首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Properties of phosphoenolpyruvate carboxylase in guard cells dissected from frozen-dried Vicia faba L. leaflets were studied using quantitative histochemical techniques. Control experiments with palisade cells and whole leaflet extract proved that the single cell approach was valid. Most characteristics of enzyme activity in guard cells were identical to those in the leaflet extract. The activities were highly dependent on temperature, with maximum activity at 25 to 35 C. Half-maximum activity (with 1 millimolar phosphoenolpyruvate [PEP]) was observed at 0.1 millimolar Mg2+. Two-hundred millimolar NaCl inhibited the reaction by 50%. With frozen-dried leaflet extract, the apparent Km(PEP) was 0.15 millimolar at pH 7.7; with guard cells, the values were 1.49, 0.5 to 0.8, and 0.24 millimolar in three successive experiments. Additional experiments showed that apparent Km(PEP) of guard cell activity from plants within a single growth lot was reproducible and did not change during stomatal opening. Mixed extract experiments proved that soluble compounds were not responsible for the difference observed between leaflet and guard cell activities. The differences in apparent Km(PEP) of guard cell activity could not be unambiguously interpreted. The physiological implications of the properties of this enzyme in guard cells are discussed.  相似文献   

2.
Isozymes of pyruvate kinase (PK) have been isolated from developing castor bean endosperm. One isozyme, PKc, is localized in the cytosol, and the other, PKp, is in the plastid. Both isozymes need monovalent and divalent cations for activity, requirements which can be filled by K+ and Mg2+. Both isozymes are inhibited by citrate, pyruvate, and ATP. PKc has a much broader pH profile than PKp and is also more stable. Both have the same Km (0.05 millimolar) for PEP, but PKp has a 10-fold higher Km (0.3 millimolar) for ADP than PKc (0.03 millimolar). PKc also has a higher affinity for alternate nucleotide substrates than PKp. The two isozymes have different kinetic mechanisms. Both have an ordered sequential mechanism and bind phosphoenolpyruvate before ADP. However, the plastid isozyme releases ATP first, whereas pyruvate is the first product released from the cytosolic enzyme. The properties of the two isozymes are similar to those of their counterparts in green tissue.  相似文献   

3.
Phosphoenolpyruvate carboxylase (EC 4.1.1.31) was purified to homogeneity with about 29% recovery from immature pods of chickpea using ammonium sulfate fractionation, DEAE-cellulose chromatography, and gel filtration through Sephadex G-200. The purified enzyme with molecular weight of about 200,000 daltons was a tetramer of four identical subunits and exhibited maximum activity at pH 8.1. Mg2+ ions were specifically required for the enzyme activity. The enzyme showed typical hyperbolic kinetics with phosphoenolpyruvate with a Km of 0.74 millimolar, whereas sigmoidal response was observed with increasing concentrations of HCO3 with S0.5 value as 7.6 millimolar. The enzyme was activated by inorganic phosphate and phosphate esters like glucose-6-phosphate, α-glycerophosphate, 3-phosphoglyceric acid, and fructose-1,6-bisphosphate, and inhibited by nucleotide triphosphates, organic acids, and divalent cations Ca2+ and Mn2+. Oxaloacetate and malate inhibited the enzyme noncompetitively. Glucose-6-phosphate reversed the inhibitory effects of oxaloacetate and malate.  相似文献   

4.
ATPase in lipid body membranes of castor bean endosperm   总被引:1,自引:1,他引:0       下载免费PDF全文
Lipid body membranes purified from castor seed endosperm of dry seeds and 4 d old seedlings were found to have an ATPase activity associated with them. This was confirmed by equilibrium density centrifugation of the membranes using acid lipase as a marker enzyme. The specific activity ranged from 45 to 200 nanomoles per milligram protein per minute. The pH optimum was 9.0 but at pH 7.5 nearly 40% of the maximum activity was retained. The apparent Km for Mg-ATP was 0.5 millimolar. A divalent cation was required for activity and Mg2+ was the most effective. Other nucleoside triphosphates were also hydrolyzed but there was no hydrolysis of pyrophosphate or p-nitrophenylphosphate. The ATPase was not inhibited by oligomycin, vanadate, dicyclohexylcarbodiimide, or molybdate but was inhibited by sodium azide. Washing the membranes with increasing concentrations of NaCl removed up to 60% of the ATPase activity but none was removed by 3 millimolar ethylene-diaminetetraacetate.  相似文献   

