首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An enzyme of Ralstonia/ Burkholderia strain DSM 6920 catalyzing the initial hydroxylation of 6-methylnicotinic acid at position 2 was purified to apparent homogeneity. It also catalyzed the unusual conversion of nicotinic acid to 2-hydroxynicotinic acid and was therefore designated as nicotinic acid dehydrogenase (NDH). Native NDH had a molecular mass of 280 kDa and was composed of subunits of 75, 30 and 16 kDa. It contained molybdenum, iron, acid-labile sulfur and FAD in a ratio of 1.6:7.3:8.0:0.6 mol(-1) of native enzyme. The molybdenum cofactor was characterized as molybdopterin cytosine dinucleotide. Zinc was identified as an additional metal ion in a molar ratio of 1.8 mol mol(-1) of native enzyme. Purified NDH exhibited a maximal specific activity of 22.6 micromol nitro blue tetrazoliumchloride reduced min(-1) mg(-1) of protein, using nicotinic acid as electron donor. The apparent K(m) value for nicotinic acid was determined to be 154 microM. Pyridine-3,5-dicarboxylic acid and quinoline-3-carboxylic acid were further substrates, but exhibited significantly different activity pH optima. Several artificial electron acceptors were reduced by NDH, but no activity was detected with NAD or O(2). NDH was inactivated upon incubation with cyanide, but no loss of activity was obtained in the presence of arsenite.  相似文献   

2.
Properties of the transglycosidation reaction catalyzed by rabbit spleen pyridine nucleotide glycohydrolase were characterized using a modified cyanide addition method by which initial velocities of the transglycosidation (vT) and hydrolysis (vH) of pyridine nucleotides could be monitored simultaneously. (1) The vT was routinely determined with NMN and nicotinic acid used as substrates and was observed to be maximal at pH 6. Arrhenius plots of vT and vH indicated that the activation energies for transglycosidation and hydrolysis were 8.7 and 10.7 kcal/mol, respectively. (2) The enzyme showed a broad spectrum of substrate specificity with respect to both pyridine nucleotides and bases. Of the compounds tested, NMN and nicotinic acid were shown to be the best substrates when compared on the basis of Vmax/Km values. Kinetic constants for the enzyme-catalyzed transglycosidation reaction were as follows; Km(NMN) = 0.53 mM, Km(nicotinic acid), as acid form = 15 mM, apparent Vmax = 7.8 mumol/min/mg protein, in the presence of 0.2 M nicotinic acid. (3) The ratio of vT/vH was shown to be dependent on both pH and nicotinic acid concentration. However, transglycosidation versus hydrolysis partition at a fixed pH was constant regardless of the nicotinic acid concentration employed and approximated to be 1.2 x 10(4) at the maximal pH. (4) Nicotinamide, one of the most potent inhibitors for the enzyme-catalyzed hydrolysis, was shown to function as an antagonist for the transglycosidation reaction with NMN and nicotinic acid used as substrates. The inhibition mechanism with nicotinamide was purely noncompetitive with respect to nicotinic acid; on the other hand, the double reciprocal plot of the transglycosidation velocity against NMN concentration at a fixed concentration of nicotinamide was concave downwards. (5) The equilibrium constant of the reaction, NMN + 3-acetylpyridine----3-acetylpyridine mononucleotide + nicotinamide, was 0.61, whereas the conversion of NMN with nicotinic acid to nicotinic acid mononucleotide was essentially irreversible. These enzymatic properties of rabbit spleen pyridine nucleotide glycohydrolase suggested that the enzyme should not function as a glycohydrolase but as a transglycosidase and could serve in an important mechanism for an alternative biosynthetic pathway of nicotinic acid mononucleotide, one of the precursors for NAD synthesis, when nicotinic acid is supplied.  相似文献   

