首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Murine gammaherpesvirus 68 (gammaHV68) provides a tractable small animal model with which to study the mechanisms involved in the establishment and maintenance of latency by gammaherpesviruses. Similar to the human gammaherpesvirus Epstein-Barr virus (EBV), gammaHV68 establishes and maintains latency in the memory B-cell compartment following intranasal infection. Here we have sought to determine whether, like EBV infection, gammaHV68 infection in vivo is associated with B-cell proliferation during the establishment of chronic infection. We show that gammaHV68 infection leads to significant splenic B-cell proliferation as late as day 42 postinfection. Notably, gammaHV68 latency was found predominantly in the proliferating B-cell population in the spleen on both days 16 and 42 postinfection. Furthermore, virus reactivation upon ex vivo culture was heavily biased toward the proliferating B-cell population. DNA methyltransferase 1 (Dnmt1) is a critical maintenance methyltransferase which, during DNA replication, maintains the DNA methylation patterns of the cellular genome, a process that is essential for the survival of proliferating cells. To assess whether the establishment of gammaHV68 latency requires B-cell proliferation, we characterized infections of conditional Dnmt1 knockout mice by utilizing a recombinant gammaHV68 that expresses Cre-recombinase (gammaHV68-Cre). In C57BL/6 mice, the gammaHV68-Cre virus exhibited normal acute virus replication in the lungs as well as normal establishment and reactivation from latency. Furthermore, the gammaHV68-Cre virus also replicated normally during the acute phase of infection in the lungs of Dnmt1 conditional mice. However, deletion of the Dnmt1 alleles from gammaHV68-infected cells in vivo led to a severe ablation of viral latency, as assessed on both days 16 and 42 postinfection. Thus, the studies provide direct evidence that the proliferation of latently infected B cells is critical for the establishment of chronic gammaHV68 infection.  相似文献   

2.
Murine gammaherpesvirus 68 (gammaHV68) infection of mice results in the establishment of a chronic infection, which is largely maintained through latent infection of B lymphocytes. Acute virus replication is almost entirely cleared by 2 weeks postinfection. Spontaneous reactivation of gammaHV68 from latently infected splenocytes upon ex vivo culture can readily be detected at the early stages of infection (e.g., day 16). However, by 6 weeks postinfection, very little spontaneous reactivation is detected upon explant into tissue culture. Here we report that stimulation of latently infected splenic B cells harvested at late times postinfection with cross-linking surface immunoglobulin (Ig), in conjunction with anti-CD40 antibody treatment, triggers virus reactivation. As expected, this treatment resulted in B-cell activation, as assessed by upregulation of CD69 on B cells, and ultimately B-cell proliferation. Since anti-Ig/anti-CD40 stimulation resulted in splenic B-cell proliferation, we assessed whether this reactivation stimulus could overcome the previously characterized defect in virus reactivation of a v-cyclin null gammaHV68 mutant. This analysis demonstrated that anti-Ig/anti-CD40 stimulation could drive reactivation of the v-cyclin null mutant virus in latently infected splenocytes, but not to the levels observed with wild-type gammaHV68. Thus, there appears to be a role for the v-cyclin in B cells following anti-Ig/anti-CD40 stimulation independent of the induction of the cell cycle. Finally, to assess signals that are not mediated through the B-cell receptor, we demonstrate that addition of lipopolysaccharide to explanted splenocyte cultures also enhanced virus reactivation. These studies complement and extend previous analyses of Epstein-Barr virus and Kaposi's sarcoma-associated virus reactivation from latently infected cell lines by investigating reactivation of gammaHV68 from latently infected primary B cells recovered from infected hosts.  相似文献   

