首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In chloroplasts and a number of prokaryotes, -aminolevulinic acid (ALA), the universal precursor of porphyrins, is synthesized by a multistep enzymatic pathway with glutamyl-tRNAGlu as an intermediate. The ALA synthesizing system from barley chloroplasts is highly specific in its tRNA requirement for chloroplast tRNAGlu; a number of other Glu-tRNAs are inactive in ALA formation although they can be glutamylated by chloroplast aminoacyl-tRNA synthetases. In order to obtain more information about the structural features defining the ability of a tRNA to be recognized by the ALA synthesizing enzymes, we purified and sequenced two cytoplasmic tRNAGlu species from barley embryos which are inactive in ALA synthesis. By using glutamylated tRNAs as a substrate for the overall reaction, we showed that Glu-tRNA reductase is the enzyme responsible for tRNA discrimination.  相似文献   

3.
N(α)-Acetyltransferases (NATs) cause the N(α)-acetylation of the majority of eukaryotic proteins during their translation, although the functions of this modification have been largely unexplored. In yeast (Saccharomyces cerevisiae), four NATs have been identified: NatA, NatB, NatC, and NatD. In this study, the N(α)-acetylation status of ribosomal protein was analyzed using NAT mutants combined with two-dimensional difference gel electrophoresis (2D-DIGE) and mass spectrometry (MS). A total of 60 ribosomal proteins were identified, of which 17 were N(α)-acetylated by NatA, and two by NatB. The N(α)-acetylation of two of these, S17 and L23, by NatA was not previously observed. Furthermore, we tested the effect of ribosomal protein N(α)-acetylation on protein synthesis using the purified ribosomes from each NAT mutant. It was found that the protein synthesis activities of ribosomes from NatA and NatB mutants were decreased by 27% and 23%, respectively, as compared to that of the normal strain. Furthermore, we have shown that ribosomal protein N(α)-acetylation by NatA influences translational fidelity in the presence of paromomycin. These results suggest that ribosomal protein N(α)-acetylation is necessary to maintain the ribosome's protein synthesis function.  相似文献   

4.
Brown JA  Pack LR  Sanman LE  Suo Z 《DNA Repair》2011,10(1):24-33
The base excision repair (BER) pathway coordinates the replacement of 1-10 nucleotides at sites of single-base lesions. This process generates DNA substrates with various gap sizes which can alter the catalytic efficiency and fidelity of a DNA polymerase during gap-filling DNA synthesis. Here, we quantitatively determined the substrate specificity and base substitution fidelity of human DNA polymerase λ (Pol λ), an enzyme proposed to support the known BER DNA polymerase β (Pol β), as it filled 1-10-nucleotide gaps at 1-nucleotide intervals. Pol λ incorporated a correct nucleotide with relatively high efficiency until the gap size exceeded 9 nucleotides. Unlike Pol λ, Pol β did not have an absolute threshold on gap size as the catalytic efficiency for a correct dNTP gradually decreased as the gap size increased from 2 to 10 nucleotides and then recovered for non-gapped DNA. Surprisingly, an increase in gap size resulted in lower polymerase fidelity for Pol λ, and this downregulation of fidelity was controlled by its non-enzymatic N-terminal domains. Overall, Pol λ was up to 160-fold more error-prone than Pol β, thereby suggesting Pol λ would be more mutagenic during long gap-filling DNA synthesis. In addition, dCTP was the preferred misincorporation for Pol λ and its N-terminal domain truncation mutants. This nucleotide preference was shown to be dependent upon the identity of the adjacent 5'-template base. Our results suggested that both Pol λ and Pol β would catalyze nucleotide incorporation with the highest combination of efficiency and accuracy when the DNA substrate contains a single-nucleotide gap. Thus, Pol λ, like Pol β, is better suited to catalyze gap-filling DNA synthesis during short-patch BER in vivo, although, Pol λ may play a role in long-patch BER.  相似文献   

