首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Maize (Zea mays L.) was grown in quartz sand culture eitherwith a normal root system (controls) or with seminal roots only(‘single-rooted’). Development of adventitious rootswas prevented by using plants with an etiolated mesocotyl andthe stem base was positioned 5–8 cm above the sand. Eventhough the roots of the single-rooted plants were sufficientlysupplied with water and nutrients, the leaves experienced waterdeficits and showed decreased transpiration as trans plrationalwater flow was restricted by the constant number of xylem vesselspresent in the mesocotyl. As a consequence of this restriction,transpirational water flow velocities in the metaxylem vesselsreached mean values of 270 m h–1 and phloem transportvelocities of 5.2 m h–1. Despite limited xylem transportmineral nutrient concentrations in leaf tissues were not decreasedin single-rooted plants, but shoot and particularly stem developmentwas somewhat inhibited. Due to the lack of adventitious rootsthe shoot:root ratio was strongly increased in the single-rootedplants, but the seminal roots showed compensatory growth comparedto those in control plants. Consistent with decreased leaf conductance,ABA concentrations in leaves of single-rooted plants were elevatedup to 10-fold, but xylem sap ABA concentrations in these plantswere lower than in controls, in good agreement with the well-wateredconditions experienced by the seminal roots. Surprisingly, however,ABA concentrations in tissues of the seminal roots of the single-rooted plants were clearly increased compared to the controls,presumably due to increased ABA import via phloem from the water-stressedleaves. The results are discussed in relation to the role ofABA as a shoot to root signal. Key words: Zea mays, seminal roots, plant development, xylem transport, mineral nutrition, ABA, shoot-to-root signal  相似文献   

2.
This study with poplar (Populus tremula x Populus alba) cuttings was aimed to test the hypothesis that sulfate uptake is regulated by demand-driven control and that this regulation is mediated by phloem-transported glutathione as a shoot-to-root signal. Therefore, sulfur nutrition was investigated at (a) enhanced sulfate demand in transgenic poplar over-expressing gamma-glutamylcysteine (gamma-EC) synthetase in the cytosol and (b) reduced sulfate demand during short-term exposure to H2S. H(2)S taken up by the leaves increased cysteine, gamma-EC, and glutathione concentrations in leaves, xylem sap, phloem exudate, and roots, both in wild-type and transgenic poplar. The observed reduced xylem loading of sulfate after H2S exposure of wild-type poplar could well be explained by a higher glutathione concentration in the phloem. In transgenic poplar increased concentrations of glutathione and gamma-EC were found not only in leaves, xylem sap, and roots but also in phloem exudate irrespective of H(2)S exposure. Despite enhanced phloem allocation of glutathione and its accumulation in the roots, sulfate uptake was strongly enhanced. This finding is contradictory to the hypothesis that glutathione allocated in the phloem reduces sulfate uptake and its transport to the shoot. Correlation analysis provided circumstantial evidence that the sulfate to glutathione ratio in the phloem may control sulfate uptake and loading into the xylem, both when the sulfate demand of the shoot is increased and when it is reduced.  相似文献   

3.
Empirically based models depicting exchanges of C, N, and H2O in phloem and xylem among organs of nodulated white lupin (Lupinus albus cv Ultra) were constructed for the interval 51 to 58 days after sowing. Information was incorporated on the economy of C, N, and H2O in plant parts, the solute composition of transport fluids collected at selected sites on the plant, and the photosynthetic inputs, transpirational losses, and translocatory activities of different age groups of leaflets and stem + petiole segments of the shoot. Partitioning of C and N showed preferential transfer of N to the shoot apex, which imported 13 milligrams C per milligram N, compared with 54 milligrams C per milligram N for the nodulated root. Leaves translocated assimilates at a C:N weight ratio of 43 to 59, and older leaves serving the roots produced the translocate most rich in N relative to C. The shoot apex was enriched with N, additional to its intake from leaves, by direct uptake of xylem fluid (C:N ratio, 2.4) and receipt of nitrogenous solutes transferred from xylem to upward-moving phloem streams in upper regions of the stem. The models for flow of N and H2O indicated that xylem streams passing to leaves were substantially less rich in N than the adjacent stream moving through the body of the stem and that a progressive increase in concentration of N occurred within stem xylem elements from base to top of the shoot. This apparently resulted from an abstraction of N from xylem of departing leaf traces, possibly by xylem transfer cells, and a subsequent feedback of this N to xylem streams passing on up the shoot. Upper leaves and shoot apex, therefore, acquired more N from xylem per unit of H2O transpired than lower parts of the shoot.  相似文献   

