首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The structural characteristics of several dithiocarbamates (DTCs) [N-p-methylbenzyl-D-glucamine dithiocarbamate (MBGD), N-benzyl-D-glucamine dithiocarbamate (BGD), N-p-hydroxymethylbenzyl-D-glucamine dithiocarbamate (HBGD) and N-p-carboxybenzyl-D-glucamine dithiocarbamate (CBGD)] that induce in vivo mobilization of cadmium (Cd) were examined in mice. The renal and hepatic contents of Cd were lower in the treatments with Cd-DTC combinations than in that with Cd alone. Probenecid pretreatment decreased the renal content of Cd in Cd-MBGD and Cd-BGD treated mice, but it increased the renal content of Cd and decreased the urinary excretion of the metal in Cd-HBGD and Cd-CBGD treated mice. Furthermore, although ureter-ligation did not affect the renal content of Cd in Cd-MBGD and Cd-BGD treated mice, it increased the renal content of Cd in Cd-HBGD and Cd-CBGD treated mice. These findings suggest that Cd-MBGD and Cd-BGD complexes are taken up into the tubular cells by an organic anion transport system through the basolateral membrane, whereas Cd-HBGD and Cd-CBGD complexes are secreted to the tubular lumen by an organic anion transport system through the brush border membrane. The results of probenecid pretreatment also led us to assume that the hepatic transport of these four Cd-DTC complexes is regulated, at least in part, by a probenecid-sensitive organic anion transport system.  相似文献   

2.
3.
目的研究建立小鼠实验性腹膜炎模型,探讨建立一种简便、易行、效果稳定、便于获取实验数据的实验方法。方法小鼠腹腔分别注射2%冰醋酸生理盐水溶液0.1 ml(高浓度组)、1%冰醋酸生理盐水溶液0.2 ml(低浓度组),观察小鼠一般情况及腹腔解剖情况,进行血细菌培养;肝、回肠组织病理学观察;比色法测定肝、回肠LDH活性和MDA含量。结果注射不同浓度和剂量的冰醋酸,均表现出腹膜炎临床征象,高浓度组的小鼠模型病程快、死亡率高,血细菌培养有大量G-杆菌;低浓度组的小鼠模型,经21 d可自愈,无死亡。组织病理学观察,肝和回肠有病理改变。结论高浓度组的小鼠腹膜炎模型可作为急性腹膜炎的实验研究模型,低浓度组的小鼠腹膜炎模型,可作为研究实验性腹膜炎自愈过程机体抗损伤机制的实验模型。  相似文献   

4.
5.
We prepared 2-hydroxypalmitoyl-sphinganine (dihydroceramide) labeled with a stable isotope by culturing acetic acid bacteria with 13C-labeled acetic acid. The GC/MS spectrum of the trimethylsilyl derivative of 13C-labeled dihydroceramide gave molecular ions with an increased mass of 12–17 Da over that of nonlabeled dihydroceramide. The fragment ions derived from both sphinganine base and 2-hydroxypalmitate were confirmed to be labeled with the stable isotope in the spectrum. Therefore, 13C-labeled dihydroceramide can be an extremely useful tool for analyzing sphingolipid metabolism. The purified [13C]dihydroceramide was administered orally to mice for 12 days, and the total sphingoid base fractions in various tissues were analyzed by GC/MS. The spectrum patterns specific to 13C-labeled sphingoids were detected in the tissues tested. Sphinganine pools in skin epidermis, liver, skeletal muscle, and synapse membrane in brain were replaced by [13C]sphinganine at about 4.5, 4.0, 1.0, and 0.3%, respectively. Moreover, about 1.0% of the sphingosine pool in the liver was replaced by [13C]sphingosine, implying that exogenous dihydroceramide can be converted to sphingosine. These results clearly indicate that ingested dihydroceramide can be incorporated into various tissues, including brain, and metabolized to other sphingolipids.  相似文献   

6.
Role of salicylic acid in resistance to cadmium stress in plants   总被引:4,自引:0,他引:4  

Key message

We review and introduce the importance of salicylic acid in plants under cadmium stress, and provide insights into potential regulatory mechanisms for alleviating cadmium toxicity.

