首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Because asexual species lack recombination, they have little opportunity to produce genetically variable offspring and cannot adapt to changes in their environment. However, a number of asexual species are very successful and appear to contradict this general view. One such species is the phytophagous mite Brevipalpus phoenicis (Geijskes), a species that is found in a wide range of environments. There are two general explanations for this pattern, the General Purpose Genotype (GPG) and Frozen Niche Variation (FNV). According to the GPG model, an asexual species consists of clones that can all survive and reproduce in all the different niches. Alternatively, the FNV model postulates that different clones are specialized to different niches. We have performed a test to distinguish between these models in B. phoenicis. Mites from three populations from three different host plant species (citrus, hibiscus and acerola) were transplanted to their own and the two alternative host plants and mite survival and egg production were measured. Additionally, the mite populations were genotyped using microsatellites. Fitness was seriously reduced when mites were transplanted to the alternative host plant species, except when the alternative host was acerola. We concluded that B. phoenicis clones are specialized to different niches and thus the FNV best describes the broad ecological niche of this species but that there is also some evidence for host plant generalization. This conclusion was strengthened by the observations that on each host plant species the native mite population performed better than the introduced ones, and that three microsatellite markers showed that the mite populations are genetically distinct.  相似文献   

2.
The frozen-niche-variation model was proposed to account for the coexistence of genetically related clones in naturally occurring unisexual populations. This model is based on two assumptions: 1) ecologically different clones have multiple independent origins from sexual ancestors; and 2) the population of sexual ancestors contains genetic variability for ecologically relevant traits. To test these assumptions, we produced 14 new “hemiclones” (nonrecombining haploid genotypes) of fish (Poeciliopsis: Poeciliidae). Our ability to synthesize many new hemiclones demonstrates the feasibility of multiple independent origins of nonrecombining genotypes. A substantial proportion (10–50%) of the phenotypic variation among hemiclones in size at birth, juvenile growth rate, and fecundity had a genetic basis. Thus, we conclude that multiple origins can give rise to an assemblage of genetically distinct hemiclones, each with a unique combination of life-history traits. Additionally, a comparative analysis of two natural hemiclones revealed that the synthetic strains represent a broad field of variation from which natural hemiclones can be selected.  相似文献   

3.
Using half-sib analysis, we analysed the consequences of extreme rearing temperatures on genetic and phenotypic variations in the morphological and life-history traits of Drosophila ananassae. Paternal half-sib covariance contains a relatively small proportion of the epistatic variance and lacks the dominance variance and variance due to maternal effect, which provides more reliable estimates of additive genetic variance. Experiments were performed on a mass culture population of D. ananassae collected from Kanniyakumari (India). Two extremely stressful temperatures (18°C and 32°C) and one standard temperature (25°C) were used to examine the effect of stressful and non-stressful environments on the morphological and life-history traits in males and females. Mean values of various morphological traits differed significantly among different temperature regimens in both males and females. Rearing at 18°C and 32°C resulted in decreased thorax length, wing-to-thorax (w/t) ratio, sternopleural bristle number, ovariole number, sex comb-tooth number and testis length. Phenotypic variances increased under stressful temperatures in comparison with non-stressful temperatures. Heritability and evolvability based on among-sires (males), among-dams (females), and the sum of the two components (sire + dam) showed higher values at both the stressful temperatures than at the non-stressful temperature. These differences reflect changes in additive genetic variance. Viability was greater at the high than the low extreme temperature. As viability is an indicator of stress, we can assume that stress was greater at 18°C than at 32°C in D. ananassae. The genetic variations for all the quantitative and life-history traits were higher at low temperature. Variation in sexual traits was more pronounced as compared with other morphometric traits, which shows that sexual traits are more prone to thermal stress. Our results agree with the hypothesis that genetic variation is increased in stressful environments.  相似文献   

4.
The rarity of eukaryotic asexual reproduction is frequently attributed to the disadvantage of reduced genetic variation relative to sexual reproduction. However, parthenogenetic lineages that evolved repeatedly from sexual ancestors can generate regional pools of phenotypically diverse clones. Various theories to explain the maintenance of this genetic diversity as a result of environmental and spatial heterogeneity [frozen niche variation (FNV), general-purpose genotype] are conceptually similar to community ecological explanations for the maintenance of regional species diversity. We employed multivariate statistics common in community ecological research to study population genetic structure in the freshwater crustacean, Daphnia pulex × pulicaria. This parthenogenetic hybrid arose repeatedly from sexual ancestors. Daphnia pulex × pulicaria populations harboured substantial genetic variation among populations and the clonal composition at each pond corresponded to nutrient levels and invertebrate predator densities. The interclonal selection process described by the FNV hypothesis likely structured our D. pulex × pulicaria populations.  相似文献   