4.
盐胁迫对苹果器官中钙镁铁锌含量的影响   总被引:6,自引:0,他引:6  
以盆栽2年生富士苹果树(砧木为平邑甜茶M.hupehensisReld)为试材,研究了盐胁迫对苹果矿质营养平衡的影响.结果表明,在盐胁迫下,苹果各器官不同时期的单位干样中Ca、Mg、Fe和Zn含量的平均值没有明显变化,但各元素与Na的比值明显下降,特别是在高盐(3‰NaCl)胁迫下下降更为明显,从而破坏了树体内元素平衡.在无盐和盐胁迫下,苹果各器官中Ca含量的顺序为主干韧皮部>叶片、新梢>根>主干木质部;Mg含量为新梢、根>主干木质部、主干韧皮部、叶片;Fe含量为根>叶片>主干韧皮部、新梢>主干木质部;Zn含量为新梢>叶片>根、主干韧皮部>主干木质部.与对照相比,器官中各元素含量在胁迫期间表现出不同程度的波动性.  相似文献   

5.
Root-shoot interactions in mineral nutrition   总被引:9,自引:0,他引:9  
In this paper four classes of co-operative root-shoot interations are addressed. (I) Nitrogen concentrations in the xylem sap originating from the root and in the phloem sap as exported from source leaves are much lower than those required for growth by apices and developing organs. Enrichment of xylem sap N is achieved by xylem to xylem (X-X) transfer, by which reduced N, but not nitrate, is abstracted from the xylem of leaf traces and loaded into xylem vessels serving the shoot apex. Nitrogen enrichment of phloem sap from source leaves is enacted by transfer of reduced N from xylem to phloem (X-P transfer). Quantitative data for the extent of the contribution of X-X and X-P transfer to the nutrition of young organs of Ricinus communis L. and for their change with time are presented. (II) Shoot and root cooperate in nitrate reduction and assimilation. The partitioning of this process between shoot and root is shifted towards the root under conditions of nitrate- and K-deficiency and under salt stress, while P deficiency shifts nitrate reduction almost totally to the shoot. All four changes in partitioning can be attributed to the need for cation-anion balance during xylem transport and the change in electrical charge occurring with nitrate reduction. (III) Even maintenance of the specificity of ion uptake by the root may – in addition to its need for energy – require a shoot-root interaction. This is shown to be needed in the case of the maintenance of K/Na selectivity under the highly adverse condition of salt stress and absence of K supply from the soil. (IV) Hormonal root to shoot interactions are required in the whole plant for sensing mineral imbalances in the soil. This is shown and addressed for conditions of salt stress and of P deficiency, both of which lead to a strong ABA signalling from root to shoot but result in different patterns of response in the shoot.  相似文献   

6.
This study with poplar (Populus tremula × Populus alba) cuttings was aimed to test the hypothesis that sulfate uptake is regulated by demand-driven control and that this regulation is mediated by phloem-transported glutathione as a shoot-to-root signal. Therefore, sulfur nutrition was investigated at (a) enhanced sulfate demand in transgenic poplar over-expressing γ-glutamylcysteine (γ-EC) synthetase in the cytosol and (b) reduced sulfate demand during short-term exposure to H2S. H2S taken up by the leaves increased cysteine, γ-EC, and glutathione concentrations in leaves, xylem sap, phloem exudate, and roots, both in wild-type and transgenic poplar. The observed reduced xylem loading of sulfate after H2S exposure of wild-type poplar could well be explained by a higher glutathione concentration in the phloem. In transgenic poplar increased concentrations of glutathione and γ-EC were found not only in leaves, xylem sap, and roots but also in phloem exudate irrespective of H2S exposure. Despite enhanced phloem allocation of glutathione and its accumulation in the roots, sulfate uptake was strongly enhanced. This finding is contradictory to the hypothesis that glutathione allocated in the phloem reduces sulfate uptake and its transport to the shoot. Correlation analysis provided circumstantial evidence that the sulfate to glutathione ratio in the phloem may control sulfate uptake and loading into the xylem, both when the sulfate demand of the shoot is increased and when it is reduced.  相似文献   

