首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cross‐presentation by MHC class I molecules allows the detection of exogenous antigens by CD8+ T lymphocytes. This process is crucial to initiate cytotoxic immune responses against many pathogens (i.e., Toxoplasma gondii) and tumors. To achieve efficient cross‐presentation, dendritic cells (DCs) have specialized endocytic pathways; however, the molecular effectors involved are poorly understood. In this work, we identify the small GTPase Rab22a as a key regulator of MHC‐I trafficking and antigen cross‐presentation by DCs. Our results demonstrate that Rab22a is recruited to DC endosomes and phagosomes, as well as to the vacuole containing T. gondii parasites. The silencing of Rab22a expression did not affect the uptake of exogenous antigens or parasite invasion, but it drastically reduced the intracellular pool and the recycling of MHC‐I molecules. The knockdown of Rab22a also hampered the cross‐presentation of soluble, particulate and T. gondii‐associated antigens, but not the endogenous MHC‐I antigen presentation through the classical secretory pathway. Our findings provide compelling evidence that Rab22a plays a central role in the MHC‐I endocytic trafficking, which is crucial for efficient cross‐presentation by DCs.  相似文献   

2.
Nonameric P815AB, a cytotoxic-T-lymphocyte-defined minimal core peptide encoded by the murine mastocytoma gene P1A, fails to initiate CD4+ cell-dependent reactivity in vivo to class-I-restricted epitopes when mice are administered peptide-pulsed dendritic cells. Effective immunization requires T helper effects, such as those mediated by coimmunization with class-II-restricted (helper) peptides or by the use of recombinant interleukin-12 (rIL-12). Although P815AB does possess class-II-restricted epitopes, they are likely suboptimal, resulting in poor affinity and/or stability of MHC/P815AB complexes and inadequate activation of the antigen-presenting cell function of dendritic cells. The present study has examined a series of longer, P815AB-centered peptides (11–14 amino acids in length, all P1A-encoded) for their ability to initiate CD4+ and CD8+ cell-mediated responses to the nonamer in vivo, their ability to bind class II MHC in vitro, and their ability to assemble class II molecules stably. By means of a class-I-restricted skin test assay in mice receiving peptide-pulsed dendritic cells, we found that a 12-mer and a 13-mer effectively immunized against the core P815AB peptide, and that this correlated with IL-2 production in vitro by CD4+ cells in response to the nonamer. In vitro studies, involving affinity-purified class II molecules, showed that the capacity to assemble class II molecules stably, more than the affinity for class II MHC, correlated with the ability of the different P815AB peptides to prime the host to the core peptide seen by the T cells. Received: 25 February 1999 / Accepted: 14 April 1999  相似文献   

3.
We studied whether the peptides of nine amino acids (9-mers) that are typically used in MHC class I presentation are sufficiently unique for self:nonself discrimination. The human proteome contains 28,783 proteins, comprising 107 distinct 9-mers. Enumerating distinct 9-mers for a variety of microorganisms we found that the average overlap, i.e., the probability that a foreign peptide also occurs in the human self, is about 0.2%. This self:nonself overlap increased when shorter peptides were used, e.g., was 30% for 6-mers and 3% for 7-mers. Predicting all 9-mers that are expected to be cleaved by the immunoproteasome and to be translocated by TAP, we find that about 25% of the self and the nonself 9-mers are processed successfully. For the HLA-A*0201 and HLA-A*0204 alleles, we predicted which of the processed 9-mers from each proteome are expected to be presented on the MHC. Both alleles prefer to present processed 9-mers to nonprocessed 9-mers, and both have small preference to present foreign peptides. Because a number of amino acids from each 9-mer bind the MHC, and are therefore not exposed to the TCR, antigen presentation seems to involve a significant loss of information. Our results show that this is not the case because the HLA molecules are fairly specific. Removing the two anchor residues from each presented peptide, we find that the self:nonself overlap of these exposed 7-mers resembles that of 9-mers. Summarizing, the 9-mers used in MHC class I presentation tend to carry sufficient information to detect nonself peptides amongst self peptides.  相似文献   