5.
Properties of pyruvate kinase from soybean nodule cytosol   总被引:2,自引:2,他引:0  
The properties of pyruvate kinase from soybean (Glycine max L.) nodule cytosol were examined to determine what influence the N2 fixation process might have on this supposed key control enzyme. A crude enzyme preparation was prepared by chromatography of cytosol extract on a diethylaminoethyl-cellulose column. ATP and citrate at 5 mm concentrations inhibited pyruvate kinase 27 and 34%, respectively. Enzyme activation was hyperbolic with respect to both K+ and NH4+ concentrations. In the presence of physiological concentrations of K+ and high phosphoenolpyruvate (PEP) concentrations, NH4+ inhibited enzyme activity. Comparisons of kinetic parameters (Vmax and apparent Ka) for NH4+ and K+ with inhibition curves indicated that inhibition was very likely a result of competition of the ions for activation site(s) on the pyruvate kinase. In addition, apparent Ka (monovalent cation) and Km (PEP) were influenced by PEP and monovalent cation concentrations, respectively. This effect may reflect a fundamental difference between plant and animal pyruvate kinases. It is concluded that control of cytosol pyruvate kinase may be closely related to reactions involved in the assimilation of NH4+.  相似文献   

6.
Chloroplasts from CAM-Mesembryanthemum crystallinum can transport phosphoenolpyruvate (PEP) across the envelope. The initial velocities of PEP uptake in the dark at 4°C exhibited saturation kinetics with increasing external PEP concentration. PEP uptake had a Vmax of 6.46 (±0.05) micromoles per milligram chlorophyll per hour and an apparent Kmpep of 0.148 (±0.004) millimolar. The uptake was competitively inhibited by Pi (apparent Ki = 0.19 millimolar), by glycerate 3-phosphate (apparent Ki = 0.13 millimolar), and by dihydroxyacetone phosphate, but malate and pyruvate were without effect. The chloroplasts were able to synthesize PEP when presented with pyruvate. PEP synthesis was light dependent. The prolonged synthesis and export of PEP from the chloroplasts required the presence of Pi or glycerate 3-phosphate in the external medium. It is suggested that the transport of pyruvate and PEP across the chloroplasts envelope is required during the gluconeogenic conversion of carbon from malate to storage carbohydrate in the light.  相似文献   

7.
Fructokinase (Fraction III) of Pea Seeds   总被引:5,自引:4,他引:1       下载免费PDF全文
A second fructokinase (EC 2.7.1.4) was obtained from pea seed (Pisum sativum L. var. Progress No. 9) extracts. The enzyme, termed fructokinase (fraction III), was specific for fructose and had little activity with glucose. With fructose concentrations above 0.25 millimolar, there was strong substrate inhibition at the optimum pH (8.0) and also at pH 6.6. The apparent Km values at pH 8.0 for fructose and glucose were 0.06 millimolar and 0.14 millimolar, respectively. The apparent Km for Mg adenosine 5′-triphosphate (MgATP) was 0.06 millimolar and excess MgATP was inhibitory. Mg2+ was essential for activity but the enzyme was inhibited by excess Mg2+ or ATP. Mg adenosine 5′-pyrophosphate was also inhibitory. Activity was stimulated by the addition of monovalent cations: of those tested K+, Rb+, and NH4+ were the most effective. The possible role of fructokinase (fraction III) is discussed.  相似文献   