3.
Murine gammaherpesvirus 68 (gammaHV68) infection of mice provides a tractable small-animal model system for assessing the requirements for the establishment and maintenance of gammaherpesvirus latency within the lymphoid compartment. The M2 gene product of gammaHV68 is a latency-associated antigen with no discernible homology to any known proteins. Here we focus on the requirement for the M2 gene in splenic B-cell latency. Our analyses showed the following. (i) Low-dose (100 PFU) inoculation administered via the intranasal route resulted in a failure to establish splenic B-cell latency at day 16 postinfection. (ii) Increasing the inoculation dose to 4 x 10(5) PFU administered via the intranasal route partially restored the establishment of B-cell latency at day 16, but no virus reactivation was detected upon explant into tissue cultures. (iii) Although previous data failed to detect a phenotype of the M2 mutant upon high-dose intraperitoneal inoculation, decreasing the inoculation dose to 100 PFU administered intraperitoneally revealed a splenic B-cell latency phenotype at day 16 that was very similar to the phenotype observed upon high-dose intranasal inoculation. (iv) After low-dose intraperitoneal inoculation, fractionated B-cell populations showed that the M2 mutant virus was able to establish latency in surface immunoglobulin D-negative (sIgD(-)) B cells; by 6 months postinfection, equivalent frequencies of M2 mutant and marker rescue viral genome-positive sIgD(-) B cells were detected. (v) Like the marker rescue virus, the M2 mutant virus also established latency in splenic naive B cells upon low-dose intraperitoneal inoculation, but there was a significant lag in the decay of this latently infected reservoir compared to that seen with the marker rescue virus. (vi) After low-dose intranasal inoculation, by day 42 postinfection, latency was observed in the spleen, although at a frequency significantly lower than that in the marker rescue virus-infected mice; by 3 months postinfection, nearly equivalent levels of viral genome-positive cells were observed in the spleens of marker rescue virus- and M2 mutant virus-infected mice, and these cells were exclusively sIgD(-) B cells. Taken together, these data convincingly demonstrate a role for the M2 gene product in reactivation from splenic B cells and also suggest that disruption of the M2 gene leads to dose- and route-specific defects in the efficient establishment of splenic B-cell latency.  相似文献   

4.
5.
Alpha/beta interferon (IFN-alpha/beta) protects the host from virus infection by inhibition of lytic virus replication in infected cells and modulation of the antiviral cell-mediated immune response. To determine whether IFN-alpha/beta also modulates the virus-host interaction during latent virus infection, we infected mice lacking the IFN-alpha/beta receptor (IFN-alpha/betaR(-/-)) and wild-type (wt; 129S2/SvPas) mice with murine gammaherpesvirus 68 (gammaHV68), a lymphotropic gamma-2-herpesvirus that establishes latent infection in B cells, macrophages, and dendritic cells. IFN-alpha/betaR(-/-) mice cleared low-dose intranasal gammaHV68 infection with wt kinetics and harbored essentially wt frequencies of latently infected cells in both peritoneum and spleen by 28 days postinfection. However, latent virus in peritoneal cells and splenocytes from IFN-alpha/betaR(-/-) mice reactivated ex vivo with >40-fold- and 5-fold-enhanced efficiency, respectively, compared to wt cells. Depletion of IFN-alpha/beta from wt mice during viral latency also significantly increased viral reactivation, demonstrating an antiviral function of IFN-alpha/beta during latency. Viral reactivation efficiency was temporally regulated in both wt and IFN-alpha/betaR(-/-) mice. The mechanism of IFN-alpha/betaR action was distinct from that of IFN-gammaR, since IFN-alpha/betaR(-/-) mice did not display persistent virus replication in vivo. Analysis of viral latent gene expression in vivo demonstrated specific upregulation of the latency-associated gene M2, which is required for efficient reactivation from latency, in IFN-alpha/betaR(-/-) splenocytes. These data demonstrate that an IFN-alpha/beta-induced pathway regulates gammaHV68 gene expression patterns during latent viral infection in vivo and that IFN-alpha/beta plays a critical role in inhibiting viral reactivation during latency.  相似文献   

