首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
Salmonella enterica serovar Heidelberg is among the most detected serovars in swine and poultry, ranks among the top five serotypes associated with human salmonellosis and is disproportionately associated with invasive infections and mortality in humans. Salmonella are known to carry plasmids associated with antimicrobial resistance and virulence. To identify plasmid-associated genes in multidrug resistant S. enterica serovar Heidelberg, antimicrobial resistance plasmids from five isolates were sequenced using the 454 LifeSciences pyrosequencing technology. Four of the isolates contained incompatibility group (Inc) A/C multidrug resistance plasmids harboring at least eight antimicrobial resistance genes. Each of these strains also carried a second resistance plasmid including two IncFIB, an IncHI2 and a plasmid lacking an identified Inc group. The fifth isolate contained an IncI1 plasmid, encoding resistance to gentamicin, streptomycin and sulfonamides. Some of the IncA/C plasmids lacked the full concert of transfer genes and yet were able to be conjugally transferred, likely due to the transfer genes carried on the companion plasmids in the strains. Several non-IncA/C resistance plasmids also carried putative virulence genes. When the sequences were compared to previously sequenced plasmids, it was found that while all plasmids demonstrated some similarity to other plasmids, they were unique, often due to differences in mobile genetic elements in the plasmids. Our study suggests that Salmonella Heidelberg isolates harbor plasmids that co-select for antimicrobial resistance and virulence, along with genes that can mediate the transfer of plasmids within and among other bacterial isolates. Prevalence of such plasmids can complicate efforts to control the spread of S. enterica serovar Heidelberg in food animal and human populations.  相似文献   

2.
Two hundred and twenty-eight isolates of Vibrio anguillarum serovar O1 (125 isolates) and serovar O2 (103 isolates) have been characterized with regard to plasmid contents, biochemical properties, and in vitro hemagglutination and hydrophobic properties. Among 74 V. anguillarum isolates from diseased fish, 63 carried only a 67-kb plasmid (pJM1), 9 carried an additional 98-kb plasmid, and 1 isolate carried only the 98-kb plasmid. Only one isolate was without plasmids. In V. anguillarum serovar O1 from nondiseased fish (mucus and gills), plasmids of the same sizes were present in 29 isolates (58%), whereas 21 isolates (42%) were plasmid free. Based on hemagglutination and biochemical properties, V. anguillarum serovar O1 isolates were divided into eight biovars. The plasmid-carrying strains (102 isolates) all fell within biovars 1 and 2, whereas the 23 strains of biovars 3 to 8 were without plasmids. It was tentatively concluded there are two populations of V. anguillarum serovar O1. One population contains plasmid(s), is hemagglutination negative and trehalose negative, and does not form pellicles in broth cultures, whereas the other population is plasmid free and has the opposite characteristics. The former group is the one related to disease in fish. All 20 V. anguillarum serovar O2 isolates from the environment were without plasmids, whereas 54 (65%) of the isolates from fish (trout and cod) carried plasmids. The biochemical diversity within serovar O2 was pronounced; 13 different biovars were demonstrated. No correlation between the presence of plasmids and biochemical properties was observed.  相似文献   

3.
Two hundred and twenty-eight isolates of Vibrio anguillarum serovar O1 (125 isolates) and serovar O2 (103 isolates) have been characterized with regard to plasmid contents, biochemical properties, and in vitro hemagglutination and hydrophobic properties. Among 74 V. anguillarum isolates from diseased fish, 63 carried only a 67-kb plasmid (pJM1), 9 carried an additional 98-kb plasmid, and 1 isolate carried only the 98-kb plasmid. Only one isolate was without plasmids. In V. anguillarum serovar O1 from nondiseased fish (mucus and gills), plasmids of the same sizes were present in 29 isolates (58%), whereas 21 isolates (42%) were plasmid free. Based on hemagglutination and biochemical properties, V. anguillarum serovar O1 isolates were divided into eight biovars. The plasmid-carrying strains (102 isolates) all fell within biovars 1 and 2, whereas the 23 strains of biovars 3 to 8 were without plasmids. It was tentatively concluded there are two populations of V. anguillarum serovar O1. One population contains plasmid(s), is hemagglutination negative and trehalose negative, and does not form pellicles in broth cultures, whereas the other population is plasmid free and has the opposite characteristics. The former group is the one related to disease in fish. All 20 V. anguillarum serovar O2 isolates from the environment were without plasmids, whereas 54 (65%) of the isolates from fish (trout and cod) carried plasmids. The biochemical diversity within serovar O2 was pronounced; 13 different biovars were demonstrated. No correlation between the presence of plasmids and biochemical properties was observed.  相似文献   