3.
Nicotinic acetylcholine receptor of the electric ray Torpedo is the most comprehensively characterized neurotransmitter receptor. It consists of five subunits (alpha2beta gammadelta) amino acid sequences of which were determined by cDNA cloning and sequencing. The shape and size of the receptor were determined by electron cryomicroscopy. It has two agonist/competitive antagonist binding sites which are located between subunits near the membrane surface. The receptor ion channel is formed by five transmembrane helices (M2) of all five subunits. The position of the binding site for noncompetitive ion channel blockers was found by photoaffinity labelling and site-directed mutagenesis. The intrinsic feature of the receptor structure is the position of the agonist/competitive antagonist binding sites in close vicinity to the ion channel spanning the bilayer membrane. This peculiarity may substantially enhance allosteric transitions transforming the ligand binding into the channel opening and physiological response. Muscle nicotinic acetylcholine receptors from birds and mammals are also pentaoligomers consisting of four different subunits (alpha2beta gammadelta or alpha2beta epsilondelta) with high homology to the Torpedo receptor. Apparently, the pentaoligomeric structure is the main feature of all nicotinic, both muscle and neuronal, receptors. However, the neuronal receptors are formed only by two subunit types (alpha and beta) or are even pentahomomers (alpha7 neuronal receptors). All nicotinic receptors are ligand-gated ion channel, the properties of the channels being essentially determined by amino acid residues forming M2 transmembrane fragments.  相似文献   

4.
利用改进的羟肟酸铁分光光度比色法建立了一种简单、快速、高通量的腈水解酶筛选方法.应用该方法从土壤中筛选获得1株具有3-氰基吡啶水解酶活性的菌株CCZU10 -1,经16S rDNA序列分析,鉴定该菌为红球菌属Rhodococcus sp.;同时确定了最适反应温度、pH和金属离子添加剂分别为30℃、7.0和Ca2+ (0.1 mmol/L).在最适催化反应条件下,催化转化50 mmol/L烟腈36 h,烟酸的产率可达到93.5%.  相似文献   

5.
To gain an insight into the molecular basis of ion permeation mechanism through the nicotinic acetylcholine receptor (AChR) channel, we have determined permeability ratios of organic cations relative to Na+ of specifically mutated Torpedo californica AChR channels expressed in Xenopus oocytes. The mutations involved mainly the side chains of the amino acid residues in the intermediate ring, where mutations have been found to exert strong effects on single-channel conductance and ion selectivity among alkali metal cations. The results obtained reveal that both the size and the net charge of the side chains of the intermediate ring are involved in determining the permeability, and provide experimental evidence that the pore size at the intermediate ring is a critical determinant of permeability. Our findings further suggest that changes in net charge exert effects on permeability by affecting the pore size of the channel.  相似文献   

6.
Kinetics of the hydrolysis of a P(1)-(7-methylguanosinyl-5') P(3)-(guanosinyl-5') triphosphate (m(7)GpppG), P(1)-(7-methylguanosinyl-5') P(4)- (guanosinyl-5') tetraphosphate (m(7)GppppG), diadenosine-5',5'-P(1),P(3)-triphosphate (ApppA), and diadenosine-5',5'-P(1),P(4)-tetraphosphate (AppppA) promoted by Cu(2+) or Zn(2+) has been investigated. Time-dependent products distributions at various metal ion concentrations have been determined by CZE and HPLC-RP. The results show that in acidic conditions, in the presence of metal ion, the predominant hydrolytic reaction is the cleavage of 5',5'-oligophosphate bridge. The 5',5'-oligophosphate bridge of the dinucleotides studied is hydrolyzed by Cu(2+) more efficiently than by Zn(2+). At the catalyst concentration of 2 mM the cleavage of the 5',5'-triphosphate bridge of m(7)GpppG was ~3.6 times faster, and that of the tetraphosphate bridge of m(7)GppppG ~2.3-fold faster in the presence of Cu(2+) compared to the Zn(2+) ion, applied as catalysts. Dependence of the rates of hydrolysis on the catalyst concentration was in some instances not linear, interpreted as evidence for participation of more than one metal ion in the transition complex.  相似文献   

7.
In order to investigate the effect of the Pt(II) ion on the stacking interaction between tryptophan and a guanine base, the quenching of Trp fluorescence was monitored for some systems in the absence and presence of the metal ion, and the association constants were obtained by the analysis of Eadie-Hofstee plots. All spectral data suggested that the stacking interaction is enhanced by the Pt(II) coordination to the guanine N7 atom. The result indicates the importance of the metal ion as a bookmark in the specific recognition of a nucleic acid base by an aromatic amino acid residue.  相似文献   