8.
Phosphoenolpyruvate carboxylase (PEPC) was purified 40-fold from soybean (Glycine max L. Merr.) nodules to a specific activity of 5.2 units per milligram per protein and an estimated purity of 28%. Native and subunit molecular masses were determined to be 440 and 100 kilodaltons, respectively, indicating that the enzyme is a homotetramer. The response of enzyme activity to phosphoenolpyruvate (PEP) concentration and to various effectors was influenced by assay pH and glycerol addition to the assay. At pH 7 in the absence of glycerol, the Km (PEP) was about twofold greater than at pH 7 in the presence of glycerol or at pH 8. At pH 7 or pH 8 the Km (MgPEP) was found to be significantly lower than the respective Km (PEP) values. Glucose-6-phosphate, fructose-6-phosphate, glucose-1-phosphate, and dihydroxyacetone phosphate activated PEPC at pH 7 in the absence of glycerol, but had no effect under the other assay conditions. Malate, aspartate, glutamate, citrate, and 2-oxoglutarate were potent inhibitors of PEPC at pH 7 in the absence of glycerol, but their effectiveness was decreased by raising the pH to 8 and/or by adding glycerol. In contrast, 3-phosphoglycerate and 2-phosphoglycerate were less effective inhibitors at pH 7 in the absence of glycerol than under the other assay conditions. Inorganic phosphate (up to 20 millimolar) was an activator at pH 7 in the absence of glycerol but an inhibitor under the other assay conditions. The possible significance of metabolite regulation of PEPC is discussed in relation to the proposed functions of this enzyme in legume nodule metabolism.  相似文献   

9.
The (K+,Mg2+)-ATPase was partially purified from a plasma membrane fraction from corn roots (WF9 × Mol7) and stored in liquid N2 without loss of activity. Specific activity was increased 4-fold over that of the plasma membrane fraction. ATPase activity resembled that of the plasma membrane fraction with certain alterations in cation sensitivity. The enzyme required a divalent cation for activity (Co2+ > Mg2+ > Mn2+ > Zn2+ > Ca2+) when assayed at 3 millimolar ATP and 3 millimolar divalent cation at pH 6.3. When assayed in the presence of 3 millimolar Mg2+, the enzyme was further activated by monovalent cations (K+, NH4+, Rb+ Na+, Cs+, Li+). The pH optima were 6.5 and 6.3 in the absence and presence of 50 millimolar KCl, respectively. The enzyme showed simple Michaelis-Menten kinetics for the substrate ATP-Mg, with a Km of 1.3 millimolar in the absence and 0.7 millimolar in the presence of 50 millimolar KCl. Stimulation by K+ approached simple Michaelis-Menten kinetics, with a Km of approximately 4 millimolar KCl. ATPase activity was inhibited by sodium orthovanadate. Half-maximal inhibition was at 150 and 35 micromolar in the absence and presence of 50 millimolar KCl. The enzyme required the substrate ATP. The rate of hydrolysis of other substrates, except UDP, IDP, and GDP, was less than 20% of ATP hydrolysis. Nucleoside diphosphatase activity was less than 30% of ATPase activity, was not inhibited by vanadate, was not stimulated by K+, and preferred Mn2+ to Mg2+. The results demonstrate that the (K+,Mg2+)-ATPase can be clearly distinguished from nonspecific phosphohydrolase and nucleoside diphosphatase activities of plasma membrane fractions prepared from corn roots.  相似文献   

10.
F. hepatica pyruvate kinase and phosphoenolpyruvate (PEP) carboxykinase were found to have properties of regulatory enzymes in the dissimilation of PEP and the control of metabolic flow. Mn2+ and K+ were required for pyruvate kinase activity. In the presence of fructose-1, 6-diphosphate (FDP), Mg2+ could substitute for Mn2+. FDP caused a 4-fold increase in the Mn2+ activated pyruvate kinase activity. This was accompanied by a 12-fold decrease in apparent Km(PEP) and a 3-fold decrease in apparent Km (ADP). ATP markedly inhibited F. hepatica pyruvate kinase, but this inhibition was relieved by FDP. Estimates of metabolic levels indicated that the pyruvate kinase is saturated with PEP and ADP in vivo, but will be highly sensitive to fluctuations in the physiological concentrations of FDP and ATP. NADH doubled the activity of the PEP carboxykinase reaction and decreased the apparent Km (PEP) for this enzyme 3-fold. While the maximal activity of the PEP carboxykinase reaction was substantially higher than the pyruvate kinase reaction, the steady state concentration of PEP suggests that the PEP carboxykinase will not be saturated with this substrate.  相似文献   