6.
While antiviral antibody plays a key role in resistance to acute viral infection, the contribution of antibody to the control of latent virus infection is less well understood. Gammaherpesvirus 68 (gammaHV68) infection of mice provides a model well suited to defining contributions of specific immune system components to the control of viral latency. B cells play a critical role in regulating gammaHV68 latency, but the mechanism(s) by which B cells regulate latency is not known. In the experiments reported here, we determined the effect of passively transferred antibody on established gammaHV68 latency in B-cell-deficient (B-cell(-/-)) mice. Immune antibody decreased the frequency of cells reactivating ex vivo from latency in splenocytes (>10-fold) and peritoneal cells (>100-fold) and the frequency of cells carrying latent viral genome in splenocytes (>5-fold) and peritoneal cells (>50-fold). This effect required virus-specific antibody and was observed when total and virus-specific serum antibody concentrations in recipient B-cell(-/-) mice were <8% of those in normal mice during latent infection. Passive transfer of antibody specific for the lytic cycle gammaHV68 RCA protein, but not passive transfer of antibody specific for the v-cyclin protein or the latent protein M2, decreased both the frequency of cells reactivating ex vivo from latency and the frequency of cells carrying the latent viral genome. Therefore, antibody specific for lytic cycle viral antigens can play an important role in the control of gammaherpesvirus latency in immunocompromised hosts. Based on these findings, we propose a model in which ongoing productive replication is essential for maintaining high levels of latently infected cells in immunocompromised hosts. We confirmed this model by the treatment of latently infected B-cell(-/-) mice with the antiviral drug cidofovir.  相似文献   

7.
The dynamics of the establishment of, and reactivation from, gammaherpesviruses latency has not been quantitatively analyzed in the natural host. Gammaherpesvirus 68 (gammaHV68) is a murine gammaherpesvirus genetically related to primate gammaherpesviruses that establishes a latent infection in infected mice. We used limiting dilution reactivation (frequency of cells reactivating gammaHV68 in vitro) and limiting dilution PCR (frequency of cells carrying gammaHV68 genome) assays to compare gammaHV68 latency in normal (C57BL/6) and B-cell-deficient (MuMT) mice. After intraperitoneal (i.p.) inoculation, latent gammaHV68 was detected in the spleen, bone marrow, and peritoneal cells. Both B-cell-deficient and C57BL/6 mice established latent infection in peritoneal cells after either i.p. or intranasal (i.n.) inoculation. In contrast, establishment of splenic latency was less efficient in B-cell-deficient than in C57BL/6 mice after i.n. inoculation. Analysis of reactivation efficiency (reactivation frequency compared to frequency of cells carrying gammaHV68 genome) revealed that (i) regardless of route or mouse strain, splenic cells reactivated gammaHV68 less efficiently than peritoneal cells, (ii) the frequency of cells carrying gammaHV68 genome was generally comparable over the course of infection between C57BL/6 and B-cell-deficient mice, (iii) between 28 and 250 days after infection, cells from B-cell-deficient mice reactivated gammaHV68 10- to 100-fold more efficiently than cells from C57BL/6 mice, (iv) at 7 weeks postinfection, B-cell-deficient mice had more genome-positive peritoneal cells than C57BL/6 mice, and (v) mixing cells (ratio of 3 to 1) that reactivated inefficiently with cells that reactivated efficiently did not significantly decrease reactivation efficiency. Consistent with a failure to normally regulate chronic gammaHV68 infection, the majority of infected B-cell-deficient mice died between 100 and 200 days postinfection. We conclude that (i) B cells are not required for establishment of gammaHV68 latency, (ii) there are organ-specific differences in the efficiency of gammaHV68 reactivation, (iii) B cells play a crucial role in regulating reactivation of gammaHV68 from latency, and (iv) B cells are important for controlling chronic gammaHV68 infection.  相似文献   

8.
The gammaherpesvirus immediate-early genes are critical regulators of virus replication and reactivation from latency. Rta, encoded by gene 50, serves as the major transactivator of the lytic program and is highly conserved among all the gammaherpesviruses, including Epstein-Barr virus, Kaposi's sarcoma-associated herpesvirus, and murine gammaherpesvirus 68 (gammaHV68). Introduction of a translation stop codon in gammaHV68 gene 50 (gene 50.stop gammaHV68) demonstrated that Rta is essential for virus replication in vitro. To investigate the role that virus replication plays in the establishment and maintenance of latency, we infected mice with gene 50.stop gammaHV68. Notably, the gene 50.stop virus established a long-term infection in lung B cells following intranasal infection of mice but was unable to establish latency in the spleen. This complete block in the establishment of latency in the spleen was also seen when lytic virus production was inhibited by treating mice infected with wild-type virus with the antiviral drug cidofovir, implicating virus replication and not an independent function of Rta in the establishment of splenic latency. Furthermore, we showed that gene 50.stop gammaHV68 was unable to prime the immune system and was unable to protect against a challenge with wild-type gammaHV68, despite its ability to chronically infect lung B cells. These data indicate gammaherpesviruses that are unable to undergo lytic replication in vivo may not be viable vaccine candidates despite the detection of cells harboring viral genome at late times postinfection.  相似文献   