8.
While Mg2+ can be efficiently replaced by Ni2+, Co2+ and Mn2+ in the ATP-PPi isotopic exchange reaction catalysed by methionyl-tRNA synthetase from Escherichia coli, the latter ion was selected for detailed analysis of the L-methionine activation reaction. In order to avoid artefactual results due to the slow aggregation of Mn2+ with pyrophosphate, this process was investigated by electron paramagnetic resonance and conditions were determined where it does not interfere with enzymic experiments. The thermodynamic parameters derived from steady-state (ATP-PPi isotopic exchange, fluorescence at equilibrium) or prestationary (fluorescence stopped-flow) experiments are compared to those obtained in the presence of Mg2+ [Hyafil et al. (1976) Biochemistry, 15, 3678-3685]. While the standard deltaG for the reaction (E-Met-ATP-Me2+equilibriumE-Met approximately AMP-PPi-Me2+) is close to zero in the case of Mg2+, Mn2+ slows down the rate of adenylate reversion and thus shifts the reaction towards the latter species. The deltaG for the formation of the E-Met approximately AMP complex does not depend on the metal used, suggesting that the divalent ion does not participate in the structuration of this complex. Substituting Mn2+ for Mg2+ decreases notably the dissociation constant of PPi-Me2+ from the E-Met approximately AMP-PPi-Me2+ species and from its abortive analog E-Met-Ado-PPi-Me2+. Similarly the dissociation constant of ATP-Me2+ from another dead-end analog E-methioninol-ATP-Me2+ is decreased by Mn2+. Involvement of the purine N7 atom in the binding of the metal ion to the active site of methionyl-tRNA synthetase is ruled out by the use of 7-deaza-adenosine. The role of the metal in the catalytic process of methionine activation and its relevance to the specificity of the reaction is then discussed in the light of the results obtained without metal and with Mg2+ and Mn2+.  相似文献   

9.
We describe an optical technique using total internal reflection fluorescence (TIRF) microscopy to obtain simultaneous and independent recordings from numerous ion channels via imaging of single-channel Ca2+ flux. Muscle nicotinic acetylcholine (ACh) receptors made up of alphabetagammadelta subunits were expressed in Xenopus oocytes, and single channel Ca2+ fluorescence transients (SCCaFTs) were imaged using a fast (500 fps) electron-multiplied c.c.d. camera with fluo-4 as the indicator. Consistent with their arising through openings of individual nicotinic channels, SCCaFTs were seen only when a nicotinic agonist was present in the bathing solution, were blocked by curare, and increased in frequency as roughly the second power of [ACh]. Their fluorescence amplitudes varied linearly with membrane potential and extrapolated to zero at about +60 mV. The rise and fall times of fluorescence were as fast as 2 ms, providing a kinetic resolution adequate to characterize channel gating kinetics; which showed mean open times of 7.9 and 15.8 ms when activated, respectively, by ACh or suberyldicholine. Simultaneous records were obtained from >400 channels in the imaging field, and we devised a novel "channel chip" representation to depict the resultant large dataset as a single image. The positions of SCCaFTs remained fixed (<100 nm displacement) over tens of seconds, indicating that the nicotinic receptor/channels are anchored in the oocyte membrane; and the spatial distribution of channels appeared random without evidence of clustering. Our results extend single-channel TIRFM imaging to ligand-gated channels that display only partial permeability to Ca2+, and demonstrate an order-of-magnitude improvement in kinetic resolution. We believe that functional single-channel imaging opens a new approach to ion channel study, having particular advantages over patch-clamp recording in that it is massively parallel, and provides high-resolution spatial information that is inaccessible by electrophysiological techniques.  相似文献   

10.
A water-soluble biocompatible aziridine-based biosensor with pendant anthracene units was synthesized by radicalar polymerization of N-substituted aziridines in supercritical carbon dioxide. The binding ability of the sensor towards a series of metal ions was examined by comparing the fluorescence intensities of the solutions before and after the addition of 100 equivalents of a solution of the metal ion chloride salt. A fast, simple and highly optical sensitive dual behavior, "off-on" and "on-off" response, was observed after the biosensor was exposed to the metal cations in aqueous solution. Zinc presented the highest fluorescence enhancement (turn-on) and copper presented the highest fluorescence quenching (turn-off). The response time was found to be instantaneous and the detection limit was achieved even in the presence of excess metal cation competitors. By using immunofluorescence microscopy it was also shown that oligoaziridine acts as an "on-off" probe through highly sensitive (detection limit of 1.6nM), selective and reversible binding to copper anions under physiologic conditions using living Human Fibroblast cells. The stoichiometry for the reaction of the biosensor with Cu(2+) was determined by a Job plot and indicates the formation of an oligoaziridine-Cu(2+) 1:2 adduct.  相似文献   