4.
Macrophages present exogenous Ag either via MHC class I or MHC class II molecules. We investigated whether the mode of hemagglutinin (HA) uptake influences the class of MHC molecule by which this Ag is presented. Normally, HA is ingested by receptor-mediated endocytosis, but this may be switched to macropinocytosis and pinocytosis by adding phorbol esters to the cells. This switch resulted in altered intracellular routing of ingested Ag and a transition from Ag presentation via MHC class II molecules to presentation via MHC class I molecules. Similarly, inhibition of receptor-mediated HA endocytosis, by treating the cells with the HA receptor destroying enzyme neuraminidase, abrogated Ag presentation via MHC class II molecules and induced presentation via MHC class I molecules. If, however, under these conditions, receptor-mediated uptake of HA was restored, by virtue of HA/anti-HA Ab interaction and subsequent uptake of HA via the Fc receptor, presentation via MHC class II was restored as well, whereas presentation of HA via MHC class I molecules was no longer detectable. We conclude that in macrophages the mode of Ag uptake is decisive in determining via which class of MHC molecules Ag is presented: pinocytosis and macropinocytosis produce exclusive presentation of exogenous Ag via MHC class I molecules whereas receptor-mediated endocytosis leads exclusively to presentation via class II molecules.  相似文献   

5.
A few cases have been described of antigenic determinants that are broadly presented by multiple class II MHC molecules, especially murine I-E or human DR, in which polymorphism is limited to the beta chain, and the alpha chain is conserved. However, no similar cases have been studied for presentation by class I MHC molecules. Because both domains of the MHC peptide binding site are polymorphic in class I molecules, exploring permissiveness in class I presentation would be of interest, and also such broadly presented antigenic determinants would clearly be useful for vaccine development. We had defined an immunodominant determinant, P18, of the HIV-1 gp160 envelope protein recognized by human and murine CTL. To determine the range of class I MHC molecules that could present this peptide and to determine whether two HIV-1 gp160 Th cell determinants, T1 and HP53, could also be presented by class I MHC molecules, we attempted to generate CTL specific for these three peptides in 10 strains of B10 congenic mice, representing 10 MHC types, and BALB/c mice. P18 was presented by at least four different class I MHC molecules from independent haplotypes (H-2d, p, u, and q to CD8+ CTL. In H-2d and H-2q the presentation was mapped to the D-end class I molecule, and for Dd, a requirement for both the alpha 1 and alpha 2 domains of Dd, not Ld, was found. HP53 was also presented by the same four different class I MHC molecules to CD8+ CTL although at higher concentrations. T1 was presented by class I molecules in three different strains of distinct MHC types (B10.M, H-2f; B10.A, H-2a; and B10, H-2b) to CTL. The CTL specific for P18 and HP53 were shown to be CD8+ and CD4- and to kill targets expressing endogenously synthesized whole gp160 as well as targets pulsed with the corresponding peptide. To compare the site within each peptide presented by the different class I molecules, we used overlapping and substituted peptides and found that the critical regions of each peptide are the similar for all four MHC molecules. Thus, antigenic sites are broadly or permissively presented by class I MHC molecules even without a nonpolymorphic domain as found in DR and I-E, and these sequences may be of broad usefulness in a synthetic vaccine.  相似文献   

6.
Haeri M  Read LR  Wilkie BN  Sharif S 《Immunogenetics》2005,56(11):854-859
Chicken major histocompatibility complex (MHC) molecules present peptides to T cells to initiate immune response. Some variants of the chicken MHC, such as B19 and B21 haplotypes, are strongly associated with susceptibility and resistance to Mareks disease, respectively. The objective of the present study was to characterize the repertoire and origin of self-peptides presented by chicken MHC class II (B-L) molecules of B19 and B21 haplotypes. Following immunoaffinity purification of B21 and B19 B-L molecules from transformed B cell lines, their associated peptides were eluted, high performance liquid chromatography-fractionated, and sequenced by tandem mass spectrometry. Four peptides were identified associated with B21 B-L molecules. These ranged from 16 to 21 residues in length and had originated from membrane-bound, cytosolic, and mitochondrial proteins. Two of these peptides were present in form of an overlapping set, which is a common characteristic of MHC II-associated peptides. The single B19-associated peptide was 17 residues long and had originated from a cytosolic source. Presentation of endogenous peptides, such as those derived from cytosolic and mitochondrial proteins, by B-L molecules is indicative of cross-sampling between MHC class I and II antigen presentation pathways. These findings facilitate future studies aimed at elucidating mechanisms of chicken MHC association with disease resistance.  相似文献   