Abstract

Cadmium (Cd) is a widespread and potentially toxic environmental pollutant, originating mainly from rapid industrial processes, the application of fertilizers, manures and sewage sludge, and urban activities. It is easily taken up by plants, resulting in obvious toxicity symptoms, including growth retardation, leaf chlorosis, leaf and root necrosis, altered structures and ultrastructures, inhibition of photosynthesis, and cell death. Therefore, alleviating Cd toxicity in plants is a major aim of plant research. Salicylic acid (SA) is a ubiquitous plant phenolic compound that has been used in many plant species to alleviate Cd toxicity by regulating plant growth, reducing Cd uptake and distribution in plants, protecting membrane integrity and stability, scavenging reactive oxygen species and enhancing antioxidant defense system, improving photosynthetic capacity. Furthermore, SA functions as a signaling molecule involved in the expression of several important genes. Significant amounts of research have focused on understanding SA functions and signaling in plants under Cd stress, but several questions still remain unanswered. In this article, the influence of SA on Cd-induced stress in plants and the potential regulation mechanism for alleviating Cd toxicity are reviewed.
  相似文献   

7.
Transglucosylation from sucrose to acetic acid by sucrose phosphorylase (EC 2.4.1.7) was studied. 1-O-Acetyl-alpha-D-glucopyranose was isolated as the main product of the enzyme reaction. We also compared the pH-dependence of transglycosylation catalyzed by sucrose phosphorylase toward carboxyl and hydroxyl groups. With hydroquinone as an acceptor molecule, the transfer ratio of glucose residue was higher at neutral pH. This pH-activity profile was similar to that of the phosphorolysis of sucrose by sucrose phosphorylase, but with acetic acid as an acceptor molecule, the transfer ratio of glucose residue was higher at low pH. These findings suggest that the undissociated carboxyl group is essential to the acceptor molecule for the transglycosylation reaction of sucrose phosphorylase. In a sensory test, the sour taste of acetic acid was markedly reduced by glucosylation. The threshold value of the sour taste of acetic acid glucosides was approximately 100 times greater than that of acetic acid.  相似文献   

8.
Summary The formation of acetic acid by the thermophilic nonsporeforming homoacetogenic bacterium Acetogenium kivui was studied under various conditions. In pH-controlled batch fermentation at pH 6.4 this bacterium was able to produce up to 625 mM of acetic acid from glucose within 50–60 h. The value of max obtained was about 0.17 h-1, the yield was about 2.55 mol of acetic acid per mol of glucose utilized. In continuous fermentation both substrate concentration and dilution rate (D) influenced the yield of acetate and the stationary concentration: a glucose concentration of 67 mM at D=0.09 h-1 resulted in 2.82 mol acetate/mol glucose and 190 mM acetate at a production rate of 17.1 mM/1 h. When the dilution rate was increased the production rate reached a maximal value of 43.2 mM/1 h at D=0.32 h-1. At a glucose concentration of 195 mM the dependence of yield upon dilution rate followed a similar pattern and an acetate concentration of 420 mM could be obtained. Enzymatic studies indicate that in A. kivui pyruvate ferredoxin-oxidoreductase and acetate kinase are inhibited at acetate concentrations higher than 800 mM. Based on these results a fed-batch fermentation was developed, which allowed to produce more than 700 mM acetic acid within 40–50 h.Dedicated to Prof. Dr. H. J. Rehm on the occasion of his 60th birthday  相似文献   

9.
10.
Acetic and succinate acids KoA acyl derivatives interacting with formate were displayed to produce alpha-ketoacids--pyruvate and alpha-ketoglutarate. These acids also interact with formate and make pyruvic and malate acids, while alpha-ketoglutarate, evidently, tricarboxy acids. Interaction of formate with acetic and succinate acids inspite of occurring out of the tricarbone cycle increases the latter metabolic functions.  相似文献   

11.
12.
Zheng  Yu  Zhang  Renkuan  Yin  Haisong  Bai  Xiaolei  Chang  Yangang  Xia  Menglei  Wang  Min 《Applied microbiology and biotechnology》2017,101(18):7007-7016
Applied Microbiology and Biotechnology - Initial acetic acid can improve the ethanol oxidation rate of acetic acid bacteria for acetic acid fermentation. In this work, Acetobacter pasteurianus was...  相似文献   

13.
The examination of some of the species involved in the in vivo processes in which dithiocarbamates mobilize cadmium from its intracellular deposits indicates that several competing reactions occur. Rates of hydrolytic decomposition of a series of dithiocarbamates capable of mobilizing cadmium in vivo have been determined, and the solubility behavior and nuclear magnetic resonance (NMR) spectra of their cadmium complexes have been examined. Some of the dithiocarbamates most effective in this mobilization process are shown to undergo slow conversion to oxazolidine-2-thiones in the presence of cadmium. All of the cadmium complexes involved in the mobilization process are shown to undergo rapid ligand exchange. While dissociative mechanisms based on the turnover of metallothionein are inconsistent with the experimental data, at least two associative mechanisms are possible. These involve attack on the metallothionein by the dithiocarbamate itself or by a compound derived from it by known metabolic processes.  相似文献   