9.
Willer DO  Speck SH 《Journal of virology》2003,77(15):8310-8321
Murine gammaherpesvirus 68 (gammaHV68; also known as MHV-68) can establish a latent infection in both inbred and outbred strains of mice and, as such, provides a tractable small-animal model to address mechanisms and cell types involved in the establishment and maintenance of chronic gammaherpesvirus infection. Latency can be established at multiple anatomic sites, including the spleen and peritoneum; however, the contribution of distinct cell types to the maintenance of latency within these reservoirs remains poorly characterized. B cells are the major hematopoietic cell type harboring latent gammaHV68. We have analyzed various splenic B-cell subsets at early, intermediate, and late times postinfection and determined the frequency of cells either (i) capable of spontaneously reactivating latent gammaHV68 or (ii) harboring latent viral genome. These analyses demonstrated that latency is established in a variety of cell populations but that long-term latency (6 months postinfection) in the spleen after intranasal inoculation predominantly occurs in B cells. Furthermore, at late times postinfection latent gammaHV68 is largely confined to the surface immunoglobulin D-negative subset of B cells.  相似文献   

10.
Murine gammaherpesvirus 68 (gamma HV-68; also referred to as MHV-68) is a gammaherpesvirus which infects murid rodents. Previous studies showed that CD8 T cells are important for controlling gamma HV-68 replication during the first 2 weeks of infection and suggested a role for B cells in latent or persistent gamma HV-68 infection. To further define the importance of B cells and CD8 T cells during acute and chronic gamma HV-68 infection, we examined splenic infection in mice with null mutations in the transmembrane domain of the mu-heavy-chain constant region (MuMT; B-cell and antibody deficient) or in the beta2-microglobulin gene (beta2 -/-; CD8 deficient). Immunocompetent mice infected intraperitoneally with gamma HV-68 demonstrated peak splenic titers 9 to 10 days postinfection, cleared infectious virus 15 to 20 days postinfection, and harbored low levels of latent virus at 6 weeks postinfection. Beta2-/- mice showed peak splenic gamma HV-68 titers similar to those of normal mice but were unable to clear infectious virus completely from the spleen, demonstrating persistent infectious virus 6 weeks postinfection. These data indicate that CD8 T cells are important for clearing infectious gamma HV-68 from the spleen. Infected MuMT mice did not demonstrate detectable infectious gamma HV-68 in the spleen at any time after infection, indicating that mature B lymphocytes are necessary for acute splenic infection by gamma HV-68. Despite the lack of measurable acute infection, MuMT spleen cells harbored latent virus 6 weeks postinfection at a level about 100-fold higher than that in normal mice. These data demonstrate establishment of latency by a herpesvirus in an organ in the absence of acute viral replication in that organ. In addition, they demonstrate that gamma HV-68 can establish latency in a cell type other than mature B lymphocytes.  相似文献   

11.
12.
Open reading frame 73 (ORF 73) is conserved among the gamma-2-herpesviruses (rhadinoviruses) and, in Kaposi's sarcoma-associated herpesvirus (KSHV) and herpesvirus saimiri (HVS), has been shown to encode a latency-associated nuclear antigen (LANA). The KSHV and HVS LANAs have also been shown to be required for maintenance of the viral genome as an episome during latency. LANA binds both the viral latency-associated origin of replication and the host cell chromosome, thereby ensuring efficient partitioning of viral genomes to daughter cells during mitosis of a latently infected cell. In gammaherpesvirus 68 (gammaHV68), the role of the LANA homolog in viral infection has not been analyzed. Here we report the construction of a gammaHV68 mutant containing a translation termination codon in the LANA ORF (73.STOP). The 73.STOP mutant virus replicated normally in vitro, in both proliferating and quiescent murine fibroblasts. In addition, there was no difference between wild-type (WT) and 73.STOP virus in the kinetics of induction of lethality in mice lacking B and T cells (Rag 1(-/-)) infected with 1000 PFU of virus. However, compared to WT virus, the 73.STOP mutant exhibited delayed kinetics of replication in the lungs of immunocompetent C57BL/6 mice. In addition, the 73.STOP mutant exhibited a severe defect in the establishment of latency in the spleen of C57BL/6 mice. Increasing the inoculum of 73.STOP virus partially overcame the acute replication defected observed in the lungs at day 4 postinfection but did not ameliorate the severe defect in the establishment of splenic latency. Thus, consistent with its proposed role in replication of the latent viral episome, LANA appears to be a critical determinant in the establishment of gammaHV68 latency in the spleen post-intranasal infection.  相似文献   