7.
We previously reported that exogenous antigens complexed with the cationic liposome lipofectin (LF) were efficiently presented via major histocompatibility complex (MHC) class I molecules on pulsed dendritic cells (DCs) in vitro. In the present study, we demonstrated that MHC class I-restricted antigen presentation on DC2.4 cells, a murine immature DC line, treated with LF-antigen complexes was remarkably suppressed through the inhibition of endocytosis, proteasome catalysis, and Golgi transport. We also found that LF did not influence expression of interleukin-12 p40 mRNA, MHC molecules, or co-stimulatory molecules in DC2.4 cells. These findings suggest that an antigen-loading procedure using LF could enhance delivery of exogenous antigens to the classical MHC class I pathway in DCs, but it does not initiate DC maturation.  相似文献   

8.
We have used a T-T hybridoma, RF33.70, to detect the MHC class I-restricted presentation of exogenous native OVA by thymic APC in vitro. Presentation of OVA with class I molecules by thymic APC requires intracellular processing. Phenotypic analyses indicated that low bouyant density, MHC class II+, FcR+ cells are capable of using this presentation pathway. In order to determine whether thymic APC have this function in vivo, thymic APC were isolated from mice after i.v. injection of native OVA. We find that OVA is presented in association with MHC class I, but not class II, molecules in the thymus. This is in contrast to splenic APC, which present exogenous OVA with both class I and class II molecules under these conditions. Our findings have implications for the repertoire of self-peptides that might be presented by thymic APC to developing T lymphocytes.  相似文献   

9.
An empirical method for the prediction of T-cell epitopes   总被引:6,自引:1,他引:5  
Identification of T-cell epitopes from foreign proteins is the current focus of much research. Methods using simple two or three position motifs have proved useful in epitope prediction for major histocompatibility complex (MHC) class I, but to date not for MHC class II molecules. We utilized data from pool sequence analysis of peptides eluted from two HLA-DR13 alleles to construct a computer algorithm for predicting the probability that a given sequence will be naturally processed and presented on these alleles. We assessed the ability of this method to predict know self-peptides from these DR-13 alleles, DRB1 *1301 and *1302, as well as an immunodominant T-cell epitope. We also compared the predictions of this scoring procedure with the measured binding affinities of a panel of overlapping peptides from hepatitis B virus surface antigen. We concluded that this method may have wide application for the prediction of T-cell epitopes for both MHC class I and class II molecules.  相似文献   

10.
We have recently shown that the LC3/Atg8 lipidation machinery of macroautophagy is involved in the internalization of MHC class I molecules. Decreased internalization in the absence of ATG5 or ATG7 leads to MHC class I surface stabilization on dendritic cells and macrophages, resulting in elevated CD8+ T cell responses during viral infections and improved immune control. Here, we discuss how the autophagic machinery supports MHC class II restricted antigen presentation, while compromising MHC class I presentation via internalization and degradation.  相似文献   

11.
12.
Reliable predictions of immunogenic peptides are essential in rational vaccine design and can minimize the experimental effort needed to identify epitopes. In this work, we describe a pan-specific major histocompatibility complex (MHC) class I epitope predictor, NetCTLpan. The method integrates predictions of proteasomal cleavage, transporter associated with antigen processing (TAP) transport efficiency, and MHC class I binding affinity into a MHC class I pathway likelihood score and is an improved and extended version of NetCTL. The NetCTLpan method performs predictions for all MHC class I molecules with known protein sequence and allows predictions for 8-, 9-, 10-, and 11-mer peptides. In order to meet the need for a low false positive rate, the method is optimized to achieve high specificity. The method was trained and validated on large datasets of experimentally identified MHC class I ligands and cytotoxic T lymphocyte (CTL) epitopes. It has been reported that MHC molecules are differentially dependent on TAP transport and proteasomal cleavage. Here, we did not find any consistent signs of such MHC dependencies, and the NetCTLpan method is implemented with fixed weights for proteasomal cleavage and TAP transport for all MHC molecules. The predictive performance of the NetCTLpan method was shown to outperform other state-of-the-art CTL epitope prediction methods. Our results further confirm the importance of using full-type human leukocyte antigen restriction information when identifying MHC class I epitopes. Using the NetCTLpan method, the experimental effort to identify 90% of new epitopes can be reduced by 15% and 40%, respectively, when compared to the NetMHCpan and NetCTL methods. The method and benchmark datasets are available at .  相似文献   