4.
We are evaluating naturally occurring isolates of Bacillus pumilus for use as microbial hay preservatives. Seven isolates of B. pumilus from hay contained a 42-kb cryptic plasmid (pMGD296). We wished to determine whether pMGD296 could be used as a molecular marker to follow populations of these isolates in hay over time. Southern blots and colony blots of 69 isolates of B. pumilus and other Bacillus spp. were probed with 32P-labeled pMGD296. Twenty-nine probe-positive isolates were identified; of these, 28 contained a plasmid with a restriction profile identical to that of pMGD296. One isolate from untreated hay contained a 40-kb plasmid (pMGD150) that was homologous to pMGD296 but had a different restriction fragment pattern. Regions of homology between the two plasmids were identified by Southern blotting, and a 1.9-kb HindIII-PstI fragment of pMGD296 lacking strong homology to pMGD150 was cloned in pUC18. The cloned fragment hybridized only with isolates containing pMGD296 and was used to estimate populations of these isolates in treated and untreated hay.  相似文献   

5.
The plasmid distribution of several clonal isolates of the unicellular, diazotrophic, cyanobacterium Cyanothece sp. has been analyzed. The Cyanothece isolates contain three to four plasmids ranging in size from 4.8 kb to 40 kb. The plasmid profiles of three Cyanothece strains (BH63, BH68, BH93) indicated that strains BH68 and BH93 were closely related and that strain BH63 may be more distantly related. A small 4.8-kb plasmid (pSE480), from the clonal isolate Cyanothece sp. strain BH68F, has been subcloned and restriction mapped. Ten restriction sites have been mapped, five of which are unique and suitable for further subcloning. Southern hybridization revealed that this plasmid was present in two out of five clonal isolates of strain BH68 and in one isolate of strain BH93. A 10-kb plasmid from strain BH68F (pSE1000) was found in all of the BH68 isolates and was absent in the BH93 isolate, Cyanothece sp. strain BH93A. No notable physiological changes were observed in the absence of either the 4.8-kb or 10-kb plasmids. Therefore, these plasmids remain cryptic. Further analysis of these plasmids may provide insight into the function of these plasmids and will allow the construction of shuttle vectors for gene transfer experiments.  相似文献   

6.
Rhizosphere and endophytic Azospirillum brasilense isolates recovered from sugarcane plants and the reference strains Sp7 and Cd were analyzed for plasmid occurrence. All of the 26 A. brasilense isolates analyzed harbored from five to eight replicons. Several strains contained small plasmids from 45 to 70 kb, but all of the isolates harbored other plasmids ranging from 100 to 290 kb and two megareplicons of approximately 1700 and over 1800 kb. Most of the strains contained a replicon with a size of either 570 or 630 kb, and another large 910- or 980-kb replicon. The 1700-kb megareplicon and some others around 600 kb strongly hybridized to 16S rDNA genes, while the 910- or 980-kb replicons hybridized only slightly. This suggests that the A. brasilense genome is composed of multiple minichromosomes instead of a single circular chromosome. The apparent genome complexity of A. brasilense deserves to eventually be resolved by complete genome sequencing.  相似文献   