5.
Cyperus esculentus is an exotic clonal (or pseudoannual) weed in Japan, and its range is steadily increasing. To investigate its interclonal variation and phenotypic plasticity in response to water availability, five clones of C. esculentus , collected from different sites in Japan, were grown singly in pots placed outdoors under dry and wet conditions. All the traits examined showed considerable variation among the five clones. However, two clones from Tochigi were similar to each other; thus, they might have originated from the same founder population. The clone from Ibaraki was quite different from the others. Therefore, it is suggested that the Japanese populations of C. esculentus might have resulted from multiple introductions of genotypes from geographically separated and, hence, genetically differentiated, source populations. All the clones also showed considerable plasticity in response to water availability. Clones with a larger ramet number had a greater plasticity, whereas tuber size was invariant across water treatments. Highly plastic traits had generally low interclonal variation in plasticity. All the clones had high productivity and produced more ramets and tubers under wet conditions than under dry conditions. Moreover, water availability could partially regulate the mode of its reproduction; wet conditions favored tuber production (vegetative propagation) while dry conditions favored sexual reproduction. A number of trade-offs occurred between the traits of clonal growth, storage and sexual reproduction, indicating that allocation among the competing functions/organs is mutually exclusive in plants. The results obtained here suggest that C. esculentus is more likely to invade wet habitats than dry habitats.  相似文献   

6.
High risk of infection by parasites may select for early reproduction in natural host populations. In a previous study of a freshwater snail (Potamopyrgus antipodarum) we found (1) that different clones of the snail are associated with different depth-structured vegetation zones and (2) that snails in shallow water, where the age-specific risk of infection is highest, mature at a smaller size than snails in deeper habitats. This result suggests that there has been selection for early reproduction in these snails, and that different clonal genotypes have different life-history strategies. Alternatively, the observed life-history variation in the snails might be due to ecological factors that are independent of parasites, but correlated with depth. In the present study, we decoupled parasitism and depth by examining life histories and clonal population structure in a second lake (Lake Tennyson) where the mean prevalence of trematode parasites was low and unrelated to depth. Consistent with the previous results, clones were structured according to vegetation zones in Lake Tennyson. However, we found no relationship between depth and life-history traits, which is inconsistent with the idea that depth-associated factors other than parasites affect snail life histories. Taken together, these results suggest that life-history variation is more likely to result from a depth-specific risk of infection than from depth per se, and that partitioning of habitat zones by different groups of clones may be a general phenomenon in P. antipodarum populations.  相似文献   

7.
As a result of reduced intraspecific competition, genetically diverse populations may have higher relative fitness than genetically uniform populations. To test this hypothesis, we compared polyclonal (i.e., genetically diverse) versus monoclonal (i.e., composed of a single clonal genotype) experimental populations of the rotifer Brachionus plicatilis (Müller, 1786) growing separately and in competition. We estimated the following fitness components: intrinsic growth rate; carrying capacity; proportion of sexual females; diapausing egg production per sexual female and total egg production. Polyclonal populations showed similar dynamics to monoclonal populations and no statistical difference between their fitness components was detected. Therefore, results do not support the hypothesis that genetically diverse populations reduce competition through diversification in resource use. Instead, results suggest that B. plicatilis is a generalist consumer whose polyphagy does not depend on genetic differences, but on the broad diet of each genotype. However, clones showed significant differences in almost all fitness components demonstrating among-clone variation in life-history traits. We found a trade-off between sexual ratio and carrying capacity, highlighting the cost of sex in cyclical parthenogenetic rotifers. We discuss the mechanisms that could maintain the observed among-clone genetic variation in natural populations, and speculate on results implication for sex maintenance in rotifers.  相似文献   

