species conservation, one should conclude that L. achine is polyphagous enough on various grasses and sedges so that the presence of any particular host species cannot be a critical component of habitat quality. Nevertheless, some preference to broad- and soft-leaved hosts, as well as sensitivity to host wilting, may partly explain the butterfly’s preference to moist forest habitats, further emphasizing the central role of habitat management in the conservation practice of this species. In turn, the absence of ecological differences between geographic populations should enable conservationists to successful transfer their experience across national boundaries.  相似文献   

11.
The adaptation to alternate host plants of introduced herbivorous insects can be vital to agriculture due to the emergence of crop pests. Historically, it is assumed that there are trade-offs associated with the adaptation to new host plants; a generalist genotype that adapts to an alternate host is expected to have a relatively lower fitness on the ancestral host than a specialist genotype (physiological cost) or a relatively lower host-searching ability for the ancestral host plant (behavioral cost). In this study, we tested the costs of adaptation to a new host plant in the introduced herbivorous insect, Ophraella communa LeSage (Coleoptera: Chrysomelidae). In its native range (United States), O. communa feeds mostly on Ambrosia artemisiifolia L. (Asterales: Asteraceae) and cannot utilize the related species, Ambrosia trifida L. (Asterales: Asteraceae), as a host plant. On the other hand, the introduced O. communa population in Japan utilizes A. trifida extensively, and is adapting to it, both physiologically and behaviorally. We compared larval performance on the ancestral and alternate plants and adult host-searching ability between the native and introduced beetle populations. The introduced O. communa showed higher larval survival and adult feeding preference for the alternate host plant A. trifida than did the native O. communa, indicating that the introduced O. communa has rapidly adapted to the alternate host plant. However, there are no differences in either larval performance on the ancestral host A. artemisiifolia or host-searching accuracy between the native and introduced O. communa.  相似文献   

12.
Genetic differentiation in ecological traits plays an important role in the reproductive isolation of phytophagous insects. The present study aims to elucidate the genetic changes involved during the process of host shifts, by combining analyses for (1) host adaptations, (2) pre‐ and postmating isolation, and (3) phylogeney among populations, using a leaf‐mining moth, Acrocercops transecta. This species is associated with Juglans ailanthifolia and Lyonia ovalifolia. Transplantation of the larvae demonstrated that the Juglans‐associated population completely failed to survive on Lyonia, whereas the Lyonia‐associated population survived on Juglans as well as on Lyonia. Females of respective host‐associated populations oviposited on their natal host plant only. An mtDNA‐based phylogeny clearly separated the Lyonia‐associated population from the Juglandaceae‐associated population, and indicated that the Lyonia‐associated population once evolved from the Juglandaceae‐associated population. These results indicate that the processes of host shifting from juglandaceous species to Lyonia involved genetic changes both in larval ability to use host plants and in host preference of females. The derived Lyonia‐associated population has retained the potential to assimilate the ancestral host, Juglandaceae. Mating between the two host‐associated populations was successful for both directions of crossing, and there were no significant differences in egg hatchability between hybrids and control crosses. No adults emerged when the F1 hybrid larvae were maintained on Lyonia; however, on Juglans the F1 hybrid larvae grew to adulthood as well as in the control, suggesting a lack of genomic incompatibilities between the two host‐associated populations. In conclusion, the results showed that the two host‐associated populations are host races that are partially reproductively isolated, and that the differences in performance and preference function as strong barriers against gene flow between the host races. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 93 , 135–145.  相似文献   

13.
Evolution by natural selection is remarkably well documented in the diversification of soapberry bug populations on their native and recently introduced host plants. In this century, populations of this native seed-eating insect have colonized three plant species introduced to North America. Each new host differs in fruit size from the native hosts, providing an unplanned experiment in natural selection of the insect's beak length. In each of three host shifts, beak length has increased or decreased in the direction predicted from fruit size. Furthermore, museum specimens show historical changes consistent with the host shift scenario inferred from beak length values in contemporary populations. The extent to which beak length evolution has been accompanied by evolution in other body size characters differs between the races, suggesting that the evolution has proceeded differently in each case. In all cases, significant evolution has occurred in as little as 20–50 years (40–150 generations), creating a species-level mosaic of response to simultaneous directional, diversifying, and normalizing selection.  相似文献   