7.
Nicotianamine: mediator of transport of iron and heavy metals in the phloem?   总被引:18,自引:0,他引:18  
Recent work has demonstrated that minerals in plants are circulated between root and shoot. This occurs during the whole life time and renders possible response to changing environmental conditions. This mineral circulation occurs through intensive solute exchange between xylem and phloem in roots, stems, and leaves. The transport form of heavy metals such as iron, manganes, zinc and copper in the phloem, whether ionic or chelated, is unclear in most cases.
The unusual amino acid nicotianamine (NA) is ubiquitous throughout the plant kingdom. It is a chelator of several divalent transition metals. Its physiological role was investigated with the tomato mutant chloronerva, the only known NA-free multicellular plant. The mutant also exhibits disturbances of its iron metabolism and that of other heavy metals. This leads, among others, to a typical intercostal chlorosis and progressive iron accumulation in the leaves. From the heavy metal chelating properties of NA and from the phenotype of the mutant chloronerva it is concluded that NA is needed for normal distribution of heavy metals in young growing tissues fed via the phloem. This function could be fulfilled by mediating phloem loading or unloading of heavy metals as well as by preventing their precipitation in the alkaline phloem sap. An attempt is made to explain the chloronerva phenotype in the light of the phloem transport hypothesis of chelated iron.  相似文献   

8.
The objective of the present study was to investigate the influence of a reduced maize root-system size on root growth and nitrogen (N) uptake and flow within plants. Restriction of shoot-borne root growth caused a strong decrease in the absorption of root: shoot dry weight ratio and a reduction in shoot growth. On the other hand, compensatory growth and an increased N uptake rate in the remaining roots were observed. Despite the limited long-distance transport pathway in the mesocotyl with restriction of shoot-borne root growth, N cycling within these plants was higher than those in control plants, implying that xylem and phloem flow velocities via the mesocotyl were considerably higher than in plants with an intact root system. The removal of the seminal roots in addition to restricting shoot-borne root development did not affect whole plant growth and N uptake, except for the stronger compensatory growth of the primary roots. Our results suggest that an adequate N supply to maize plant is maintained by compensatory growth of the remaining roots, increased N uptake rate and flow velocities within the xylem and phloem via the mesocotyl, and reduction in the shoot growth rate.  相似文献   

9.
Anoxic conditions should hamper the transport of sugar in the phloem, as this is an active process. The canopy is a carbohydrate source and the roots are carbohydrate sinks. By fumigating the shoot with N2 or flooding the rhizosphere, anoxic conditions in the source or sink, respectively, were induced. Volume flow, velocity, conducting area and stationary water of the phloem were assessed by non‐invasive magnetic resonance imaging (MRI) flowmetry. Carbohydrates and δ13C in leaves, roots and phloem saps were determined. Following flooding, volume flow and conducting area of the phloem declined and sugar concentrations in leaves and in phloem saps slightly increased. Oligosaccharides appeared in phloem saps and after 3 d, carbon transport was reduced to 77%. Additionally, the xylem flow declined and showed finally no daily rhythm. Anoxia of the shoot resulted within minutes in a reduction of volume flow, conductive area and sucrose in the phloem sap decreased. Sugar transport dropped to below 40% by the end of the N2 treatment. However, volume flow and phloem sap sugar tended to recover during the N2 treatment. Both anoxia treatments hampered sugar transport. The flow velocity remained about constant, although phloem sap sugar concentration changed during treatments. Apparently, stored starch was remobilized under anoxia.  相似文献   