8.
Alternative models of the maintenance of genetic variability, theories of life-history evolution, and theories of sexual selection and mate choice can be tested by measuring additive and nonadditive genetic variances of components of fitness. A quantitative genetic breeding design was used to produce estimates of genetic variances for male life-history traits in Drosophila melanogaster. Additive genetic covariances and correlations between traits were also estimated. Flies from a large, outbred, laboratory population were assayed for age-specific competitive mating ability, age-specific survivorship, body mass, and fertility. Variance-component analysis then allowed the decomposition of phenotypic variation into components associated with additive genetic, nonadditive genetic, and environmental variability. A comparison of dominance and additive components of genetic variation provides little support for an important role for balancing selection in maintaining genetic variance in this suite of traits. The results provide support for the mutation-accumulation theory, but not the antagonistic-pleiotropy theory of senescence. No evidence is found for the positive genetic correlations between mating success and offspring quality or quantity that are predicted by “good genes” models of sexual selection. Additive genetic coefficients of variation for life-history characters are larger than those for body weight. Finally, this set of male life-history characters exhibits a very low correspondence between estimates of genetic and phenotypic correlations.  相似文献   

9.
L. Chamorro  F.X. Sans 《Flora》2010,205(1):26-36
In the present study we relate the variability in life-history traits (such as flowering time and lifespan) of the herbaceous biennial–perennial Erucastrum nasturtiifolium (Brassicaceae) to habitat type. We studied plant populations from arable fields and from eroded mountain habitats, such as badlands and rocky slopes. Collection sites ranged from low basin to sub-alpine regions in the NE Iberian Peninsula. Plants were grown under common garden conditions to evaluate genetic variation among and within populations. Plants were also subjected to a resource gradient to detect genetic variation in phenotypic plasticity. The populations exhibited differentiation across a number of life-history traits (mainly flowering time and lifespan) and morphological traits related to growth (basal stem diameter, plant height and number of branches). This suggests that life-history differences among populations are genetically based. Moreover, our results show that variation in flowering time and lifespan are affected by habitat type independent of other abiotic factors such as altitude or continentality. Thus, populations from arable fields started flowering in their first year and displayed annual cycles, whereas those from wild habitats generally flowered in their second year and showed biennial or even perennial cycles. Intra-population differences in flowering time were observed in only one population, and were related to nutrient availability. We suggest that early-flowering and shorter lifespan populations of E. nasturtiifolium may have been selected from late-flowering and longer lifespan populations as part of a selective process ensuring survival and future offspring amidst unpredictable and frequently disturbed environments such as exist in many agricultural habitats.  相似文献   

10.
Quaking aspen (Populus tremuloides) exhibits striking intraspecific variation in concentrations of phenolic glycosides, compounds that play important roles in mediating interactions with herbivorous insects. This research was conducted to assess the contribution of genetic variation to overall phenotypic variation in aspen chemistry and interactions with gypsy moths (Lymantria dispar) and forest tent caterpillars (Malacosoma disstria). Thirteen aspen clones were propagated from field-collected root material. Insect performance assays, measuring survival, development, growth, and food utilization indices, were conducted with second and/or fourth instars. Leaf samples were assayed for water, nitrogen, total nonstructural carbohydrates, condensed tannins, and phenolic glycosides. Results showed substantial among-clone variation in the performance of both insect species. Chemical analyses revealed significant among-clone variation in all foliar constituents and that variation in allelochemical contents differed more than variation in primary metabolites. Regression analyses indicated that phenolic glycosides were the dominant factor responsible for among-clone variation in insect performance. We also found significant genetic trade-offs between growth and defense among aspen clones. Our results suggest that genetic factors are likely responsible for much of the tremendous phenotypic variation in secondary chemistry exhibited by aspen, and that the genetic structure of aspen populations may play important roles in the evolution of interactions with phytophagous insects. Received: 14 May 1996 / Accepted: 29 January 1997  相似文献   