13.
Gammaherpesviruses are important pathogens whose lifelong survival in the host depends critically on their capacity to establish and reactivate from latency, processes regulated by both viral genes and the host immune response. Previous work has demonstrated that gamma interferon (IFN-gamma) is a key regulator of chronic infection with murine gammaherpesvirus 68 (gammaHV68), a virus that establishes latent infection in B lymphocytes, macrophages, and dendritic cells. In mice deficient in IFN-gamma or the IFN-gamma receptor, gammaHV68 gene expression is altered during chronic infection, and peritoneal cells explanted from these mice reactivate more efficiently ex vivo than cells derived from wild-type mice. Furthermore, treatment with IFN-gamma inhibits reactivation of gammaHV68 from latently infected wild-type peritoneal cells, and depletion of IFN-gamma from wild-type mice increases the efficiency of reactivation of explanted peritoneal cells. These profound effects of IFN-gamma on chronic gammaHV68 latency and reactivation raise the question of which cells respond to IFN-gamma to control chronic gammaHV68 infection. Here, we show that IFN-gamma inhibited reactivation of peritoneal cells and spleen cells harvested from mice lacking B lymphocytes, but not wild-type spleen cells, suggesting that IFN-gamma may inhibit reactivation in a cell type-specific manner. To directly test this hypothesis, we expressed the diphtheria toxin receptor specifically on either B lymphocytes or macrophages and used diphtheria toxin treatment to deplete these specific cells in vivo and in vitro after establishing latency. We demonstrate that macrophages, but not B cells, are responsive to IFN-gamma-mediated suppression of gammaHV68 reactivation. These data indicate that the regulation of gammaherpesvirus latency by IFN-gamma is cell type specific and raise the possibility that cell type-specific immune deficiency may alter latency in distinct and important ways.  相似文献   

14.
15.
CD4 T cells are important for control of infection with murine gammaherpesvirus 68 (gamma HV68), but it is not known whether CD4 T cells function via provision of help to other lymphocyte subsets, such as B cells and CD8 T cells, or have an independent antiviral function. Moreover, under conditions of natural infection, the CD4 T-cell response is not sufficient to eliminate infection. To determine the functional capacities of CD4 T cells under optimal or near-optimal conditions and to determine whether CD4 T cells can control gamma HV68 infection in the absence of CD8 T cells or B cells, we studied the effect of ovalbumin (OVA)-specific CD4 T cells on infection with a recombinant gamma HV68 that expresses OVA. OVA-specific CD4 T cells limited acute gamma HV68 replication and prolonged the life of infected T-cell receptor-transgenic RAG (DO.11.10/RAG) mice, demonstrating CD4 T-cell antiviral activity, independent of CD8 T cells and B cells. Despite CD4 T-cell-mediated control of acute infection, latent infection was established in DO.11.10/RAG mice. However, OVA-specific CD4 T cells reduced the frequency of latently infected cells both early (16 days postinfection) and late (42 days postinfection) after infection of mice containing CD8 T cells and B cells (DO.11.10 mice). These results show that OVA-specific CD4 T cells have B-cell and CD8 T-cell-independent antiviral functions in the control of acute infection and can, in the absence of preexisting CD8 T-cell or B-cell immunity, inhibit the establishment of gammaherpesvirus latency.  相似文献   