5.
Synthesis and assembly of ribosomal proteins into mature ribosomes persist late after infection of cells with herpes simplex virus type 1, while synthesis of β-actin is drastically shut off. Since mRNAs encoding ribosomal proteins and β-actin undergo concomitant degradation in infected HeLa cells, we have advanced the hypothesis that translation of the remaining mRNAs is differentially controlled after infection. The behaviour of mRNAs for three ribosomal proteins and for β-actin was investigated during the course of infection. In uninfected cells, β-actin mRNAs are associated with large polyribosomes, while only a part of ribosomal protein mRNAs are present in polyribosomes. In the course of infection, β-actin mRNAs are released from the ribosomes and are sequestered with 40S ribosomal subunits. Simultaneously, ribosomal protein mRNAs become associated with an increased number of ribosomes, even late in infection. In addition, virally induced phosphorylation of ribosomal protein S6 is more efficient in pre-existing ribosomes than in newly assembled ribosomes. These results indicate that in infected cells (i) translation of β-actin mRNA is selectively inhibited at a step necessary for binding the 60S ribosomal subunits; (ii) the rate of initiation of translation of ribosomal protein mRNAs increases after infection; and (iii) it is likely that translation of ribosomal protein mRNAs takes place preferentially on pre-existing ribosomes. Received: 5 February 1997 / Accepted: 28 May 1997  相似文献   

6.
This report examines the molecular mechanism by which high-fidelity DNA polymerases select nucleotides during the replication of an abasic site, a non-instructional DNA lesion. This was accomplished by synthesizing several unique 5-substituted indolyl 2'-deoxyribose triphosphates and defining their kinetic parameters for incorporation opposite an abasic site to interrogate the contributions of π-electron density and solvation energies. In general, the K(d, app) values for hydrophobic non-natural nucleotides are ~10-fold lower than those measured for isosteric hydrophilic analogs. In addition, k(pol) values for nucleotides that contain less π-electron densities are slower than isosteric analogs possessing higher degrees of π-electron density. The differences in kinetic parameters were used to quantify the energetic contributions of desolvation and π-electron density on nucleotide binding and polymerization rate constant. We demonstrate that analogs lacking hydrogen-bonding capabilities act as chain terminators of translesion DNA replication while analogs with hydrogen bonding functional groups are extended when paired opposite an abasic site. Collectively, the data indicate that the efficiency of nucleotide incorporation opposite an abasic site is controlled by energies associated with nucleobase desolvation and π-electron stacking interactions whereas elongation beyond the lesion is achieved through a combination of base-stacking and hydrogen-bonding interactions.  相似文献   

7.
Replication of damaged DNA (translesion synthesis, TLS) is realized by specialized DNA polymerases. Additional protein factors such as replication protein A (RPA) play important roles in this process. However, details of the interaction are unknown. Here we analyzed the influence of the hRPA and its mutant hABCD lacking domains responsible for protein-protein interactions on ability of DNA polymerase lambda to catalyze TLS. The primer-template structures containing varying parts of extended strand (16 and 37 nt) were used as model systems imitating DNA intermediate of first stage of TLS. The 8-oxoguanine disposed in +1 position of the template strand in relation to 3 -end of primer was exploited as damage. It was shown that RPA stimulated TLS DNA synthesis catalyzed by DNA polymerase lambda in its globular but not in extended conformation. Moreover, this effect is dependent on the presence of p70N and p32C domains in RPA molecule.  相似文献   

8.
Separation of α- and β-Globin Messenger RNAs   总被引:2,自引:0,他引:2  
THE 10S RNA fraction of reticulocytes from various species contains the haemoglobin messenger RNA1–4. When this 10S RNA fraction is added to a cell-free system derived from reticulocytes or Krebs II ascites cells, it directs the synthesis of α and β chains of haemoglobin5–8. The α and β messenger RNA molecules contained in this fraction, however, have not yet been separated and identified. When reticulocyte. RNA of mouse is subjected to electrophoresis on 6% polyacrylamide gels, the 10S fraction contains two major bands and three minor bands9, suggesting that the major lOS RNA bands contain the messenger RNAs for the α- and β-globin chains.  相似文献   