11.
Membrane vesicles rich in nicotinic acetylcholine receptor prepared from Torpedo californica electric tissue have been irreversibly modified with quinacrine mustard, an alkylating derivative of the local anaesthetic quinacrine. The reaction blocked the ion channel regulated by the acetylcholine receptor. Acetylcholine still bound to the modified membrane vesicles with KD approx. 10(-8). The number of binding sites was reduced by up to 50%. Stopped-flow experiments showed that in contrast to what had been found with the reversibly binding quinacrine no fluorescence changes caused by energy transfer from the irradiated protein to the fluorescent local anaesthetic occurred after addition of agonist. This indicates that the conformational changes associated with the activation of the ion channel are blocked by the covalent reaction with quinacrine mustard. Analysis of the membrane vesicles by SDS-polyacrylamide gel electrophoresis showed that all polypeptide chains assumed to be part of the receptor complex had reacted with the mustard. Even small components, probably lipids, migrating with the dye front, showed fluorescence.  相似文献   

12.
Imidazolonepropionase (EC 3.5.2.7) catalyzes the third step in the universal histidine degradation pathway, hydrolyzing the carbon-nitrogen bonds in 4-imidazolone-5-propionic acid to yield N-formimino-l-glutamic acid. Here we report the crystal structures of the Bacillus subtilis imidazolonepropionase and its complex at 2.0-A resolution with substrate analog imidazole-4-acetic acid sodium (I4AA). The structure of the native enzyme contains two domains, a TIM (triose-phosphate isomerase) barrel domain with two insertions and a small beta-sandwich domain. The TIM barrel domain is quite similar to the members of the alpha/beta barrel metallo-dependent hydrolase superfamily, especially to Escherichia coli cytosine deaminase. A metal ion was found in the central cavity of the TIM barrel and was tightly coordinated to residues His-80, His-82, His-249, Asp-324, and a water molecule. X-ray fluorescence scan analysis confirmed that the bound metal ion was a zinc ion. An acetate ion, 6 A away from the zinc ion, was also found in the potential active site. In the complex structure with I4AA, a substrate analog, I4AA replaced the acetate ion and contacted with Arg-89, Try-102, Tyr-152, His-185, and Glu-252, further defining and confirming the active site. The detailed structural studies allowed us to propose a zinc-activated nucleophilic attack mechanism for the hydrolysis reaction catalyzed by the enzyme.  相似文献   

13.
In this study emulsion polymerization of acrylonitrile using xylan from agricultural waste material (corn cob) and cerium ammonium nitrate was investigated in terms of catalyst acid. Stock ceric solutions were prepared using either nitric or perchloric acid as catalyst. Optimum conditions were determined using different parameters such as reaction time, temperature, and component concentrations. Nitric acid catalyzed reactions resulted in maximum conversion ratio (96%) at 50°C, 1h where ceric ion, acrylonitrile, xylan, and catalyst concentrations were 21.7mmoll(-1), 0.5moll(-1), 0.2% (w/v), and 0.1moll(-1), respectively. However, 83% conversion was obtained with perchloric acid catalysis at 27°C, 1h where concentrations were 5.4mmoll(-1), 0.8moll(-1), 0.5% (w/v), and 0.2moll(-1), respectively. Copolymer synthesis using perchloric acid was realized at milder conditions than using nitric acid. Thermal analyses of obtained polymers were conducted to characterize copolymers. Results showed that calculated activation energy, maximum degradation temperature, and heat of thermal decomposition changed relying mainly on molecular weight.  相似文献   

14.
To better understand substrate recognition and catalysis by RNase III, we examined steady-state and pre-steady-state reaction kinetics, and changes in intrinsic enzyme fluorescence. The multiple turnover cleavage of a model RNA substrate shows a pre-steady-state burst of product formation followed by a slower phase, indicating that the steady-state reaction rate is not limited by substrate cleavage. RNase III catalyzed hydrolysis is slower at low pH, permitting the use of pre-steady-state kinetics to measure the dissociation constant for formation of the enzyme-substrate complex (K(d)=5.4(+/-0.6) nM), and the rate constant for phosphodiester bond cleavage (k(c)=1.160(+/-0.001) min(-1), pH 5.4). Isotope incorporation analysis shows that a single solvent oxygen atom is incorporated into the 5' phosphate of the RNA product, which demonstrates that the cleavage step is irreversible. Analysis of the pH dependence of the single turnover rate constant, k(c), fits best to a model for two or more titratable groups with pK(a) of ca 5.6, suggesting a role for conserved acidic residues in catalysis. Additionally, we find that k(c) is dependent on the pK(a) value of the hydrated divalent metal ion included in the reaction, providing evidence for participation of a metal ion hydroxide in catalysis, potentially in developing the nucleophile for the hydrolysis reaction. In order to assess whether conformational changes also contribute to the enzyme mechanism, we monitored intrinsic tryptophan fluorescence. During a single round of binding and cleavage by the enzyme we detect a biphasic change in fluorescence. The rate of the initial increase in fluorescence was dependent on substrate concentration yielding a second-order rate constant of 1.0(+/-0.1)x10(8) M(-1) s(-1), while the rate constant of the second phase was concentration independent (6.4(+/-0.8) s(-1); pH 7.3). These data, together with the unique dependence of each phase on divalent metal ion identity and pH, support the hypothesis that the two fluorescence transitions, which we attribute to conformational changes, correlate with substrate binding and catalysis.  相似文献   