7.
《Genomics》2022,114(3):110368
Plasmid-encoded antibiotic resistance encompasses many classes of currently used antibiotics. In globally distributed Escherichia coli lineages plasmids, which spread via horizontal gene transfer, are responsible for the dissemination of genes encoding extended-spectrum β-lactamases (ESBL). In this study, we combined 2nd and 3rd generation sequencing techniques to reconstruct the plasmidome of overall 97 clinical ESBL-E. coli isolates. Our results highlight the enormous plasmid diversity in respect to size, replicon-type and genetic content. Furthermore, we emphasize the diverse plasmid distribution patterns among the clinical isolates and the high intra- and extracellular mobility potential of resistance conferring genes. While the majority of resistance conferring genes were located on large plasmids of known replicon type, small cryptic plasmids seem to be underestimated resistance gene vectors. Our results contribute to a better understanding of the dissemination of resistance-conferring genes through horizontal gene transfer as well as clonal spread.  相似文献   

8.
Gentamicin-resistant Staphylococcus aureus and Staphylococcus epidermidis strains which were isolated from infants with staphylococcal bacteremia were analyzed for the presence of self-transmissible gentamicin-resistance (Gmr) plasmids. Conjugative GMr plasmids of approximately 43.8-63 kilobases (kb) were found in all S. aureus strains. Inter- and intra-species transfer of Gmr plasmids by conjugation was observed from S. aureus to S. aureus and to S. epidermidis recipient strains. However, neither inter- nor intra-species transfer of gentamicin resistance by conjugation was observed with nine out of nine S. epidermidis donor strains which were mated with either S. epidermidis or S. aureus recipient strains. These conjugative Gmr plasmids were unable to comobilize a smaller (15-kb) plasmid present in all but two S. aureus clinical isolates. Many of the conjugative Gmr plasmids also carried genetic determinants for kanamycin, tobramycin, neomycin, and ethidium bromide resistance, and for beta-lactamase synthesis. EcoRI restriction endonuclease digests of the S. aureus Gmr conjugative plasmids revealed three different digestion patterns. Four EcoRI restriction endonuclease digestion fragments of 15, 11.4, 6.3, and 4.6 kb in size were common to all plasmids. These plasmids and conjugative Gmr staphylococcal plasmids from other geographical regions shared restriction digestion fragments of similar molecular weights. DNA hybridization with biotinylated S. aureus plasmid pIZ7814 DNA revealed a high degree of homology among these plasmids. A 50.9-kb plasmid from one of the nonconjugative S. epidermidis clinical isolates showed homology with the probe DNA but lacked a portion of a 6.3-kb fragment which was present in all conjugative plasmids and believed to carry much genetic information for conjugation.  相似文献   

9.
Multilocus isoenzyme electrophoresis was used to screen 47 field isolates of Yersinia ruckeri for electrophoretic variation at 15 enzyme loci. Only four electrophoretic types were observed, thus indicating that the genetic structure of Y. ruckeri is clonal. Forty-two isolates were of one electrophoretic type, a reflection of the low amount of genetic diversity extant in this species. Although sorbitol fermentation has been considered to be indicative of a second biotype, no significant gene frequency differences were found between the group of 20 isolates that readily used sorbitol as the sole carbon source and the group of 27 that did not.  相似文献   

10.
Escherichia coli resistant to extended-spectrum cephalosporins have been detected in the Norwegian broiler production, despite the fact that antimicrobial agents are rarely used. The genetic mechanism responsible for cephalosporin resistance is mainly attributed to the presence of the blaCMY-2 gene encoding a plasmid-mediated AmpC-beta-lactamase (pAmpC). The aim of this study was to characterize and compare blaCMY-2 containing Escherichia coli isolated from the intestinal flora of broilers and retail chicken meat (fillets) to identify possible successful clones and/or resistance plasmids widespread in the Norwegian broiler production. Methods used included PCR based phylotyping, conjugation experiments, plasmid replicon typing, pulsed-field gel electrophoresis, multiple locus variable-number tandem-repeats analysis and whole genome sequencing. The nucleotide sequence of an IncK plasmid carrying blaCMY-2 was determined. Intestinal isolates displayed a higher degree of genetic diversity than meat isolates. A cluster of genetically related isolates belonging to ST38, phylogroup D, carrying blaCMY-2 containing IncK plasmids was identified. Furthermore, genes encoding plasmid stability systems (relBE/stbDE and pndAC) were identified on the IncK plasmid. Single nucleotide polymorphism (SNP) analysis of a subset of isolates confirmed a close genetic relationship within the two most prevalent STs. The IncK plasmids within these two STs also shared a high degree of similarity. Cephalosporin-resistant E. coli with the same genetic characteristics have been identified in the broiler production in other European countries, and the IncK plasmid characterized in this study showed close homology to a plasmid isolated from retail chicken meat in the Netherlands. The results indicate that both clonal expansion and horizontal transfer of blaCMY-2 containing plasmids contribute to dissemination of cephalosporin resistant E. coli in the broiler production. The presence of plasmid stability systems may explain why the IncK plasmid containing blaCMY-2 is maintained and disseminated in the Norwegian broiler production in absence of selection pressure from the use of antimicrobial agents.  相似文献   