11.
Two enzymes capable of hydrolyzing fructose-1,6-bisphosphate (FBP) have been isolated from the foliose lichen Peltigera rufescens (Weis) Mudd. These enzymes can be separated using Sephadex G-100 and DEAE Sephacel chromatography. One enzyme has a pH optimum of 6.5, and a substrate affinity of 228 micromolar FBP. This enzyme does not require MgCl2 for activity, and is inhibited by AMP. The second enzyme has a pH optimum of 9.0, with no activity below pH 7.5. This enzyme responds sigmoidally to Mg2+, with half-saturation concentration of 2.0 millimolar MgCl2, and demonstrates hyperbolic kinetics for FBP (Km = 39 micromolar). This enzyme is activated by 20 millimolar dithiothreitol, is inhibited by AMP, but is not affected by fructose-2-6-bisphosphate. It is hypothesized that the latter enzyme is involved in the photosynthetic process, while the former enzyme is a nonspecific acid phosphatase.  相似文献   

12.
Malate inhibition of phosphoenolpyruvate carboxylase from crassula   总被引:6,自引:5,他引:1       下载免费PDF全文
Phosphoenolpyruvate carboxylase partially purified from leaves of Crassula and rendered insensitive to malate by storage without adjuvants can be altered to the form sensitive to malate inhibition by brief, 5-minute preincubation with 5 millimolar malate. The induction of malate sensitivity is reversible by lowering the malate2− concentration. Of the reaction components only HCO3 increases the sensitivity to malate in subsequent assay. Phosphoenolpyruvate (PEP), which itself tends to lower sensitivity to subsequent malate inhibition, also reduces the effect of malate in the assay, as does glucose-6-phosphate. PEP isotherms showed that the insensitive or unpreincubated enzyme, responds to the presence of 5 millimolar malate during assay with a 3-fold increase in Km, but no effect on Vmax. Enzyme preincubated with malate shows the same effect of malate on Km, but in addition Vmax is inhibited 72%. It thus appears that both sensitive and insensitive forms of PEP carboxylase are subject to K-type inhibition by malate, but only the sensitive form also shows V-type inhibition. Preincubation with malate at different pH values showed that at pH 6.15, the inhibition by malate in subsequent assay at pH 7 was much lower than at pH 7 or 8. When the reaction is prerun for 30 minutes with increasing concentrations of PEP, subsequent assay with malate shows progressively less inhibition due to malate. When 0.3 millimolar PEP either alone or with 0.1 millimolar ATP and 0.3 millimolar NaF is present during preincubation, the effect of malate in a following assay is to activate the reaction. These results may indicate an effect of phosphorylation of the enzyme on sensitivity to malate.  相似文献   

13.
Hexokinase II of Pea Seeds   总被引:4,自引:4,他引:0       下载免费PDF全文
A second hexokinase (EC 2.7.1.1) was obtained from pea seed (Pisum sativum L. var. Progress No. 9) extracts. The enzyme, termed hexokinase II, had a high affinity (Km, 48 micromolar) for glucose and a relatively low affinity (Km, 10 millimolar) for fructose. The Km for MgATP was 86 micromolar. Mg2+ was required for activity, but excess Mg2+ was inhibitory. MgADP inhibited hexokinase II. The addition of salts of monovalent cations increased hexokinase II activity. Al3+ was a strong inhibitor of the enzyme at pH 6.6 but not at the optimum pH (8.2). Citrate and 3-phosphoglycerate activated pea seed hexokinase II at pH 6.6, probably by coordinating with aluminum present as a contaminant in commercial ATP. The properties of hexokinase II are compared with those of the other three hexose kinases obtained from pea seed extracts. The possible role of these enzymes in plant carbohydrate metabolism is discussed.  相似文献   

14.
Behm C. A. and Bryant C. 1982. Phosphoenolpyruvate carboxykinase from Fasciola hepatica. International Journal for Parasitology12: 271–278. The kinetic properties of a partially purified preparation of phosphoenolpyruvate carboxykinase (PEPCK) from F. hepatica were examined. The pH optimum for the carboxylation reaction is 5.8–6.2. The enzyme is more active with Mn2+ than Mg2+ and the Mn2+ saturation curve was sigmoid. Apparent Km values for the substrates GDP, IDP, PEP and HCO3? were determined and found to be in the same range as those reported for other helminths except that the enzyme is less sensitive to low PEP concentrations. GTP and ATP at 0.5 and 1.0 mM inhibit the enzyme; the GTP inhibition was greater in the presence of Mg2+ than Mn2+ and was competitive with GDP. It was concluded that the activity of PEPCK from F. hepatica is controlled by the concentration of reactants and the ambient pH, that the accumulation of GTP is a sensitive mechanism for inhibiting the carboxylation reaction and that PEPCK activity in the cytosol is likely to be favoured over that of pyruvate kinase except when pH is high and PEP concentration low.  相似文献   