16.
B cells can use antibody-dependent mechanisms to control latent viral infections. It is unknown whether this represents the sole function of B cells during chronic viral infection. We report here that hen egg lysozyme (HEL)-specific B cells can contribute to the control of murine gamma-herpesvirus 68 (gammaHV68) latency without producing anti-viral antibody. HEL-specific B cells normalized defects in T cell numbers and proliferation observed in B cell-/- mice during the early phase of gammaHV68 latency. HEL-specific B cells also reversed defects in CD8 and CD4 T cell cytokine production observed in B cell-/- mice, generating CD8 and CD4 T cells necessary for control of latency. Furthermore, HEL-specific B cells were able to present virally encoded antigen to CD8 T cells. Therefore, B cells have antibody independent functions, including antigen presentation, that are important for control of gamma-herpesvirus latency. Exploitation of this property of B cells may allow enhanced vaccine responses to chronic virus infection.  相似文献   

17.
B cells have previously been identified as the major hematopoietic cell type harboring latent gammaherpesvirus 68 (gammaHV68) (N. P. Sunil-Chandra, S. Efstathiou, and A. A. Nash, J. Gen. Virol. 73:3275-3279, 1992). However, we have shown that gammaHV68 efficiently establishes latency in B-cell-deficient mice (K. E. Weck, M. L. Barkon, L. I. Yoo, S. H. Speck, and H. W. Virgin, J. Virol. 70:6775-6780, 1996), demonstrating that B cells are not required for gammaHV68 latency. To understand this dichotomy, we determined whether hematopoietic cell types, in addition to B cells, carry latent gammaHV68. We observed a high frequency of cells that reactivate latent gammaHV68 in peritoneal exudate cells (PECs) derived from both B-cell-deficient and normal C57BL/6 mice. PECs were composed primarily of macrophages in B-cell-deficient mice and of macrophages plus B cells in normal C57BL/6 mice. To determine which cells in PECs from C57BL/6 mice carry latent gammaHV68, we developed a limiting-dilution PCR assay to quantitate the frequency of cells carrying the gammaHV68 genome in fluorescence-activated cell sorter-purified cell populations. We also quantitated the contribution of individual cell populations to the total frequency of cells carrying latent gammaHV68. At early times after infection, the frequency of PECs that reactivated gammaHV68 correlated very closely with the frequency of PECs carrying the gammaHV68 genome, validating measurement of the frequency of viral-genome-positive cells as a measure of latency in this cell population. F4/80-positive macrophage-enriched, lymphocyte-depleted PECs harbored most of the gammaHV68 genome and efficiently reactivated gammaHV68, while CD19-positive, B-cell-enriched PECs harbored about a 10-fold lower frequency of gammaHV68 genome-positive cells. CD4-positive, T-cell-enriched PECs contained only a very low frequency of gammaHV68 genome-positive cells, consistent with previous analyses indicating that T cells are not a reservoir for gammaHV68 latency (N. P. Sunil-Chandra, S. Efstathiou, and A. A. Nash, J. Gen. Virol. 73:3275-3279, 1992). Since macrophages are bone marrow derived, we determined whether elicitation of a large inflammatory response in the peritoneum would recruit additional latent cells into the peritoneum. Thioglycolate inoculation increased the total number of PECs by about 20-fold but did not affect the frequency of cells that reactivate gammaHV68, consistent with a bone marrow reservoir for latent gammaHV68. These experiments demonstrate gammaHV68 latency in two different hematopoietic cell types, F4/80-positive macrophages and CD19-positive B cells, and argue for a bone marrow reservoir for latent gammaHV68.  相似文献   

18.
Toll-like receptors (TLRs) are known predominantly for their role in activating the innate immune response. Recently, TLR signaling via MyD88 has been reported to play an important function in development of a B-cell response. Since B cells are a major latency reservoir for murine gammaherpesvirus 68 (MHV68), we investigated the role of TLR signaling in the establishment and maintenance of MHV68 latency in vivo. Mice deficient in MyD88 (MyD88(-/-)) or TLR3 (TLR3(-/-)) were infected with MHV68. Analysis of splenocytes recovered at day 16 postinfection from MyD88(-/-) mice compared to those from wild-type control mice revealed a lower frequency of (i) activated B cells, (ii) germinal-center B cells, and (iii) class-switched B cells. Accompanying this substantial defect in the B-cell response was an approximately 10-fold decrease in the establishment of splenic latency. In contrast, no defect in viral latency was observed in TLR3(-/-) mice. Analysis of MHV68-specific antibody responses also demonstrated a substantial decrease in the kinetics of the response in MyD88(-/-) mice. Analysis of wild-type x MyD88(-/-) mixed-bone-marrow chimeric mice demonstrated that there is a selective failure of MyD88(-/-) B cells to participate in germinal-center reactions as well as to become activated and undergo class switching. In addition, while MHV68 established latency efficiently in the MyD88-sufficient B cells, there was again a ca. 10-fold reduction in the frequency of MyD88(-/-) B cells harboring latent MHV68. This phenotype indicates that MyD88 is important for the establishment of MHV68 latency and is directly related to the role of MyD88 in the generation of a B-cell response. Furthermore, the generation of a B-cell response to MHV68 was intrinsic to B cells and was independent of the interleukin-1 receptor, a cytokine receptor that also signals through MyD88. These data provide evidence for a unique role for MyD88 in the establishment of MHV68 latency.  相似文献   