11.
Several isolates from a newly described group of fast-growing acid-producing soybean rhizobia, Rhizobium japonicum, were analyzed for plasmid content. All contained from one to four plasmids with molecular weights of 100 × 106 or larger. Although most of the isolates shared plasmids of similar size, the restriction endonuclease (BamHI, EcoRI, and HindIII) patterns of the plasmids from three of the isolates were vastly different. Growth in the presence of acridine orange was effective in producing mutants cured of the largest plasmid in one of the strains. These mutants also lost the ability to form nodules on soybeans. High-temperature curing of a smaller plasmid in another strain did not lead to loss of nodulating ability or alteration of symbiotic effectiveness on soybean cultivars. The identities of all of the isolates and mutants were ascertained by immunofluoresence and immunodiffusion. The new fast-growing strains of R. japonicum may provide a better genetic system for the study of the soybean symbiosis than the slow-growing R. japonicum, not all of which can be shown to contain plasmids.  相似文献   

12.
The presence of a highly conserved nahAc allele among phylogenetically diverse bacteria carrying naphthalene-catabolic plasmids provided evidence for in situ horizontal gene transfer at a coal tar-contaminated site (J. B. Herrick, K. G. Stuart-Keil, W. C. Ghiorse, and E. L. Madsen, Appl. Environ. Microbiol. 63:2330–2337, 1997). The objective of the present study was to identify and characterize the different-sized naphthalene-catabolic plasmids in order to determine the probable mechanism of horizontal transfer of the nahAc gene in situ. Filter matings between naphthalene-degrading bacterial isolates and their cured progeny revealed that the naphthalene-catabolic plasmids were self-transmissible. Limited interstrain transfer was also found. Analysis of the restriction fragment length polymorphism (RFLP) patterns indicated that catabolic plasmids from 12 site-derived isolates were closely related to each other and to the naphthalene-catabolic plasmid (pDTG1) of Pseudomonas putida NCIB 9816-4, which was isolated decades ago in Bangor, Wales. The similarity among all site-derived naphthalene-catabolic plasmids and pDTG1 was confirmed by using the entire pDTG1 plasmid as a probe in Southern hybridizations. Two distinct but similar naphthalene-catabolic plasmids were retrieved directly from the microbial community indigenous to the contaminated site in a filter mating by using a cured, rifampin-resistant site-derived isolate as the recipient. RFLP patterns and Southern hybridization showed that both of these newly retrieved plasmids, like the isolate-derived plasmids, were closely related to pDTG1. These data indicate that a pDTG1-like plasmid is the mobile genetic element responsible for transferring naphthalene-catabolic genes among bacteria in situ. The pervasiveness and persistence of this naphthalene-catabolic plasmid suggest that it may have played a role in the adaptation of this microbial community to the coal tar contamination at our study site.  相似文献   