9.
Insertion of nitrate reductase into the Escherichia coli cytoplasmic membrane was examined by following the fate of pulse-labeled enzyme in both the membrane and cytoplasm during various times after the addition of an unlabeled chase. The polypeptide composition of this labeled enzyme was determined by autoradiography of immunoprecipitated material after separation on sodium dodecyl sulfate-polyacrylamide gels. The data presented here indicate that immediately after appropriate insertion of the enzyme into the membrane, a post-translational event occurs which converts the cytoplasmically synthesized form of subunit B (B') to the form found in the completely assembled enzyme (B). B' is distinguished from B by its more rapid electrophoretic mobility. B' was found in the cytoplasm of all strains tested, in the membrane of strains with defects in enzyme insertion (hemA and chlE), and as a transient component in the membrane of wild-type cells.  相似文献   

10.
11.
Cell differentiation involves the development of a new cytoplasm containing a set of specialized organelles such as cilia and flagella which are placed in the cell with a predetermined orientation. Arguments are put forward to show that the orientation of the flagellar apparatus could be brought about by a macromolecular structural bridge between the nucleoid and the assembling flagellar apparatus, the orientation being determined by the spatial geometry inherent in the folding of the DNA. An analysis of differentiation in unicelled eukaryotes suggests that the same basic mechanism of a structural bridge could also apply to the orientation of their cilia and flagella and perhaps may have a more general application in the positioning of cytoplasmic organelles.  相似文献   

12.
1. The uterine response to a single injection of oestradiol-17beta during postnatal development of the rat was studied with respect to (i) nuclear binding of oestradiol-17beta; (ii) induction of the synthesis of a specific cytoplasmic protein (;induced protein' of Gorski); (iii) rate of incorporation of (3)H-labelled amino acids into total protein and into nuclear acid-soluble and acid-insoluble protein; and (iv) rate of [(3)H]thymidine incorporation into DNA. 2. Specific nuclear binding of oestradiol-17beta could be demonstrated even at birth. Administration of oestradiol-17beta in vivo caused a significant increase in the number of nuclear binding sites in rats aged 10 days or older. 3. A rapid method is described for the detection of the ;induced protein', based on cellulose acetate electrophoresis. Induction of this protein could be demonstrated at the age of 10, 15 and 20 days, but not in 5-day-old rats. 4. In 20-day-old rats the rate of (3)H-labelled amino acid incorporation into protein increased by 3h after oestradiol administration. Incorporation into the different protein fractions reached peak values asynchronously: at 3-4h for acid-insoluble nuclear protein, at 6h for total protein and at about 12h for acid-soluble protein. 5. Treatment with oestradiol failed to stimulate amino acid incorporation into protein in 5- or 10-day-old rats; at the age of 15 to 30 days the hormone caused a significant increase in incorporation into total protein and into both types of nuclear protein. 6. Since the capacity for nuclear binding of oestradiol and for synthesis of the induced protein is demonstrable in the rat uterus before it acquires the ability to respond to the hormone with enhanced general protein synthesis and DNA synthesis, it appears that nuclear binding and the synthesis of the induced protein may be necessary but not sufficient conditions for the trophic action of oestradiol.  相似文献   

13.
(1) Within the low viscous flowing endoplasm of Physarum polycephalum a considerable amount of actin is in the non-filamentous state. This can be demonstrated by applying poly-L-lysin to surface spreads of native protoplasm. (2) It has been shown that in protoplasmic drops the endoplasm-ectoplasm transformation is accompanied by an actin polymerization from the non-filamentous state to F-actin. (3) The actual state of the labile G-F-actin equilibrium determines the varying consistency (viscosity) of the cytoplasm. (4) Increasing viscosity can be interpreted as being brought about by a) shifting of the G-F-actin equilibrium to the filamentous side, and (b) increased myosin-mediated binding sites between actin filaments. (5) Polymerization and depolymerization processes are involved in the rhythmically occurring contraction-relaxation cycle of cytoplasmic actomyosin in Physarum. (6) Cytoplasmic actin and myosin represent the architectural proteins of the contractile gel reticulum in eukaryotic cells. (7) The importance of the regulation of actin polymerization as a basic control mechanism of the eukaryotic cell is discussed.  相似文献   