15.
A dihydroxyacetone phosphate (DHAP) reductase has been isolated in 50% yield from Dunaliella tertiolecta by rapid chromatography on diethylaminoethyl cellulose. The activity was located in the chloroplasts. The enzyme was cold labile, but if stored with 2 molar glycerol, most of the activity was restored at 30°C after 20 minutes. The spinach (Spinacia oleracea L.) reductase isoforms were not activated by heat treatment. Whereas the spinach chloroplast DHAP reductase isoform was stimulated by leaf thioredoxin, the enzyme from Dunaliella was stimulated by reduced Escherichia coli thioredoxin. The reductase from Dunaliella was insensitive to surfactants, whereas the higher plant reductases were completely inhibited by traces of detergents. The partially purified, cold-inactivated reductase from Dunaliella was reactivated and stimulated by 25 millimolar Mg2+ or by 250 millimolar salts, such as NaCl or KCl, which inhibited the spinach chloroplast enzyme. Phosphate at 3 to 10 millimolar severely inhibited the algal enzyme, whereas phosphate stimulated the isoform in spinach chloroplasts. Phosphate inhibition of the algal reductase was partially reversed by the addition of NaCl or MgCl2 and totally by both. In the presence of 10 millimolar phosphate, 25 millimolar MgCl2, and 100 millimolar NaCl, reduced thioredoxin causes a further twofold stimulation of the algal enzyme. The Dunaliella reductase utilized either NADH or NADPH with the same pH maximum at about 7.0. The apparent Km (NADH) was 74 micromolar and Km (NADPH) was 81 micromolar. Apparent Vmax was 1100 μmoles DHAP reduced per hour per milligram chlorophyll for NADH, but due to NADH inhibition highest measured values were 350 to 400. The DHAP reductase from spinach chloroplasts exhibited little activity with NADPH above pH 7.0. Thus, the spinach chloroplast enzyme appears to use NADH in vivo, whereas the chloroplast enzyme from Dunaliella or the cytosolic isozyme from spinach may utilize either nucleotide.  相似文献   

16.
Oligomeric structure and kinetic properties of NADP-malic enzyme, purified from sugarcane (Saccharam officinarum L.) leaves, were determined at either pH 7.0 and 8.0. Size exclusion chromatography showed the existence of an equilibrium between the dimeric and the tetrameric forms. At pH 7.0 the enzyme was found preferentially as a 125 kilodalton homodimer, whereas the tetramer was the major form found at pH 8.0. Although free forms of l-malate, NADP+, and Mg2+ were determined as the true substrates and cofactors for the enzyme at the two conditions, the kinetic properties of the malic enzyme were quite different depending on pH. Higher affinity for l-malate (Km = 58 micromolar), but also inhibition by high substrate (Ki = 4.95 millimolar) were observed at pH 7.0. l-Malate saturation isotherms at pH 8.0 followed hyperbolic kinetics (Km = 120 micromolar). At both pH conditions, activity response to NADP+ exhibited Michaelis-Menten behavior with Km values of 7.1 and 4.6 micromolar at pH 7.0 and 8.0, respectively. Negative cooperativity detected in the binding of Mg2+ suggested the presence of at least two Mg2+ - binding sites with different affinity. The Ka values for Mg2+ obtained at pH 7.0 (9 and 750 micromolar) were significantly higher than those calculated at pH 8.0 (1 and 84 micromolar). The results suggest that changes in pH and Mg2+ levels could be important for the physiological regulation of NADP-malic enzyme.  相似文献   