13.
Many clinical isolates of the human pathogen Neisseria gonorrhoeae contain conjugative plasmids. The host range of these plasmids is limited to Neisseria species, but presence of a tetracycline (tetM) determinant inserted in several of these plasmids is an important cause of the rapid spread of tetracycline resistance. Previously plasmids with different backbones (Dutch and American type backbones) and with and without different tetM determinants (Dutch and American type tetM determinants) have been identified. Within the isolates tested, all plasmids with American or Dutch type tetM determinants contained a Dutch type plasmid backbone. This demonstrated that tetM determinants should not be used to differentiate between conjugal plasmid backbones. The nucleotide sequences of conjugative plasmids with Dutch type plasmid backbones either not containing the tetM determinant (pEP5233) or containing Dutch (pEP5289) or American (pEP5050) type tetM determinants were determined. Analysis of the backbone sequences showed that they belong to a novel IncP1 subfamily divergent from the IncP1α, β, γ, δ and ε subfamilies. The tetM determinants were inserted in a genetic load region found in all these plasmids. Insertion was accompanied by the insertion of a gene with an unknown function, and rearrangement of a toxin/antitoxin gene cluster. The genetic load region contains two toxin/antitoxins of the Zeta/Epsilon toxin/antitoxin family previously only found in Gram positive organisms and the virulence associated protein D of the VapD/VapX toxin/antitoxin family. Remarkably, presence of VapX of pJD1, a small cryptic neisserial plasmid, in the acceptor strain strongly increased the conjugation efficiency, suggesting that it functions as an antitoxin for the conjugative plasmid. The presence of the toxin and antitoxin on different plasmids might explain why the host range of this IncP1 plasmid is limited to Neisseria species. The isolated plasmids conjugated efficiently between N. gonorrhoeae strains, but did not enhance transfer of a genetic marker.  相似文献   

14.
Plasmids are important mobile elements that can facilitate genetic exchange and local adaptation within microbial communities. We compared the sequences of four co‐occurring pQBR family environmental mercury resistance plasmids and measured their effects on competitive fitness of a Pseudomonas fluorescens SBW25 host, which was isolated at the same field site. Fitness effects of carriage differed between plasmids and were strongly context dependent, varying with medium, plasmid status of competitor and levels of environmental mercury. The plasmids also varied widely in their rates of conjugation and segregational loss. We found that few of the plasmid‐borne accessory genes could be ascribed functions, although we identified a putative chemotaxis operon, a type IV pilus‐encoding cluster and a region encoding putative arylsulfatase enzymes, which were conserved across geographically distant isolates. One plasmid, pQBR55, conferred the ability to catabolize sucrose. Transposons, including the mercury resistance Tn5042, appeared to have been acquired by different pQBR plasmids by recombination, indicating an important role for horizontal gene transfer in the recent evolution of pQBR plasmids. Our findings demonstrate extensive genetic and phenotypic diversity among co‐occurring members of a plasmid community and suggest a role for environmental heterogeneity in the maintenance of plasmid diversity.  相似文献   

15.
Infections caused by Extended spectrum β-lactamase (ESBL)-producing E. coli are an emerging global problem, threatening the effectiveness of the extensively used β-lactam antibiotics. ESBL dissemination is facilitated by plasmids, transposons, and other mobile elements. We have characterized the plasmid content of ESBL-producing E. coli from human urinary tract infections. Ten diverse isolates were selected; they had unrelated pulsed-field gel electrophoresis (PFGE) types (<90% similarity), were from geographically dispersed locations and had diverging antibiotic resistance profiles. Three isolates belonged to the globally disseminated sequence type ST131. ESBL-genes of the CTX-M-1 and CTX-M-9 phylogroups were identified in all ten isolates. The plasmid content (plasmidome) of each strain was analyzed using a combination of molecular methods and high-throughput sequencing. Hidden Markov Model-based analysis of unassembled sequencing reads was used to analyze the genetic diversity of the plasmid samples and to detect resistance genes. Each isolate contained between two and eight distinct plasmids, and at least 22 large plasmids were identified overall. The plasmids were variants of pUTI89, pKF3-70, pEK499, pKF3-140, pKF3-70, p1ESCUM, pEK204, pHK17a, p083CORR, R64, pLF82, pSFO157, and R721. In addition, small cryptic high copy-number plasmids were frequent, containing one to seven open reading frames per plasmid. Three clustered groups of such small cryptic plasmids could be distinguished based on sequence similarity. Extrachromosomal prophages were found in three isolates. Two of them resembled the E. coli P1 phage and one was previously unknown. The present study confirms plasmid multiplicity in multi-resistant E. coli. We conclude that high-throughput sequencing successfully provides information on the extrachromosomal gene content and can be used to generate a genetic fingerprint of possible use in epidemiology. This could be a valuable tool for tracing plasmids in outbreaks.  相似文献   