14.
Abstract 1. The evolution of reproductive isolation between recently diverged or incipient species is a critical component of speciation and a major focus of speciation models. In phytophagous insects, host plant fidelity (the habit of mating and ovipositing on a single host species) can contribute to assortative mating and reproductive isolation between populations adapting to alternative hosts. The potential role of host plant fidelity in the evolution of reproductive isolation was examined in a pair of North American blue butterfly species, Lycaeides idas and L. melissa .
2. These species are morphologically distinct and populations of each species utilise different host plants; however they share 410 bp haplotypes of the mitochondrial cytochrome oxidase subunit I (COI) gene, indicating recent divergence.
3. Some populations using native hosts exhibited strong fidelity for their natal host plant over the hosts used by nearby populations. Because these butterflies mate on or near the host plant, the development of strong host fidelity may create reproductive isolation among populations on different hosts and restrict gene flow.
4. Tests of population differentiation using allozyme allele frequency data did not provide convincing evidence of restricted gene flow among populations. Based on morphological differences, observed ecological specialisation, and the sharing of genetic markers, these butterflies appear to be undergoing adaptive radiation driven at least partially by host shifts. Neutral genetic markers may fail to detect the effects of very recent host shifts in these populations due to gene flow and/or the recency of divergence and shared ancestral polymorphism.  相似文献   

15.
Understanding the ecology of plant species in their whole range (native and introduced) can provide insights into those that become problematic weeds in the introduced range despite being benign components of the vegetative community in the native range. We studied the morphological traits of Impatiens glandulifera in the native (Indian Himalayas) and introduced (UK) range and evaluated what influences natural enemies and arbuscular mycorrhizal fungi (AMF) have on plant performance. We compared height, total leaf area, root: shoot ratio, natural enemy damage and the colonisation of AMF from individual plants within and between ranges twice in 2010 during the months of June and August. In addition, in August 2010, we estimated the number of reproductive units (expressed as the sum of flowers, seed capsule and seeds) at each site. We found that all morphological traits varied between populations and countries, though in general introduced populations, and the semi-natural population in India, showed higher performance compared to natural native populations. There was only an indication that natural enemy damage, which was significantly higher in the native range, negatively affected reproductive units. Within the introduced range, the percentage colonisation of AMF was negatively associated with plant performance indicating that I. glandulifera may associate with an incompatible AMF species incurring a cost to invasive populations. We conclude that species which are heavily regulated in the native range, though still show high levels of performance, should be considered undesirable introductions into similar ecoclimatic ranges due to the potential that these species will become highly invasive species.  相似文献   

16.
Communities of insect herbivores and their natural enemies are rich and ecologically crucial components of terrestrial biodiversity. Understanding the processes that promote their origin and maintenance is thus of considerable interest. One major proposed mechanism is ecological speciation through host‐associated differentiation (HAD), the divergence of a polyphagous species first into ecological host races and eventually into more specialized daughter species. The rich chalcid parasitoid communities attacking cynipid oak gall wasp hosts are structured by multiple host traits, including food plant taxon, host gall phenology, and gall structure. Here, we ask whether the same traits structure genetic diversity within supposedly generalist parasitoid morphospecies. We use mitochondrial DNA sequences and microsatellite genotypes to quantify HAD for Megastigmus (Bootanomyia) dorsalis, a complex of two apparently generalist cryptic parasitoid species attacking oak galls. Ancient Balkan refugial populations showed phenological separation between the cryptic species, one primarily attacking spring galls, and the other mainly attacking autumn galls. The spring species also contained host races specializing on galls developing on different host‐plant lineages (sections Cerris vs. Quercus) within the oak genus Quercus. These results indicate more significant host‐associated structuring within oak gall parasitoid communities than previously thought and support ecological theory predicting the evolution of specialist lineages within generalist parasitoids. In contrast, UK populations of the autumn cryptic species associated with both native and recently invading oak gall wasps showed no evidence of population differentiation, implying rapid recruitment of native parasitoid populations onto invading hosts, and hence potential for natural biological control. This is of significance given recent rapid range expansion of the economically damaging chestnut gall wasp, Dryocosmus kuriphilus, in Europe.  相似文献   