15.
To gain an insight into the molecular basis of the weak but significant selectivity among alkali metal cations of the nicotinic acetylcholine receptor (AChR) channel, we have determined single-channel conductance and permeability ratios for alkali metal cations on specifically mutated Torpedo californica AChR channels expressed in Xenopus oocytes. The mutations involved charged and polar side chains in the three anionic rings (extracellular, intermediate and cytoplasmic ring) which have previously been found to determine the rate of K+ transport through the AChR channel. The results obtained reveal that mutations in the intermediate ring exert much stronger effects on ion selectivity than do mutations in the extracellular and the cytoplasmic ring. The experimental results, together with simulations of the channel's energy profile, suggest that the amino acid residues forming the intermediate ring come into close contact with permeating cations and possibly represent part of the physical correlate of the postulated selectivity filter in the AChR channel.  相似文献   

16.
The heat of precipitation has been determined for the reaction, in aqueous solution, of calcium ion with the phytate anion. The reaction is endothermic. From the value of the equilibrium constant associated with the reaction, the entropy change has been calculated. The large, positive entropy change is consistent with the view that when calcium ion reacts with the phytate anion there is a decrease in the hydrophilic character of the phytate anion. The quantitative aspects of the interaction of phytic acid with calcium provides a rational basis for the understanding of the mechanism of metal deprivation by phytic acid.  相似文献   

17.
Metal porphyrins catalyse luminol chemiluminescence at pH 13 without added peroxide. The effects of 22 different surface active compounds on this reaction were studied using six metal porphyrins and one metal porphyrin conjugate. The most active catalyst was Mn-meso-tetra(4-sulphonatophenyl)porphine. Tween-20 enhanced the activity of this catalyst best at a Tween-20 to luminol ratio of 74:1. However, lauryl sulphate enhanced best at an optimum lauryl sulphate to luminol ratio of over 1000:1 and both detergents enhanced the reaction when present below their critical micelle concentrations. Negatively charged aliphatic compounds such as fatty acids enhanced the reaction but positive-charged aliphatic compounds inhibited it. Small differences in enhancer structure resulted in differing enhancement. For example, linoleic acid enhanced Mn-meso-tetraphenyl porphine more than 10-fold, yet linolenic acid inhibited this catalyst. Conjugation of a metal porphyrin to antibody did not influence its enhancement by detergents. The results indicate that the enhancement mechanism does not require formation of pure detergent micelles but that direct association between enhancer and catalyst may be important.  相似文献   