14.
Cultured kidney cells of Xenopus laevis were pulse-labeled with [3H]uridine for 10, 20 and 30 min during their logarithmic growth phase and then processed for autoradiography. The labeled cells were assigned into two categories, one- and two-nucleolated cells, and the rate of ribosomal RNA (rRNA) synthesis was measured by counting the number of grains in nucleoli. The results obtained revealed that a two-nucleolated cell incorporated significantly much more radioactivity into its nucleoli than did a one-nucleolated partner for all the periods examined. Cells of these different nucleolar types, however, contained essentially the same amount of rDNA (DNA complementary to rRNA) as estimated by in situ hybridization with [125I]rRNA.Although it remains to be proved that the observed increase in incorporation represents the increased rate of rRNA synthesis in two-nucleolated cells, the present findings seem to be very interesting, since they might indicate that the activity of rRNA genes is in some way regulated or affected by their spatial relationship in a cell nucleus.  相似文献   

15.
Kloc M 《Developmental biology》2008,317(2):401-404
Loss-of-function technology has been one of the most popular knockout tools for the study of gene function in cell and developmental biology. This technology employs two basic approaches for elimination of the protein of interest. The morpholino antisense oligonucleotides approach relies on inhibiting translation of the given protein without degrading the cognate mRNA. The antisense deoxynucleotides and siRNA approach acts via removal of the mRNA template, which then prevents protein translation. In the latest approach, as well as in these genetic knockout approaches that eliminate or alter the level of mRNA transcribed from the gene of interest, the assumption is and always has been that the only relevant function of mRNA is to make a protein, and, thus, the effect of removing mRNA equals the effect of removing its protein function. However, the most recent studies of different biological systems point to completely novel and unexpected functions of the subpopulation of localized RNAs and suggest that, at least in some cases, the normal cell or embryo phenotype is in fact binary i.e. depends not only on the function of the protein but also on the autonomous function of its mRNA.  相似文献   

16.
We have previously shown that the synthesis of ribosomal proteins (r proteins) in E. coli cells is under stringent control (Dennis and Nomura, 1974). Since guanosine tetraphosphate (ppGpp) had been implicated in stringent control, we examied the effects of ppGpp on the in vitro synthesis of r proteins directed by DNA from transducing phage λfus3 and λrifd18. λfus3 carries genes for protein elongation factors EF-Tu and EF-G, and RNA polymerase subunit α, in addition to genes for approximately 27 r proteins. λrifd18 carries genes for EF-Tu, RNA polymerase subunits β and βI, and a set of rRNAs, in addition to genes for approximately five r proteins. We have shown that low concentrations of ppGpp (0.2–0.3 mM) specifically inhibit DNA-dependent r protein synthesis in this system, and that this inhibition takes place directly, rather than as a consequence of the inhibition of rRNA synthesis by ppGpp. In addition, we have also shown that ppGpp inhibits the synthesis of EF-G, EF-Tu, and RNA polymerase subunit α, as well as rRNAs.  相似文献   