10.
The xylem and phloem transport of mineral elements from stemnodal roots to the stem and stolon of growing potato (Solanumtuberosum L. cv. ‘Russet Burbank’) plants was investigated.Adventitious roots, originating from below-ground nodes of thestem of potato seedlings, were exposed to solutions of SrCI2or MnSO4. Relative elemental concentrations were measured inthe conductive tissues using energy dispersive X-ray analysis.After a 5 h daylight uptake period, Sr (a Ca-transport analogue)levels were elevated in the stem xylem tissue, but Sr did notincrease in the stem phloem, nor was it present in either ofthe conductive tissues of stolons located 1–2 nodes abovethe treated roots. In contrast, elevated levels of Cl, S, andMn were found in stolon xylem and phloem tissue during the sameperiod. The absence of Sr in the stolon after 5 h suggests thatno xylem flow into the stolon occurred during the uptake periodand, furthermore, phloem flow is responsible for the transportof the Cl, S, and Mn into the stolon. Elevated levels of thesemobile nutrients in the xylem of the stolon were attributedto xylem-to-phloem transfer in the stem or leaves, transportto the stolon in the phloem, and phloem-to-xylem transfer inthe stolon. During a 19 h uptake period, some Sr was observedin the phloem tissue of the stem, demonstrating slow exchangeof Sr with sieve elements or proximal phloem parenchyma andcompanion cells. Key words: Calcium, manganese, X-ray analysis  相似文献   

11.
In a pot experiment Ricinus communis plants were cultivated in quartz sand and supplied daily with a nutrient solution which contained 4 mol m(-3) nitrate as the nitrogen source and either full strength potassium (1.3 mol m(-3), control) or 8% potassium (0.1 mol m(-3), K(+)-limitation). Although the final fresh weight of the whole plant was not affected by K(+)-limitation, the root-shoot ratio was increased due to a relatively increased root growth and inhibited development of younger shoot parts. Owing to K(+)-limitation, photosynthesis was slightly decreased, while dark respiration of the shoot markedly decreased and root respiration was nearly doubled. The transport of carbon in the phloem, and to some extent in the xylem, was greater and the root was favoured in the partitioning of carbon. This was also true for nitrogen and potassium which were both taken up at lower rates, particularly potassium. In these two cases a high remobilization and recycling from the old part of the shoot was observed. By contrast, uptake of sodium was 2.4-fold higher under K(+)-limitation and this resulted in increased flows in the plants, which was discussed generally as a means for charge balance (in combination with a slight increase in uptake of magnesium and calcium). Nitrate reduction took place in the same portion in the root and shoot. This was a shift to the root compared to the control and points to an inhibition of xylem transport caused by limitation of K(+) as an easily permeating countercation. Low K(+) supply also resulted in an increased biosynthesis of ABA in the roots (265%). This caused a slightly increased deposition of ABA in the roots (193%) and a 4.6-fold higher root-to-shoot and a doubled shoot-to-root ABA signal in the xylem or phloem, respectively. The high degradation of ABA in the shoots prevented ABA accumulation there.  相似文献   

12.
The rates of delivery of regulatory solutes such as cytokinins and mineral ions from the roots to competing shoot tissues can influence rates of metabolism and development. A 15 min pulse of a synthetic xylem mobile and phloem-immobile solute, acid fuchsin, was used to quantify relative rates of solute delivery to competing organs on excised transpiring bean shoots (Phaseolus vulgaris L. cv. Contender) at different stages of development. Stem, flower and fruit tissues received comparatively low rates of solute delivery. The relative rate of solute delivery to newly opened leaves was initially low, but increased during rapid leaf expansion and then declined progressively as the leaves exceeded 70% of their final area. The relative rate of solute delivery to tissues of the basal primary leaves declined progressively from 2 weeks onwards. This decline appeared to be caused by progressive internally regulated increases in both stomatal resistances and hydraulic resistances to xylem flow up to and into the leaf blade. Thus combined abaxial and adaxial stomatal resistance values in the primary leaves (Rs) increased from 3 to ≥ 7 s cm?1 between 2 and 5 weeks. Similarly, mean values for the connection resistances (Rc) to hydraulic flow into the primary leaves rose from 7 to 13 TPa · s · m?1 between 2 and 4 weeks. In the same period pathway resistance from stem to primary leaf petioles (Rp), as determined by direct pressure flow assay, increased from 7 to 15 TPa · s · m?1. Senescence-associated declines in protein and chlorophyll levels in the primary leaves were initiated in parallel with, or after, declines in relative rates of solute delivery. The provision of extra illumination at the basal leaf level between 2 and 5 weeks did not prevent declines in chlorophyll and soluble protein or increases in stomatal resistance. We suggest that internally programmed changes in the hydraulic architecture of the plant progressively divert xylem-transported root supplies of nutrients and cytokinins from basal to more apical leaves and thus regulate the progressive senescence of leaves from the base upwards.  相似文献   