16.
A large number of Streptomyces bacteria with antifungal activity isolated from samples collected in the Trondheim fjord (Norway) were found to produce polyene compounds. Investigation of polyene-containing extracts revealed that most of the isolates produced the same compound, which had an atomic mass and UV spectrum corresponding to those of candicidin D. The morphological diversity of these isolates prompted us to speculate about the involvement of a mobile genetic element in dissemination of the candicidin biosynthesis gene cluster (can). Eight candicidin-producing isolates were analyzed by performing a 16S rRNA gene-based taxonomic analysis, pulsed-field gel electrophoresis, PCR, and Southern blot hybridization with can-specific probes. These analyses revealed that most of the isolates were related, although they were morphologically diverse, and that all of them contained can genes. The majority of the isolates studied contained large plasmids, and two can-specific probes hybridized to a 250-kb plasmid in one isolate. Incubation of the latter isolate at a high temperature resulted in loss of the can genes and candicidin production, while mating of the “cured” strain with a plasmid-containing donor restored candicidin production. The latter result suggested that the 250-kb plasmid contains the complete can gene cluster and could be responsible for conjugative transfer of this cluster to other streptomycetes.Actinomycete bacteria, especially those belonging to the family Streptomycetaceae, are well-known producers of secondary metabolites with diverse biological activities. Representatives of the genus Streptomyces produce a variety of antibiotics with antibacterial, antifungal, and antitumor activities. The majority of antibiotic-producing streptomycetes have been isolated from terrestrial environments, while antibiotic-producing streptomycetes from the marine sources remain largely unexplored. Therefore, studies of streptomycetes from the marine environment are important for unraveling their potential for antibiotic production. In addition, such studies might reveal the means by which antibiotic biosynthesis and resistance genes are spread in nature.It is widely acknowledged that plasmids play an important role in genetic exchange between bacterial species. Conjugative plasmids are quite common in Streptomyces strains (13), and a number of these mobile genetic elements have been characterized in detail. The characterized mobile genetic elements include both circular plasmids, such as pIJ101 from Streptomyces lividans (14) and SCP2 from Streptomyces coelicolor (2, 35), and linear plasmids, such as SLP2 from S. lividans (6) and SCP1 from S. coelicolor (38, 39). The presence of a linear plasmid in Streptomyces was first reported in 1979, and the plasmid was the 17-kb pSLA2 plasmid of Streptomyces rochei (11). SCP1 of S. coelicolor was discovered in the early 1970s (38, 39), but because of its large size (356 kb), isolation of this plasmid with conventional techniques was not possible and therefore it was not recognized as a linear plasmid until pulsed-field gel electrophoresis (PFGE) was invented. Later, SCP1 was shown to harbor a complete set of genes for biosynthesis of the antibiotic methylenomycin (21; K. F. Chater, C. J. Bruton, S. J. O''Rouke, and A. W. Wietzorrek, 5 July 2001, Patent Cooperation Treaty international application WO/2001/048228), while another linear plasmid, found in S. rochei, has been shown to contain genes for biosynthesis of both lankamycin and lankacidin (16, 19, 28, 36). Other examples of plasmids include pPZG103 carrying oxytetracycline biosynthesis genes acquired from the chromosome of Streptomyces rimosus (10) and pKSL from Streptomyces lasaliensis, which might be involved in the production of lasalocid and/or echinomycin (17, 20).Linear plasmids can be transferred between Streptomyces strains by means of conjugation, and SCP1 is an example of a conjugative linear plasmid as it is easily transferred from an SCP1+ strain to an SCP1 strain (39). Interspecific transfer to S. lividans and Streptomyces parvulus has also been reported for this plasmid, and it was demonstrated that the recipient strains had acquired the ability to produce and be resistant to methylenomycin (12, 21). Transfer of intact linear plasmids containing mercury resistance genes from two Streptomyces strains isolated from the marine environment to S. lividans, conferring mercury resistance to the initially mercury-sensitive recipient, has been reported by Ravel et al. (32). It has also been shown that interspecific transfer of linear plasmids is possible in sterile amended soil microcosms, suggesting that mercury resistance might be spread by plasmid transfer in polluted environments (31).We report here isolation and screening of several thousand actinobacterial strains from the Trondheim fjord (Norway), which resulted in identification of producers of both known and potentially new polyene macrolides with antifungal activity. The ability to produce the polyene macrolide candicidin D was found to be widespread among the Trondheim fjord Streptomyces isolates. We also report that the candicidin biosynthesis genes (can) are present on a linear plasmid identified in one of these isolates, suggesting that the can genes might be spread by means of conjugation.  相似文献   