18.
French JB  Cen Y  Vrablik TL  Xu P  Allen E  Hanna-Rose W  Sauve AA 《Biochemistry》2010,49(49):10421-10439
Nicotinamidases are metabolic enzymes that hydrolyze nicotinamide to nicotinic acid. These enzymes are widely distributed across biology, with examples found encoded in the genomes of Mycobacteria, Archaea, Eubacteria, Protozoa, yeast, and invertebrates, but there are none found in mammals. Although recent structural work has improved our understanding of these enzymes, their catalytic mechanism is still not well understood. Recent data show that nicotinamidases are required for the growth and virulence of several pathogenic microbes. The enzymes of Saccharomyces cerevisiae, Drosophila melanogaster, and Caenorhabditis elegans regulate life span in their respective organisms, consistent with proposed roles in the regulation of NAD(+) metabolism and organismal aging. In this work, the steady state kinetic parameters of nicotinamidase enzymes from C. elegans, Sa. cerevisiae, Streptococcus pneumoniae (a pathogen responsible for human pneumonia), Borrelia burgdorferi (the pathogen that causes Lyme disease), and Plasmodium falciparum (responsible for most human malaria) are reported. Nicotinamidases are generally efficient catalysts with steady state k(cat) values typically exceeding 1 s(-1). The K(m) values for nicotinamide are low and in the range of 2 -110 μM. Nicotinaldehyde was determined to be a potent competitive inhibitor of these enzymes, binding in the low micromolar to low nanomolar range for all nicotinamidases tested. A variety of nicotinaldehyde derivatives were synthesized and evaluated as inhibitors in kinetic assays. Inhibitions are consistent with reaction of the universally conserved catalytic Cys on each enzyme with the aldehyde carbonyl carbon to form a thiohemiacetal complex that is stabilized by a conserved oxyanion hole. The S. pneumoniae nicotinamidase can catalyze exchange of (18)O into the carboxy oxygens of nicotinic acid with H(2)(18)O. The collected data, along with kinetic analysis of several mutants, allowed us to propose a catalytic mechanism that explains nicotinamidase and nicotinic acid (18)O exchange chemistry for the S. pneumoniae enzyme involving key catalytic residues, a catalytic transition metal ion, and the intermediacy of a thioester intermediate.  相似文献   

19.
Ketol acid reductoisomerase is an enzyme of the branched-chain amino acid biosynthetic pathway. It catalyzes two separate reactions: an acetoin rearrangement and a reduction. This paper reports on the purification of the enzyme from a recombinant Escherichia coli and on the steady-state kinetics of the enzyme. The kinetics of the reaction were determined for the forward and reverse reaction by using the appropriate chiral substrates. At saturating metal ion concentrations the mechanism follows an ordered pathway where NADPH binds before acetolactate. The product of the rearrangement of acetolactate, 3-hydroxy-3-methyl-2-oxobutyrate, is shown to be kinetically competent as an intermediate in the enzyme-catalyzed reaction. Starting with acetolactate, Mg2+ is the only divalent metal ion that will support enzyme catalysis. For the reduction of 3-hydroxy-3-methyl-2-oxobutyrate, Mn2+ is catalytically active. Product and dead-end inhibition studies indicate that the binding of metal ion and NADPH occurs randomly. In the forward reaction direction, the deuterium kinetic isotope effect on V/K is 1.07 when acetolactate is the substrate and 1.39 when 3-hydroxy-3-methyl-2-oxobutyrate is the substrate.  相似文献   

20.
In an effort to understand the role of environmental metal ions in the interaction of charged pesticides with humic substances, a fluorescence study of the interaction of the widely-used herbicide 2,4-dichlorophenoxyacetic acid (DCPAA) with Al(3+) and Pd(2+) and Suwannee River fulvic acid (SRFA) was undertaken. Initial fluorescence experiments on binary solutions clearly indicated that both Al(3+) and Pd(2+) strongly interact with both SRFA and DCPAA when alone in solution with the metal ion. Titrations of SRFA with Al(3+) at pH values of 4.0, 3.0 and 2.0 revealed decreased degrees of fluorescence emission enhancement (at lambda(emission, max)=424 nm) with decreasing pH, consistent with the expected loss of rigidity in the SRFA-Al(3+) complexes formed as pH is lowered. In contrast, titrations of SRFA with Pd(2+) at all of these pH values resulted in significant fluorescence quenching. Al(3+) additions to solutions of DCPAA at pH values above the pK(a) (2.64) of DCPAA resulted primarily in significant changes in the wavelength of maximum emission (without significant quenching or enhancement of emission intensity), while Pd(2+) additions to DCPAA solutions resulted primarily in very significant fluorescence quenching. The DCPAA fluorescence results strongly support the formation of an Al(3+)-DCPAA complex at pH values above the pK(a) of DCPAA. The fluorescence results obtained for solutions of Pd(2+) and DCPAA are best explained by a collisional quenching mechanism, that is, energy transfer from excited DCPAA molecules to Pd(2+) following the collision of these two species in solution. Excitation-emission matrix plots obtained on ternary solutions (at environmentally-relevant pH 4.0) containing SRFA, DCPAA and metal ions (i.e., either Al(3+) or Pd(2+)) provides evidence (especially for systems containing Al(3+)) for the existence of ternary complexes between fulvic acid species, the herbicide DCPAA and metal ion, suggesting (at least at pH 4.0, where the predominant DCPAA species is negatively-charged) that metal ions may function to "bridge" negatively-charged fulvic acids to negatively-charged pesticides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号