13.
An experimentally-based modelling technique was developed todescribe quantitatively the uptake, flow, storage and utilizationof NO3-N over a 9 d period in mid-vegetative growth of sandcultured castor bean (Ricinus communis L.) fed 12 mol m–3nitrate and exposed to a mean salinity stress of 128 mol m–3NaCl. Model construction used information on increments or lossesof NO3-N or total reduced N in plant parts over the study periodand concentration data for NO3-N and reduced (amino acid) Nin phloem sap and pressure-induced xylem exudates obtained fromstem, petiole and leaf lamina tissue at various levels up ashoot. The resulting models indicated that the bulk (87%) of incomingnitrate was reduced, 51% of this in the root, the remainderprincipally in the laminae of leaves. The shoot was 60% autotrophicfor N through its own nitrate assimilation, but was oversuppliedwith surplus reduced N generated by the root and fed to theshoot through the xylem. The equivalent of over half (53%) ofthis N returned to the root as phloem translocate and, mostly,then cycled back to the shoot via xylem. Nitrate comprised almosthalf of the N of most xylem samples, but less than 1% of phloemsap N. Laminae of leaves of different age varied greatly inN balance. The fully grown lower three leaves generated a surplusof reduced N by nitrate assimilation and this, accompanied byreduced N cycling by xylem to phloem exchange, was exportedfrom the leaf. Leaf 4 was gauged to be just self-sufficientin terms of nitrate reduction, while also cycling reduced N.The three upper leaves (5–7) met their N balance to varyingextents by xylem import, phloem import (leaves 6 and 7 only)and assimilation of nitrate. Petioles and stem tissue generallyshowed low reductase activities, but obtained most of theirN by abstraction from xylem and phloem streams. The models predictedthat nodal tissue of lower parts of the stem abstracted reducedN from the departing leaf traces and transferred this, but notnitrate, to xylem streams passing further up the shoot. As aresult, xylem sap was predicted to become more concentratedin N as it passed up the shoot, and to decrease the ratio ofNO3-N to reduced N from 0·45 to 0·21 from thebase to the top of the shoot. These changes were reflected inthe measured N values for pressure-induced xylem exudates fromdifferent sites on the shoot. Transfer cells, observed in thexylem of leaf traces exiting from nodal tissue, were suggestedto be involved in the abstraction process. Key words: Ricinus communis, nitrogen, nitrate, nitrate reduction, partitioning, phloem, xylem, flow models  相似文献   