13.
The molecules encoded by major histocompatibility complex (MHC) genes play an essential role in the adaptive immune response among vertebrates. We investigated the molecular evolution of MHC class I genes in the sable Martes zibellina. We isolated 26 MHC class I sequences, including 12 putatively functional sequences and 14 pseudogene sequences, from 24 individuals from two geographic areas of northeast China. The number of putatively functional sequences found in a single individual ranged from one to five, which might be at least 1–3 loci. We found that both balancing selection and recombination contribute to evolution of MHC class I genes in M. zibellina. In addition, we identified a candidate nonclassical MHC class I lineage in Carnivora, which may have preceded the divergence (about 5257 Mya) of Caniformia and Feliformia. This may contribute to further understanding of the origin and evolution of nonclassical MHC class I genes. Our study provides important immune information of MHC for M. zibellina, as well as other carnivores.  相似文献   

14.
It is well-established that heat shock proteins (HSPs)-peptides complexes elicit antitumor responses in prophylactic and therapeutic immunization protocols. HSPs such as gp96 and Hsp70 have been demonstrated to undergo receptor-mediated uptake by APCs with subsequent representation of the HSP-associated peptides to MHC class I molecules on APCs, facilitating efficient cross-presentation. On the contrary, despite its abundant expression among HSPs in the cytosol, the role of Hsp90 for the cross-presentation remains unknown. We show here that exogenous Hsp90-peptide complexes can gain access to the MHC class I presentation pathway and cause cross-presentation by bone marrow-derived dendritic cells. Interestingly, this presentation is TAP independent, and followed chloroquine, leupeptin-sensitive, as well as cathepsin S-dependent endosomal pathways. In addition, we show that Hsp90-chaperoned precursor peptides are processed and transferred onto MHC class I molecules in the endosomal compartment. Furthermore, we demonstrate that immunization with Hsp90-peptide complexes induce Ag-specific CD8(+) T cell responses and strong antitumor immunity in vivo. These findings have significant implications for the design of T cell-based cancer immunotherapy.  相似文献   

15.
Bispecific heteroconjugate antibodies can bind soluble protein Ag to APC and thereby enhance Ag presentation. We used such antibodies to bind hen egg lysozyme (HEL) to various structures on the surface of normal splenic B cells to determine which structures would provide the best targets for enhanced presentation. We found that HEL was presented efficiently to hybridoma T cells if bound to sIgD, sIgM, or class I or II MHC molecules, but not at all if bound to Fc gamma RII, or B220 molecules on B cells. The efficiency of presentation of HEL was measured as a function of the amount of 125I-HEL bound per cell. HEL was presented with 5 to 10 times greater efficiency when bound to sIg, than when bound to MHC molecules. When compared on the basis of the amount of HEL bound, sIgD and sIgM functioned equally as target structures, as did class I and class II MHC molecules. Large amounts of HEL bound to B220, but no presentation resulted, indicating that focusing HEL to the APC surface was not sufficient for presentation to occur. HEL was internalized rapidly and in large amounts when bound to sIgD or sIgM, but slowly and in small amounts, when bound to class I or class II MHC molecules. Thus, a rapid rate of internalization may in part explain the high efficiency of Ag presentation after binding to sIg. However, the small amount of HEL internalized via MHC molecules was utilized efficiently for presentation. These results indicate that sIgM and sIgD serve equally on normal B cells to focus and internalize Ag and enhance Ag presentation, but that class I or class II MHC molecules can also be used to internalize Ag and enhance Ag presentation, perhaps by a separate intracellular processing pathway.  相似文献   