14.
15.
16.
The development of mass spectrometry-based techniques is opening new insights into the understanding of arachidonic acid (AA) metabolism. AA incorporation, remodeling and release are collectively controlled by acyltransferases, phospholipases and transacylases that exquisitely regulate the distribution of AA between the different glycerophospholipid species and its mobilization during cellular stimulation. Traditionally, studies involving phospholipid AA metabolism were conducted by using radioactive precursors and scintillation counting from thin layer chromatography separations that provided only information about lipid classes. Today, the input of lipidomic approaches offers the possibility of characterizing and quantifying specific molecular species with great accuracy and within a biological context associated to protein and/or gene expression in a temporal frame. This review summarizes recent results applying mass spectrometry-based lipidomic approaches to the identification of AA-containing glycerophospholipids, phospholipid AA remodeling and synthesis of oxygenated metabolites.  相似文献   

17.
In this study, we compared the growth properties and molecular characteristics of pyrroloquinoline quinone (PQQ)-dependent alcohol dehydrogenase (ADH) among highly acetic acid-resistant strains of acetic acid bacteria. Ga. europaeus exhibited the highest resistance to acetic acid (10%), whereas Ga. intermedius and Acetobacter pasteurianus resisted up to 6% of acetic acid. In media with different concentrations of acetic acid, the maximal acetic acid production rate of Ga. europaeus slowly increased, but specific growth rates decreased concomitant with increased concentration of acetic acid in medium. The lag phase of A. pasteurianus was twice and four times longer in comparison to the lag phases of Ga. europaeus and Ga. intermedius, respectively. PQQ-dependent ADH activity was twice as high in Ga. europaeus and Ga. intermedius as in A. pasteurinus. The purified enzymes showed almost the same specific activity to each other, but in the presence of acetic acid, the enzyme activity decreased faster in A. pasteurianus and Ga. intermedius than in Ga. europaeus. These results suggest that high ADH activity in the Ga. europaeus cells and high acetic acid stability of the purified enzyme represent two of the unique features that enable this species to grow and stay metabolically active at extremely high concentrations of acetic acid.  相似文献   

18.
19.
The development of mass spectrometry-based techniques is opening new insights into the understanding of arachidonic acid (AA) metabolism. AA incorporation, remodeling and release are collectively controlled by acyltransferases, phospholipases and transacylases that exquisitely regulate the distribution of AA between the different glycerophospholipid species and its mobilization during cellular stimulation. Traditionally, studies involving phospholipid AA metabolism were conducted by using radioactive precursors and scintillation counting from thin layer chromatography separations that provided only information about lipid classes. Today, the input of lipidomic approaches offers the possibility of characterizing and quantifying specific molecular species with great accuracy and within a biological context associated to protein and/or gene expression in a temporal frame. This review summarizes recent results applying mass spectrometry-based lipidomic approaches to the identification of AA-containing glycerophospholipids, phospholipid AA remodeling and synthesis of oxygenated metabolites.  相似文献   

20.
Inhibition of free fatty acid mobilization by colchicine   总被引:1,自引:0,他引:1  
Segments of epididymal adipose tissue from normal male rats were incubated with micromolar concentrations of colchicine for different periods of time up to 4 hr, and the mobilization of free fatty acids (FFA) was measured during a subsequent reincubation. Although pretreatment with colchicine did not alter basal unstimulated FFA release, mobilization of FFA in the presence of epinephrine or theophylline was reduced. However, neither lipolysis, as judged by glycerol production, nor cyclic AMP accumulation was impaired under the same conditions. To assess the possibility that colchicine might limit production of fatty acids by accelerating the entry and metabolism of glucose into adipocytes, the metabolism of glucose by adipose tissue was studied. Pretreatment with colchicine did not affect uptake of glucose nor its oxidation to CO(2), although colchicine-treated tissues did have slightly more [(14)C]glucose incorporated into the glyceride moiety of triglyceride. When adipose tissues pretreated with colchicine were incubated in an albumin-free medium, no reduction in FFA production by colchicine was observed. Because no FFA release occurs in albumin-free media, this experiment suggests that colchicine-induced inhibition of FFA mobilization results from impaired extrusion of FFA from adipose cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号