14.
Page V  Feller U 《Annals of botany》2005,96(3):425-434
BACKGROUND AND AIMS: The uptake, translocation and redistribution of the heavy metals zinc, manganese, nickel, cobalt and cadmium are relevant for plant nutrition as well as for the quality of harvested plant products. The long-distance transport of these heavy metals within the root system and the release to the shoot in young wheat (Triticum aestivum 'Arina') plants were investigated. METHODS: After the application of 65Zn, 54Mn, 63Ni, 57Co and 109Cd for 24 h to one seminal root (the other seminal roots being excised) of 54-h-old wheat seedlings, the labelled plants were incubated for several days in hydroponic culture on a medium without radionuclides. KEY RESULTS: The content of 65Zn decreased quickly in the labelled part of the root. After the transfer of 65Zn from the roots to the shoot, a further redistribution in the phloem from older to younger leaves was observed. In contrast to 65Zn, 109Cd was released more slowly from the roots to the leaves and was subsequently redistributed in the phloem to the youngest leaves only at trace levels. The content of 63Ni decreased quickly in the labelled part of the root, moving to the newly formed parts of the root system and also accumulating transiently in the expanding leaves. The 54Mn content decreased quickly in the labelled part of the root and increased simultaneously in leaf 1. A strong retention in the labelled part of the root was observed after supplying 57Co. CONCLUSIONS: The dynamics of redistribution of 65Zn, 54Mn, 63Ni, 57Co and 109Cd differed considerably. The rapid redistribution of 63Ni from older to younger leaves throughout the experiment indicated a high mobility in the phloem, while 54Mn was mobile only in the xylem and 57Co was retained in the labelled root without being loaded into the xylem.  相似文献   

15.
Pate  John S.  Jeschke  W. Dieter 《Plant and Soil》1993,155(1):273-276
Xylem sap of sinker (tap) root, cluster feeding roots, lateral roots and from an age series of main stem extensions of 6-year trees of Banksia prionotes was collected and analyzed for principal organic and inorganic solutes. During the phase of root uptake activity in winter and spring, cluster roots were principal xylem donors of malate, phosphate, chloride, sodium, potassium and amino acid N whereas other parts of the root served as major sources to the shoot of other cations, nitrate and sulphate. Sinker root xylem sap was at all times less concentrated in solutes than that of lateral roots into which cluster roots were voiding exported solutes. Phosphate was abstracted from xylem by stem tissue during winter and it and a range of other solutes released back to xylem immediately prior to extension growth of the shoot in summer. Phloem sap collected from mid regions of stems was unusually low in potassium and phosphate relative to chloride and sulphate in comparison with phloem sap of other species, and its low potassium: sodium ratio relative to xylem indicated poor discrimination against sodium during phloem loading. Data are discussed in relation to the asynchronous seasonal cycles of nutrient uptake and shoot growth.  相似文献   

16.
Removal of the shoot above the primary node (detopping) of 3-week-old bean plants ( Phaseolus vulgaris L. cv. Contender) altered the metabolism and development of the remaining leaves. An increase in levels of chlorophyll, protein, stomatal opening, photosynthesis and growth, i.e. rejuvenation of primary leaves, was established within 7 days of detopping. These levels were maintained while the primary leaves of equivalent intact plants senesced.
The flux of xylem solution (mineral ions, cytokinins and water) into leaves is related to the leaf area to be supplied and root supply capacity; it has been suggested that detopping leads to an increased availability of root-supplied solutes and hence rejuvenation of the remaining leaves. This assumes however that root output of solutes is not decreased by the defoliation treatment.
We found that root output of ions (electrical conductivity of passive xylem exudate) in detopped plants was 30% lower than in intact plants after 24 h and 60% lower after 7 days. The output of Ca2+, Mg2+ and K+ were similarly reduced 7 and 14 days after detopping as were fresh and dry weights of roots. Furthermore, neither the calculated xylem flux of ions nor directly measured levels of Ca2+, Mg2+ and K+ were significantly increased in leaves of detopped plants during their rejuvenation. We therefore conclude that root output is tightly coupled to shoot demand and that the apparent rejuvenation of primary leaves caused by detopping bean plants is not a consequence of increased xylem flux of mineral ions into the leaves.  相似文献   

17.
田旋花营养器官及不定芽发生的解剖学研究   总被引:5,自引:1,他引:4  
对田旋花营养器官的解剖学研究结果表明,叶为两面叶,栅栏组织和海绵组织发达。主脉为周韧型维管束,在其主脉的远轴面,紧领下表皮的为1-2层同化组织细胞。地上茎表皮内具由2层细胞组成的同化组织,维管组织呈连续的环状排列,木质部内外侧都为韧皮部。地下根状茎的结构类似地上茎的结构,维的维管组织发达,在次生生长中,中央初生木质部导管周围薄壁细胞分化产生大量薄壁细胞和韧皮部分子。根状芭茎上的不定芽及不定根由维管形成层活动产生,根上的不定芽也是由根的维管形成层产生。  相似文献   