17.
In Acetobacter aceti growing on pyruvate as the only source of carbon and energy, oxaloacetate (OAA) is produced by a phosphoenolpyruvate (PEP) carboxylase (EC 4.1.1.31). The enzyme was purified 122-fold and a molecular weight of about 380,000 was estimated by gel filtration.The optimum pH was 7.5 and the K m values for PEP and NaHCO3 were 0.49 mM and about 3 mM, respectively. The enzyme needed a divalent cation; the K m for Mn2+, Co2+ and Mg2+ were 0.12, 0.26 and 0.77 mM, respectively. Maximal activity was only obtained with Mg2+. Mn2+ and Co2+ became inhibitory at high concentrations.The activity was inhibited by succinate and, to a lesser extent, by fumarate, citrate, -ketoglutarate, aspartate and glutamate.As compared with the corresponding enzyme from A. xylinum, the PEP carboxylase of A. aceti showed the following differences: a) It had an absolute requirement for acetyl CoA (K a 0.18 mM) or propionyl CoA (K a 0.2 mM). b) It was not affected by ADP. c) It was sensitive to thiol blocking agents.Abbreviations PEP phosphoenolpyruvate - OAA oxaloacetate - MW molecular weight - TEMG buffer 50 mM Tris-HCl, pH 7.5, 1 mM EDTA, 5 mM MgCl2, 1 mM glutathione - HEPES N-2-hydroxyethylpiperazine-N-ethanesulfonic acid  相似文献   

18.
In this paper, specific PHO13 alkaline phosphatase from Saccharomyces cerevisiae was demonstrated to possess phosphoprotein phosphatase activity on the phosphoseryl proteins histone II-A and casein. The enzyme is a monomeric protein with molecular mass of 60 kDa and hydrolyzes p-nitrophenyl phosphate with maximal activity at pH 8.2 with strong dependence on Mg2+ ions and an apparent Km of 3.6×10−5 M. No other substrates tested except phosphorylated histone II-A and casein were hydrolyzed at any significant rate. These data suggest that the physiological role of the p-nitrophenyl phosphate-specific phosphatase may involve participation in reversible protein phosphorylation.  相似文献   

19.
A H+-translocating inorganic pyrophosphatase (H+-PPase) was associated with low density membranes enriched in tonoplast vesicles of oat roots. The H+-PPase catalyzed the electrogenic transport of H+ into the vesicles, generating a pH gradient, inside acid (quinacrine fluorescence quenching), and a membrane potential, inside positive (Oxonol V fluorescence quenching). Transport activity was dependent on cations with a selectivity sequence of Rb+ = K+ > Cs+; but it was inhibited by Na+ or Li+. Maximum rates of transport required at least 20 millimolar K+ and the Km for this ion was 4 millimolar. Fluoride inhibited both ΔpH formation and K+-dependent PPase activity with an I50 of 1 to 2 millimolar. Inhibitors of the anion-sensitive, tonoplast-type H+-ATPase (e.g. a disulfonic stilbene or NO3) had no effect on the PPase activity. Vanadate and azide were also ineffective. H+-pumping PPase was inhibited by 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole and N-ethylmaleimide, but its sensitivity to N,N′-dicyclohexylcarbodiimide was variable. The sensitivity to ions and inhibitors suggests that the tonoplast H+-PPase and the H+-ATPase are distinct activities and this was confirmed when they were physically separated after Triton X-100 solubilization and Sepharose CL-6B chromatography. H+ pumping activity was strongly affected by Mg2+ and pyrophosphate (PPi) concentrations. At 5 millimolar Mg2+, H+ pumping showed a KmaPP for PPi of 15 micromolar. The rate of H+ pumping at 60 micromolar PPi was often equivalent to that at 1.5 millimolar ATP. The results suggest PPi hydrolysis could provide another source of a proton motive force used for solute transport and other energy-requiring processes across the tonoplast and other membranes with H+-PPase.  相似文献   

20.
Xylem extracts of poplar tree contained glyoxylate reductase specific for NADPH. By isoelectric focusing in the pH ranges 3.5 to 10 or 4 to 6, the enzyme exhibited a single peak of activity at pH 5.4. The enzyme showed essentially no activity toward hydroxypyruvate, pyruvate, or NADH. The reaction was optimal at pH 6.0 in phosphate buffer and the activity profile exhibited a sharp and narrow pH profile with half-maximal velocities at about pH 7.0. The Km of the enzyme for glyoxylate was 0.11 millimolar. The xylem tissue of poplar tree exhibited high levels of enzyme activity (30 micromoles per gram dry weight per hour) even in the wintering stage and a slight change in activity occurred in spring and fall at the time when metabolism transition occurs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号