11.
Phenotypic and genetic variation within and among eight populations of Arabis serrata are documented in this study. This species shows great morphological variation throughout its geographical distribution in Japan. Plants are located in habitats with different types of soils and degree of disturbance. Half-sibs progenies from eight populations were collected and cultivated in a garden experiment. Nine morphological traits representing size and shape of rosette leaves were recorded. Univariate analyses of measured traits showed that phenotypic means differed among populations for all characters. Leaves of plants from disturbed habitats had the longest petioles (lanceolate) and plants from limestone habitats showed the most roundness in leaf shape (ovate). The northernmost populations always revealed the smallest leaves. Multivariate principal component analyses also showed that leaf shape and size varied among populations. The first three principal components explained 98.5% of the variation. Coefficients of variation had a very wide range and differed from one population to another. Some traits (e.g. leaf width/leaf length ratio) were consistently less variable while others (e.g. leaf area and petiole length) were more plastic. All traits had significant genetic variance in all populations. Intra-class correlation coefficients differed for most of the traits and each population presented a different range of values. Most of the leaf traits were intercorrelated in all the populations studied, although some populations were integrated more tightly for some traits. Populations of A. serrata are differentiated in phenotypic means but they display a mosaic of traits with slight morphological differences in each locality (i.e. a quantitative genetic variation). Some traits can be correlated to the habitats that they occupy but for some of them it is difficult to assign an actual adaptive value.  相似文献   

12.
Previous theories and studies have postulated negative correlations between allozyme heterozygosity and developmental noise and between heterozygosity and phenotypic plasticity. We examined these relationships for morphological and life-history traits of Daphnia magna in four independent experiments using two different Moscow populations and one German population. Clones were raised under a range of food levels or individual densities. Heterozygosity was scored at five allozyme loci in two experiments and at three loci in two others. Relative differences in developmental noise among clones with different heterozygosity levels were estimated as the pooled residual variation from an analysis of variation that removed the effects of macroenvironment, clones, and their interaction. Plasticity was measured as the amount of macroenvironmental variation plus genotype-by-environment interaction variation. We found a positive correlation between developmental noise and heterozygosity, although this correlation varied among traits and experiments. This result contradicts most previous claims about these relationships. In contrast, we found that phenotypic plasticity and heterozygosity were negatively correlated for some traits. Developmental noise and phenotypic plasticity were correlated for only two traits in two different experiments. This trait-specific relationship is in concordance with previous studies. Our results could not be explained by effects of developmental time, a previously hypothesized mechanism. We propose several explanations for our results and the disparate results of others that do not require that heterozygosity be the actual cause of variation in developmental noise.  相似文献   

13.
An amphidromous sculpin,Cottus hangiongensis, distributed freely in a natural river system, exhibited clinal differences in population density, sex ratio, age composition and life-history. In a second river, in which the distribution was restricted to a narrow area in the lower reaches by a notched weir, the species was characterized by high population density and a similar population structure in two different habitats. Little life-history variation was evident. Field observations suggested that clinal life-history variations inC. hangiongensis were not genotypic, but environmentally-induced, phenotypic responses. Rearing experiments demonstrated that the maturity of one-year old males was delayed under low density conditions, and that no relationship existed between the timing of maturity and the sex ratio. This suggests that phenotypic life-history variation inC. hangiongensis is induced primarily in response to population density. Such phenotypic plasticity in life-histories of individualC. hangiongensis populations may be an adaptation for exploitation of broad and heterogenous river habitats.  相似文献   

14.
Many aphid species have shown remarkable adaptability by invading new habitats and agricultural crops, although they are parthenogenetic and might be expected to show limited genetic variation. To determine if the mode of reproduction limits the level of genetic variation in adaptively important traits, we assess variation in 15 life history traits of the pea aphid, Acyrhosiphon pisum (Harris), for five populations sampled along a north-south transect in central North America, and for three traits for three populations from eastern Australia. The traits are developmental times and rates as affected by temperature, body weights as affected by temperature, fecundity, measures of migratory tendency, and photoperiodic responses. The most southerly population from North America is shown to be obligately parthenogenetic, as are the Australian populations, and the four more northerly North American populations are facultatively parthenogenetic with the number of parthenogenetic generations per year increasing from north to south. The broad-sense heritabilities of life history traits varied from 0.36 to 0.71 for nine quantitive traits based on a comparison of within-and between-lineage variances. Using these traits, 7–13 distinct genotypes (i.e. clones) were identified among each of the 18 lines sampled from the North American populations, but the number did not differ significantly among populations. The level of genetic variation differed from trait to trait. For 4 of 12 quantitative traits, the level of variation in the obligately parthenogenetic population from North America was lowest, but significantly lower than all the sexual populations for only 1 trait. The obligately parthenogenetic population had the highest level of genetic variation for two traits, and had intermediate levels for the others. The most northerly population, which was sexual and had relatively few parthenogenetic generations each year, had the lowest level of variation for 5 of 12 traits and the highest level of variation for 2 traits. There was no decline in variability from north to south correlated with the increase in the annual number of parthenogenetic generations. The Australian populations showed no less variation than the North American populations for two of three traits, although the pea aphid was introduced to Australia only 5 years prior to the study, whereas the aphid has been in North America for at least 100 years. The mode of reproduction has not had a substantial impact on the level of genetic variation in life history traits of the pea aphid, but there are population-specific factors that effect the level of variation in certain traits.  相似文献   