19.
Epstein-Barr virus (EBV)-induced lymphoproliferative disease is an important complication in the context of immune deficiency. Impaired T-cell immunity allows the outgrowth of transformed cells with the subsequent production of predominantly B-cell lymphomas. Currently there is no in vivo model that can adequately recapitulate EBV infection and its association with B-cell lymphomas. NOD/SCID mice engrafted with human CD34(+) cells and reconstituted mainly with human B lymphocytes may serve as a useful xenograft model to study EBV infection and pathogenesis. We therefore infected reconstituted mice with EBV. High levels of viral DNA were detected in the peripheral blood of all infected mice. All infected mice lost weight and showed decreased activity levels. Infected mice presented large visible tumors in multiple organs, most prominently in the spleen. These tumors stained positive for human CD79a, CD20, CD30, and EBV-encoded RNAs and were light chain restricted. Their characterization is consistent with that of large cell immunoblastic lymphoma. In addition, tumor cells expressed EBNA1, LMP1, and LMP2a mRNAs, which is consistent with a type II latency program. EBV(+) lymphoblastoid cell lines expressing human CD45, CD19, CD21, CD23, CD5, and CD30 were readily established from the bone marrow and spleens of infected animals. Finally, we also demonstrate that infection with an enhanced green fluorescent protein (EGFP)-tagged virus can be monitored by the detection of infected EGFP(+) cells and EGFP(+) tumors. These data demonstrate that NOD/SCID mice that are reconstituted with human CD34(+) cells are susceptible to infection by EBV and accurately recapitulate important aspects of EBV pathogenesis.  相似文献   

20.
Strategies to prime CD8(+) T cells against Murine gammaherpesvirus 68 (gammaHV68; MHV68) latency have, to date, resulted in only limited effects. While early forms of latency (<21 days) were significantly reduced, effects were not seen at later times, indicating loss of control by the primed CD8(+) T cells. In the present study, we evaluated CD8(+) T cells in an optimized system, consisting of OTI T-cell-receptor (TCR) transgenic mice, which generate clonal CD8(+) T cells specific for K(b)-SIINFEKL of OVA, and a recombinant gammaHV68 that expresses OVA (gammaHV68.OVA). Our aim was to test whether this optimized system would result in more effective control not only of acute infection but also of later forms of latent infection than was seen with previous strategies. First, we show that OTI CD8(+) T cells effectively controlled acute replication of gammaHV68.OVA in liver, lung, and spleen at 8 and 16 days after infection of OTI/RAG mice, which lack expression of B and CD4(+) T cells. However, we found that, despite eliminating detectable acute replication, the OTI CD8(+) T cells did not prevent the establishment of latency in the OTI/RAG mice. We next evaluated the effectiveness of OTI T cells in OTI/B6 animals, which express B cells--a major site of latency in wild-type mice--and CD4(+) T cells. In OTI/B6 mice OTI CD8(+) T cells not only reduced the frequency of cells that reactivate from latency and the frequency of cells bearing the viral genome at 16 days after infection (similar to what has been reported before) but also were effective at reducing latency at 42 days after infection. Together, these data show that CD8(+) T cells are sufficient, in the absence of B cells and CD4(+) T cells, for effective control of acute replication. The data also demonstrate for the first time that a strong CD8(+) T-cell response can limit long-term latent infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号