16.
Major histocompatibility complex (MHC) class I molecules are ligands for T-cell receptors of CD8+ T cells and inhibitory receptors of natural killer cells. Assembly of the heavy chain, light chain, and peptide components of MHC class I molecules occurs in the endoplasmic reticulum (ER). Specific assembly factors and generic ER chaperones, collectively called the MHC class I peptide loading complex (PLC), are required for MHC class I assembly. Calreticulin has an important role within the PLC and induces MHC class I cell surface expression, but the interactions and mechanisms involved are incompletely understood. We show that interactions with the thiol oxidoreductase ERp57 and substrate glycans are important for the recruitment of calreticulin into the PLC and for its functional activities in MHC class I assembly. The glycan and ERp57 binding sites of calreticulin contribute directly or indirectly to complexes between calreticulin and the MHC class I assembly factor tapasin and are important for maintaining steady-state levels of both tapasin and MHC class I heavy chains. A number of destabilizing conditions and mutations induce generic polypeptide binding sites on calreticulin and contribute to calreticulin-mediated suppression of misfolded protein aggregation in vitro. We show that generic polypeptide binding sites per se are insufficient for stable recruitment of calreticulin to PLC substrates in cells. However, such binding sites could contribute to substrate stabilization in a step that follows the glycan and ERp57-dependent recruitment of calreticulin to the PLC.  相似文献   