18.
The vascular anatomy of soybean nodules [Glycine max (L.) Merr.] suggests that export of solutes in the xylem should be dependent on influx of water in the phloem. However, after severing of stem xylem and phloem by shoot decapitation, export of ureides from nodules continued at an approximately linear rate for 5h. This result was obtained with decapitated roots remaining in the sand medium, but when roots were disturbed by removal from the rooting medium prior to shoot decapitation, export of ureides from nodules was greatly reduced. Stem exudate could not be collected from disturbed roots, indicating that flow in the root xylem had ceased. Thus, ureide export from nodules appeared to be dependent on a continuation of flow in the root xylem. When seedlings were fed a mixture of 3H2O and 14C-inulin for periods of 14–21 min, nodules had higher 3H/14C ratios than roots from which they were detached. The combined results are not consistent with the proposal that export of nitrogenous compounds from nodules is dependent on import of water via the phloem. The results do support the view that a portion of the water required for xylem export from soybean nodules is supplied via a symplastic route from root cortex to nodule cortex to the nodule vascular apoplast.  相似文献   

19.
In plant species not containing polyols, boron (B) is regarded as practically phloem immobile. This has been explained by the high membrane permeability of boric acid (BA) resulting in a rapid efflux out of the phloem and re-transport into the leaf in the xylem. The present study investigated how the xylem flow rate affects the phloem mobility of foliar-applied BA in Ricinus communis L. cv. Impala. Xylem flow rates were varied by exposure of the canopy to different levels of relative humidity (RH). In seedlings with severed hypocotyls, i.e. without xylem flow, B was highly mobile. In intact seedlings and plants, the degree of mobility and the within-plant distribution of B were strongly RH-dependent. At RH of 70% or above, up to 16–24% of the B was translocated to other plant parts, whereas at lower RH no significant movement of B was detected. Only at an intermediate RH (70–80%), did leaf-applied B accumulate in roots. At 100% RH, B transport in the xylem was significantly increased, suggesting that the build up of root pressure induced the recycling of phloem delivered B from roots to shoots. These results indicate that in R. communis phloem B mobility is not constant, but strongly affected by transpiration rates.  相似文献   

20.
In higher plants the xylem is the main pathway for anti-gravitational, long-distance transport of nutrients and water from the root through the shoot to the upper leaves. In the xylem conduit water is in a metastable state if tension larger than 0.1 MPa (i.e. negative pressure) is developed. While diurnal changes in negative pressure of individual xylem vessels can quite accurately be recorded by the minimal-invasive xylem pressure probe technique and water flow by non-invasive NMR techniques, the problem of continuous monitoring of solute flow remains a hitherto unresolved challenge. As shown here, integration of a K+ selective and a potential measuring microelectrode into the xylem pressure probe allowed on-line measurements of the K+ activity in individual xylem vessels of maize roots together with pressure and trans-root potential, the potential difference between the xylem and the external medium (i.e. the overall driving force of ions through the root tissue). When light irradiation was increased from 10 micro mol m(-2) s(-1) to 300 micro mol m(-2) s(-1) and negative pressure developed in the vessel, xylem K+ activity dropped from 3.6 +/- 2.6 mm to 0.9 +/- 0.7 mm (n = 16), whereas the trans-root potential depolarized from -2 +/- 11 mV to + 12 +/- 11 mV (n = 11), i.e. by + 14 +/- 7 mV. The effect of light on all three parameters was reversible. Exposure of the root to various K+ activities in the bath ranging from 0.1 to 43 mm revealed that the K+ activity of the xylem sap was shielded against short-term fluctuations in K+ supply to a large extent. In contrast, control experiments in which the root was cut 1 cm below the probe insertion point, allowing direct entry of external K+ into the xylem vessels, demonstrated that the xylem equilibrated rapidly with external K+. This was taken simultaneously as a proof for the correct reading of the probe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号