17.
The effects of peroxisome proliferator activated receptors α and γ (PPAR-α and PPAR-γ) and retinoid X receptor (RXR) agonists upon synthesis and accumulation of lipids in murine C57B1 macrophages during inflammation induced by injection of zymosan and Escherichia coli lipopolysaccharide (LPS) have been studied. It is significant that intraperitoneal injection of zymosan (50 mg/kg) or LPS (0.1 mg/kg) in mice led to a dramatic increase of [14C]oleate incorporation into cholesteryl esters and triglycerides and [14C]acetate incorporation into cholesterol and fatty acids in peritoneal macrophages. Lipid synthesis reached its maximum rate 18–24 h after injection and was decreased 5–7 days later to control level after LPS injection or was still heightened after zymosan injection. In macrophages obtained in acute phase of inflammation (24 h), degradation of 125I-labeled native low density lipoprotein (NLDL) was 4-fold increased and degradation of 125I-labeled acetylated LDL (AcLDL) was 2–3-fold decreased. Addition of NLDL (50 μg/ml) or AcLDL (25 μg/ml) into the incubation medium of activated macrophages induced 9–14-and 1.25-fold increase of cholesteryl ester synthesis, respectively, compared with control. Addition of NLDL and AcLDL into the incubation medium completely inhibited cholesterol synthesis in control macrophages but had only slightly effect on cholesterol synthesis in activated macrophages. Injection of RXR, PPAR-α, or PPAR-γ agonists—9-cis-retinoic acid (5 mg/kg), bezafibrate (10 mg/kg), or rosiglitazone (10 mg/kg), respectively—30 min before zymosan or LPS injection led to significant decrease of lipid synthesis. Ten hour preincubation of activated in vivo macrophages with the abovementioned agonists (5 μM) decreased cholesteryl ester synthesis induced by NLDL and AcLDL addition into the cell cultivation medium. The data suggest that RXR, PPAR-α, or PPAR-γ agonists inhibited lipid synthesis and induction of cholesteryl ester synthesis in inflammatory macrophages caused by capture of native or modified LDL. Published in Russian in Biokhimiya, 2008, Vol. 73, No. 3, pp. 364–374.  相似文献   

18.
H. G. Dickinson  L. Andrews 《Planta》1977,134(3):229-240
In the prophase of both mega- and microsporogenesis, a sizeable proportion of the meiocyte cytoplasm becomes invested in double or multiple membrane-bround inclusions. This cytoplasm remains thus isolated from the rest of the cell until the completion of meiosis II in the female cells, or the young spore stage in those of the male. Significantly this encapsulation proceeds immediately the elimination of the major part of the ribosome population from the cytoplasm and, further, the electron microscope reveals that those ribosomes contained in these membranous inclusions remain unaffected by the lytic enzymes active elsewhere in the cytoplasm at this time. This encapsulated cytoplasm is proposed to fulfill two rôles; one, that it carries reserves necessary for postmeiotic development through from the diplophase to the haplophase environment and, two, that it permits the continuity of protein synthesis throughout meiosis I and II, a period when the major part of the protein synthetic apparatus is absent.Abbreviations MI membrane-bound inclusions - MMI multimembraned inclusions  相似文献   

19.
Ribosomal protein S4 nucleates assembly of the 30S ribosome 5′ and central domains, which is crucial for the survival of cells. Protein S4 changes the structure of its 16S rRNA binding site, passing through a non-native intermediate complex before forming native S4-rRNA contacts. Ensemble FRET was used to measure the thermodynamic stability of non-native and native S4 complexes in the presence of Mg2+ ions and other 5′-domain proteins. Equilibrium titrations of Cy3-labeled 5′-domain RNA with Cy5-labeled protein S4 showed that Mg2+ ions preferentially stabilize the native S4-rRNA complex. In contrast, ribosomal proteins S20 and S16 act by destabilizing the non-native S4-rRNA complex. The full cooperative switch to the native complex requires S4, S16, and S20 and is achieved to a lesser degree by S4 and S16. The resulting thermodynamic model for assembly of the 30S body illustrates how ribosomal proteins selectively bias the equilibrium between alternative rRNA conformations, increasing the cooperativity of rRNA folding beyond what can be achieved by Mg2+ ions alone.  相似文献   

20.
Tyrosol β-d-fructofuranoside and hydroxytyrosol β-d-fructofuranoside have been synthesized as new compounds in 27.6 and 19.5% respective yields through transfructosylation of tyrosol and hydroxytyrosol. Yeast β-galactosidase Lactozym 3000?L comprising invertase activity was used as catalyst. Besides the main monofructosides, an equimolar mixture of tyrosol β-d-fructofuranosyl-((2→1)-β-d-fructofuranoside and tyrosol β-d-fructofuranosyl-(2→6)-β-d-fructofuranoside was isolated as additional product fraction in 14.3% yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号