15.
The occurrence of alternating phases of clonal and sexual reproduction may strongly impact the interplay between neutral and selective genetic variation in populations. Using a physiologically structured model of the life history of Daphnia, we investigated to what extent clonal erosion associated with selection during the clonal phase affects the genetic structure as observed by neutral markers. Incorporating conservative levels of quantitative genetic variation at 11 physiological and life history traits induces strong clonal erosion, reducing clonal diversity (CD) near the end of the simulations (1000 days) to a level between 1 and 5, even in habitats with high initial CD (108 clones). This strong clonal erosion caused by selection can result in reduced genetic diversity, significant excess of heterozygotes and significant genetic differentiation between populations as observed by neutral markers. Our results indicate that, especially in relatively small habitats, clonal selection may strongly impact the genetic structure and may contribute to the often observed high level of neutral genetic differentiation among natural populations of cyclical parthenogens.  相似文献   

16.
The multivoltine bruchid Kytorhinus sharpianus shows seasonal phenotypic plasticity in adult longevity, the preoviposition period, and the number of eggs laid without feeding between the diapausing and nondiapausing generations. This study compared the norms of reaction in three life-history traits between the univoltine Aomori and multivoltine Mitsuma populations. The directions of response in the norms of reaction were similar in both populations, although their response curves differed between populations. This result indicated a potential for variation in seasonal phenotypic plasticity in the univoltine population. However, the variation in the norms of reaction was small in both populations, suggesting strong selection pressure on the plasticity in the multivoltine population. These results also suggest that the univoltine Aomori population may have originated from a multivoltine population.  相似文献   

17.
Similar phenotypes do not always imply similar genotypes. In species distributed over a broad latitudinal range, geographical variation in morphological and life-history traits may reflect very different relations between genotypic and environmental effects on these traits. Patterns of selection among latitudinally separated sites may minimize phenotypic differences in life-history traits but promote phenotypic differences in form. Thus, for example, latitudinal variation in temperature often leads to genetically based metabolic differences that minimize differences in growth rate among populations at different latitudes (countergradient variation). However, variation in habitat experienced by the same populations may promote genetically based differences in shell form (cogradient variation). Few attempts have been made to assess simultaneously such mosaic effects of natural selection on the genetic basis of variation in both morphological and life-history traits among geographically separated populations. I quantified the extent to which widely separated populations of the rocky shore marine gastropod Bembicium vittatum exhibited genetic differences in shell shape, shell pattern, and growth rate. Bembicium vittatum occurs naturally at only three widely separated locations on the Western Australian coast. Individuals were transplanted from all three locations to a latitudinally intermediate site, where they were released in different pairwise combinations and allowed to reproduce. F1 offspring from crosses between same- or different-source parents were identified using allozyme markers. When grown in a common environment, offspring from same-source parents exhibited similar differences in shell shape and pattern, but dramatic differences in growth rates, compared to native populations. Genetic variation therefore exists for all three traits. Growth rates in the common environment were positively correlated with latitude of the source population, confirming the existence of countergradient variation for growth associated with metabolic compensation. In addition, for both shell shape and growth rate, hybrids exhibited phenotypes roughly midway between the same-source parents, suggesting that genetic differences have a large additive component. In contrast, when one parent had pigmented spots, the offspring also had spots, suggesting a strong dominance component to the genetic basis of shell pattern. Genetic differences therefore yield different morphological phenotypes but similar life-history phenotypes, among latitudinally distant populations, and confirm a pattern of mosaic evolution in B. vittatum.  相似文献   