17.
The major histocompatibility complex (MHC) class II-associated Invariant chain (Ii) is present in professional antigen presenting cells where it regulates peptide loading onto MHC class II molecules and the peptidome presented to CD4+ T lymphocytes. Because Ii prevents peptide loading in neutral subcellular compartments, we reasoned that Ii cells may present peptides not presented by Ii+ cells. Based on the hypothesis that patients are tolerant to MHC II-restricted tumor peptides presented by Ii+ cells, but will not be tolerant to novel peptides presented by Ii cells, we generated MHC II vaccines to activate cancer patients'' T cells. The vaccines are Ii tumor cells expressing syngeneic HLA-DR and the costimulatory molecule CD80. We used liquid chromatography coupled with mass spectrometry to sequence MHC II-restricted peptides from Ii+ and Ii MCF10 human breast cancer cells transfected with HLA-DR7 or the MHC Class II transactivator CIITA to determine if Ii cells present novel peptides. Ii expression was induced in the HLA-DR7 transfectants by transfection of Ii, and inhibited in the CIITA transfectants by RNA interference. Peptides were analyzed and binding affinity predicted by artificial neural net analysis. HLA-DR7-restricted peptides from Ii and Ii+ cells do not differ in size or in subcellular location of their source proteins; however, a subset of HLA-DR7-restricted peptides of Ii cells are not presented by Ii+ cells, and are derived from source proteins not used by Ii+ cells. Peptides from Ii cells with the highest predicted HLA-DR7 binding affinity were synthesized, and activated tumor-specific HLA-DR7+ human T cells from healthy donors and breast cancer patients, demonstrating that the MS-identified peptides are bonafide tumor antigens. These results demonstrate that Ii regulates the repertoire of tumor peptides presented by MHC class II+ breast cancer cells and identify novel immunogenic MHC II-restricted peptides that are potential therapeutic reagents for cancer patients.Cancer vaccines are a promising tool for cancer treatment and prevention because of their potential for inducing tumor-specific responses in conjunction with minimal toxicity for healthy cells. Cancer vaccines are based on the concept that tumor cells synthesize multiple peptides that are potential immunogens, and that with the appropriate vaccine protocol, these peptides will activate an efficacious antitumor response in the patient. Much effort has been invested in identifying and testing tumor-encoded peptides, particularly peptides presented by major histocompatibility complex (MHC)1 class I, molecules capable of activating CD8+ T-cells that directly kill tumor cells (1, 2). Fewer studies have been devoted to identifying MHC class II-restricted peptides for the activation of tumor-reactive CD4+ T-cells despite compelling evidence that Type 1 CD4+ T helper cells facilitate the optimal activation of CD8+ T-cells and the generation of immune memory, which is likely to be essential for protection from metastatic disease.Activation of CD4+ T cells requires delivery of a costimulatory signal plus an antigen-specific signal consisting of peptide bound to an MHC II molecule. Most cells do not express MHC II or costimulatory molecules, so CD4+ T cells are typically activated by professional antigen presenting cells (APC), which endocytose exogenously synthesized antigen and process and present it in the context of their own MHC II molecules. This processing and presentation process requires Invariant chain (Ii), a molecule that is coordinately synthesized with MHC II molecules and prevents the binding and presentation of APC-encoded endogenous peptides (3, 4). As a result, tumor-reactive CD4+ T cells are activated to tumor peptides generated by the antigen processing machinery of professional APC, rather than peptides generated by the tumor cells. Because of the potential discrepancy in peptide generation between professional APC and tumor cells, and the critical role of Ii in preventing the presentation of endogenous peptides, we have generated “MHC II cancer vaccines” that consist of Ii tumor cells transfected with syngeneic MHC class II and CD80 genes. We reasoned that MHC II+IiCD80+ tumor cells may present a novel repertoire of MHC II-restricted tumor peptides that are not presented by professional APC, and therefore may be highly immunogenic. Once activated, CD4+ T cells produce IFNγ and provide help to CD8+ T cells and do not need to react with native tumor cells. Therefore, the MHC II vaccines have the potential to activate CD4+ Th1 cells that facilitate antitumor immunity. In vitro (5) and in vivo (57) studies with mice support this conclusion. In vitro studies with human MHC II vaccines further demonstrate that the absence of Ii facilitates the activation of MHC II-restricted tumor-specific CD4+ type 1 T cells of HLA-DR-syngeneic healthy donors and cancer patients, and that the vaccines activate CD4+ T cells with a distinct repertoire of T cell receptors (812). A critical negative role for Ii is also supported by studies of human acute myelogenous leukemia (AML). High levels of class II-associated invariant chain peptide (CLIP), a degradation product of Ii, by leukemic blasts is associated with poor patient prognosis (13, 14), whereas down-modulation of CLIP on AML cells increases the activation of tumor-reactive human CD4+ T cells (14, 15).We have now used mass spectrometry to identify MHC II-restricted peptides from MHC II+Ii and MHC II+Ii+ human breast cancer cells to test the concept that the absence of Ii facilitates the presentation of unique immunogenic MHC II-restricted peptides. We report here that a subset of MHC II-restricted peptides from HLA-DR7+ breast cancer cells are unique to Ii cells and are derived from source proteins not used by Ii+ cells. Ii peptides have high binding affinity for HLA-DR7 and activate tumor-specific T-cells from the peripheral blood of healthy donors and breast cancer patients. This is the first study to compare the human tumor cell MHC II peptidome in the absence or presence of Ii and to demonstrate that MHC II+Ii tumor cells present novel immunogenic MHC II-restricted peptides that are potential therapeutic reagents for cancer patients.  相似文献   