17.
1. A series of experiments was conducted to measure the impact of plant genotype, plant growth rate, and intraspecific competition on the oviposition preference and offspring performance of the host races of Eurosta solidaginis (Diptera: Tephritidae), a fly that forms galls on Solidago altissima and Solidago gigantea (Asteraceae). Previous research has shown that both host races prefer to oviposit on their own host plant where survival is much higher than on the alternate host plant. In this study, neither host race showed any relationship between oviposition preference and offspring performance in choosing among plants of their natal host species. 2. The larval survival of both host races differed among plant genotypes when each host race oviposited on its natal host species. In one experiment, altissima host race females showed a preference among plant genotypes that was not correlated with offspring performance on those genotypes. In all other experiments, neither the altissima nor gigantea host race demonstrated a preference for specific host plant genotypes. 3. Eurosta solidaginis had a preference for ovipositing on rapidly growing ramets in all experiments, however larval survival was not correlated with ramet growth rate at the time of oviposition. 4. Eurosta solidaginis suffered high mortality from intraspecific competition in the early larval stage. There was little evidence, however, that females avoided ovipositing on ramets that had been attacked previously. This led to an aggregated distribution of eggs among ramets and strong intraspecific competition. 5. There was no interaction among plant genotype, plant growth rate, or intraspecific competition in determining oviposition preference or offspring performance.  相似文献   

18.
Many plant-feeding insect species considered to be polyphagous are in fact composed of genetically differentiated sympatric populations that use different hosts and between which gene flow still exists. We studied the population genetic structure of the cotton-melon aphid Aphis gossypii that is considered as one of the most polyphagous aphid species. We used eight microsatellites to analyse the genetic diversity of numerous samples of A. gossypii collected over several years at a large geographical scale on annual crops from different plant families. The number of multilocus genotypes detected was extremely low and the genotypes were found to be associated with host plants. Five host races were unambiguously identified (Cucurbitaceae, cotton, eggplant, potato and chili- or sweet pepper). These host races were dominated by asexual clones. Plant transfer experiments using several specialized clones further confirmed the existence of host-associated trade-offs. Finally, both genetic and experimental data suggested that plants of the genus Hibiscus may be used as refuge for the specialized clones. Resource abundance is discussed as a key factor involved in the process of ecological specialization in A. gossypii.  相似文献   

19.
Sequence variation in the internal transcribed spacer (ITS-1) ribosomal DNA subunit was examined for sorghum midge obtained from introduced and native hosts in south-eastern and central Queensland. No variation was observed relative to host plant or geographical distance for midges collected from two introduced hosts, grain sorghum ( Sorghum bicolor ) and Johnson grass ( S. halepense ); however, sequence differences were observed between midges from introduced and native hosts and among midges from a single native host, slender bluegrass ( Dichanthium affine ). No evidence was observed of introduced midges on native hosts, or vice versa. These results agree with previously hypothesised host distributions for native and introduced midges in Australia, and expand the sample of introduced hosts to include Johnson grass. They suggest that Stenodiplosis sorghicola , the principal midge infesting grain sorghum, is also the most common species on Johnson grass. This confirms that Johnson grass plays a role in the population dynamics of S. sorghicola and suggests that midges originating from Johnson grass may influence levels of infestation in grain sorghum.  相似文献   

20.
Drosophila tripunctata is an ecological generalist, using both fruits and mushrooms as breeding sites. Isofemale strains of this species were established from seven populations over a wide part of its range and assayed for electrophoretic variability, oviposition-site preference, and larval performance on several types of substrates. Significant variation among strains within populations was found for oviposition-site preference, larval development time on tomatoes versus mushrooms, and tolerance (as measured by development time) of the mushroom toxin α-amanitin. Even populations at the periphery of the range, which electrophoretic data suggest have been through bottlenecks, harbored levels of variation for oviposition-site preference approximately equal to that found in central populations. All correlations between preference and various measures of larval performance were close to zero. Thus, there is no evidence for sympatric divergence of host races or for coadapted complexes of genes related to host specificity. Strains with higher-than-average amanitin tolerance tended to develop more rapidly on tomatoes than on nontoxic mushrooms, whereas the less-tolerant strains had slower development on tomatoes. This suggests that there may be genetically based correlations and trade-offs in larval performance on different breeding sites. No geographic differentiation among populations was found for either oviposition-site preference or any measure of larval performance. There is also very little electrophoretic variation among populations. Thus, the species as a whole, rather than local populations, appears to be the unit of evolution with respect to resource use in D. tripunctata.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号