18.
Phenotypic plasticity in thermally-regulated traits enables close tracking of changing environmental conditions, and can thereby enhance the potential for rapid population increase, a hallmark of outbreak insect species. In a changing climate, exposure to conditions that exceed the capacity of existing phenotypic plasticity may occur. Combining information on genetic architecture and trait plasticity among populations that are distributed along a latitudinal cline can provide insight into how thermally-regulated traits evolve in divergent environments and the potential for adaptation. Dendroctonus ponderosae feed on Pinus species in diverse climatic regimes throughout western North America, and show eruptive population dynamics. We describe geographical patterns of plasticity in D. ponderosae development time and adult size by examining reaction norms of populations from multiple latitudes. The relative influence of additive and non-additive genetic effects on population differences in the two phenotypic traits at a single temperature is quantified using line-cross experiments and joint-scaling tests. We found significant genetic and phenotypic variation among D. ponderosae populations. Simple additive genetic variance was not the primary source of the observed variation, and dominance and epistasis contributed greatly to the genetic divergence of the two thermally-regulated traits. Hybrid breakdown was also observed in F2 hybrid crosses between northern and southern populations, further indication of substantial genetic differences among clinal populations and potential reproductive isolation within D. ponderosae. Although it is unclear what maintains variation in the life-history traits, observed plasticity in thermally-regulated traits that are directly linked to rapid numerical change may contribute to the outbreak nature of D. ponderosae, particularly in a changing climate.  相似文献   

19.
Three clones of Folsomia candida from different locations in Europe were compared in four experiments investigating genetic and phenotypic correlations between life-history traits. The first three experiments focused on the effects of food type, clone and temperature on traits associated with the first clutch. Differences in clutch size between clones and treatments were almost completely attributable to body size. Clones differed in length of the juvenile period, but the difference decreased at low temperatures. Age and weight at first reproduction were negatively correlated in the food type experiment and positively correlated in the temperature experiment, an often-encountered result for which no general explanation is as yet available. In the temperature experiment egg size variation was considerable, and was highest at low temperatures. The fourth experiment, with two clones at two feeding levels, aimed at finding trade-offs, in particular between reproduction and survival. It was hypothesized that higher fecundity led to increased scenescence through a higher metabolic rate. The trade-off was clearly present among the clones: one combined fast growth, late reproduction and high lifetime fecundity with lower survival, while in the other the relation between these traits was opposite. The proposed mechanism, however, was not confirmed, as no difference in metabolic rate was found. The effect of food level was too small to result in significant differences in the life-history traits in either of the clones.  相似文献   

20.
Genetic variation in sexual and clonal lineages of a freshwater snail   总被引:3,自引:0,他引:3  
Sexual reproduction within natural populations of most plants and animals continues to remain an enigma in evolutionary biology. That the enigma persists is not for lack of testable hypotheses but rather because of the lack of suitable study systems in which sexual and asexual females coexist. Here we review our studies on one such organism, the freshwater snail Potamopyrgus antipodarum (Gray). We also present new data that bear on hypotheses for the maintenance of sex and its relationship to clonal diversity. We have found that sexual populations of the snail are composed of diploid females and males, while clonal populations are composed of a high diversity of triploid apomictic females. Sexual and asexual individuals coexist in stable frequencies in many ‘mixed’ populations; genetic data indicate that clones from these mixed populations originated from the local population of sexual individuals without interspecific hybridization. Field data show that clonal and sexual snails have completely overlapping life histories, but individual clonal genotypes are less variable than individuals from the sympatric sexual population. Field data also show segregation of clones among depth‐specific habitat zones within a lake, but clonal diversity remains high even within habitats. A new laboratory experiment revealed extensive clonal variation in reproductive rate, a result which suggests that clonal diversity would be low in nature without some form of frequency‐dependent selection. New results from a long‐term field study of a natural, asexual population reveal that clonal diversity remained nearly constant over a 10‐year period. Nonetheless, clonal turnover occurs, and it occurs in a manner that is consistent with parasite‐mediated, frequency‐dependent selection. Reciprocal cross‐infection experiments have further shown that parasites are more infective to sympatric host snails than to allopatric snails, and that they are also more infective to common clones than rare clones within asexual host populations. Hence we suggest that sexual reproduction in these snails may be maintained, at least in part, by locally adapted parasites. Parasite‐mediated selection possibly also contributes to the maintenance of local clonal diversity within habitats, while clonal selection may be responsible for the distribution of clones among habitats. © 2003 The Linnean Society of London. Biological Journal of the Linnean Society 2003, 79 , 165–181.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号