18.
Tandem mass spectrometry was used to identify naturally processed peptides bound to major histocompatibility complex (MHC) I and MHC II molecules in central nervous system (CNS) of eight patients with multiple sclerosis (MS). MHC molecules were purified from autopsy CNS material by immunoaffinity chromatography with monoclonal antibody directed against HLA-A, -B, -C, and -DR. Subsequently peptides were separated by reversed-phase HPLC and analyzed by mass spectrometry. Database searches revealed 118 amino acid sequences from self-proteins eluted from MHC I molecules and 191 from MHC II molecules, corresponding to 174 identified source proteins. These sequences define previously known and potentially novel autoantigens in MS possibly involved in disease induction and antigen spreading. Taken together, we have initiated the characterization of the CNS-expressed MHC ligandome in CNS diseases and were able to demonstrate the presentation of naturally processed myelin basic protein peptides in the brain of MS patients.T cells recognize antigen bound to MHC1 molecules (1). CD4 as well as CD8 T cells have been shown to play a pathogenic role in various autoimmune diseases (2). Pathogenic T cells infiltrate the target organs and locally secrete proinflammatory cytokines and chemokines leading to tissue inflammation and possibly subsequent tissue destruction (35). Local presentation of autoantigens by MHC molecules in the target tissue of the autoimmune attack, i.e. the central nervous system (CNS) in multiple sclerosis (MS) or the pancreas in diabetes, is therefore a prerequisite for local immune amplification (6). MS is an inflammatory and neurodegenerative disease of the CNS leading to myelin and axonal loss (7). There are different disease courses, i.e. relapsing-remitting, secondary chronic progressive, and primary progressive disease. Potential autoantigens in MS include myelin basic protein (MBP), proteolipid protein (PLP), and myelin oligodendrocyte glycoprotein (MOG). It is thought that T cells enter the CNS from the systemic circulation and that they are subsequently reactivated in the CNS on MHC I and MHC II molecules expressed on local antigen-presenting cells (APC) (8).To date, naturally presented HLA-bound peptides from patients with MS thus far have not been isolated and identified. So far, only circumstantial evidence exists for the local presentation of autoantigens such as MBP on MHC molecules in CNS (9). The aim of this study consisted of the characterization of the MHC-bound peptide repertoire derived from brains of patients with MS. Cutting edge technology combining HPLC and tandem mass spectrometry has recently allowed us to define peptides presented on APC from bronchoalveolar lavage from lungs of sarcoidosis patients (10). Applying a similar method on autopsy material of MS patients, for the first time we demonstrated local presentation of previously known and potential novel autoantigens in MS.  相似文献   

19.
The effect of t-butyl hydroperoxide (t-BOOH) on the induction of the Major Histocompatibility Complex (MHC) class I genes has been studied in two cell clones (B9 and G2) of the methylcholanthrene-induced murine fibrosarcoma GR9. These two clones were selected based on their different biological and biochemical behavior specially related to their tumor induction capability when injected into a BALB/c mouse. t-BOOH (0.125mM) induced the expression of H-2 molecules in both cell clones. In B9 cell clone, in which MHC basal expression is very low or absent, t-BOOH significantly induced H-2Kd, H-2Dd and H-2Ld molecules. In G2 cell clone the expression of MHC class I genes was also enhanced by the xenobiotic, the effect being especially significant on the H-2Ld molecule which is not expressed under basal conditions. H-2 molecules expression was accompanied by the activation of the transactivator factor NFκB. These results suggest that oxidative stress may modulate the antigen expression of tumor cells and thus the immune response of the host organism.

Basal levels of oxidative parameters, such as anti-oxidant enzymes, malondialdehyde (MDA) and the DNA damaged base 8-hydroxy-2′-deoxyguanosine (8-OHdG), showed differences between the two fibrosarcoma cell clones.  相似文献   

20.
Pathways for loading exogenous protein-derived peptides on MHC class I are thought to be present mainly in monocyte-lineage cells and to involve phagocytosis- or macropinocytosis-mediated antigenic leakage into either cytosol or extracellular milieu to give peptide access to MHC class I. We show that maleylation of OVA enhanced its presentation to an OVA-specific MHC class I-restricted T cell line by both macrophages and B cells. This enhanced presentation involved uptake through receptors of scavenger receptor (SR)-like ligand specificity, was TAP-1-independent, and was inhibited by low levels (2 mM) of ammonium chloride. No peptide loading of bystander APCs by maleylated (maleyl) OVA-pulsed macrophages was detected. Demaleylated maleyl-OVA showed enhanced MHC class I-restricted presentation through receptor-mediated uptake and remained highly sensitive to 2 mM ammonium chloride. However, if receptor binding of maleyl-OVA was inhibited by maleylated BSA, the residual presentation was relatively resistant to 2 mM ammonium chloride. Maleyl-OVA directly introduced into the cytosol via osmotic lysis of pinosomes was poorly presented, confirming that receptor-mediated presentation of exogenous maleyl-OVA was unlikely to involve a cytosolic pathway. Demaleylated maleyl-OVA was well presented as a cytosolic Ag, consistent with the dependence of cytosolic processing on protein ubiquitination. Thus, receptor-specific delivery of exogenous protein Ags to APCs can result in enhanced MHC class I-restricted presentation, suggesting that the exogenous pathway of peptide loading for MHC class I may be a constitutive property dependent mainly on the quantity of Ag taken up by APCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号