17.
This study was aimed to isolate and identify the N2-fixing bacterium Gluconacetobacter diazotrophicus from 11 sugarcane varieties, grown under field conditions in four Cuban provinces, and from their associated mealybugs Saccharicoccus sacchari. Identification was based on morphological and biochemical tests and PCR-amplification of 16S rRNA genes using species-specific primers. From all sugarcane varieties and numerous mealybug colonies sampled, G. diazotrophicus isolates were recovered from inside sugarcane stems of only three varieties, and one from S. sacchari colony. These four isolates showed acetylene reduction activity in nitrogen-free media and contained nifH genes which were PCR-amplified using specific primers. ERIC-PCR fingerprinting was used to compare the Cuban G. diazotrophicus isolates with type and reference strains of N2-fixing Gluconacetobacteria. The very low frequency of G. diazotrophicus isolates recovered is probably related with the high doses of nitrogen fertilizers applied to the sugarcane in the Cuban fields for almost 30 years. Some genetic differences, using ERIC-PCR, were detected among G. diazotrophicus strains, which could be related with its source.  相似文献   

18.
A 3.4-kb cryptic plasmid was obtained from a new isolate of Rhodobacter blasticus. This plasmid, designated pMG160, was mobilizable by the conjugative strain Escherichia coli S17.1 into Rhodobacter sphaeroides, Rhodobacter capsulatus, and Rhodopseudomonas palustris. It replicated in the latter strains but not in Rhodospirillum rubrum, Rhodocyclus gelatinosus, or Bradyrhizobium species. Plasmid pMG160 was stably maintained in R. sphaeroides for more than 100 generations in the absence of selection but showed segregational instability in R. palustris. Instability in R. palustris correlated with a decrease in plasmid copy number compared to the copy number in R. sphaeroides. The complete nucleotide sequence of plasmid pMG160 contained three open reading frames (ORFs). The deduced amino acid sequences encoded by ORF1 and ORF2 showed high degrees of homology to the MobS and MobL proteins that are involved in plasmid mobilization of certain plasmids. Based on homology with the Rep protein of several other plasmids, ORF3 encodes a putative rep gene initiator of plasmid replication. The functions of these sequences were demonstrated by deletion mapping, frameshift analysis, and analysis of point mutations. Two 6.1-kb pMG160-based E. coli-R. sphaeroides shuttle cloning vectors were constructed and designated pMG170 and pMG171. These two novel shuttle vectors were segregationally stable in R. sphaeroides growing under nonselective conditions.  相似文献   

19.
《Gene》1998,207(2):119-126
A novel transformation technique, resident plasmid integration, for the cloning of foreign DNA in oral streptococci was described recently (T. Shiroza and H. K. Kuramitsu, Plasmid, 1995, 34, 85–95). This technique is based on the integration of linearized foreign genes by recombination-proficient bacteria onto a resident plasmid, if an appropriate selection marker is flanked by the same anchor sites present in the resident plasmid. Since the transforming vehicles for this system included a pUC-derived replication origin, the high level expression in Escherichia coli cells hindered the cloning of certain genes. In the present study, new plasmids were constructed, two resident plasmids, four integration plasmids, and four cloning plasmids, all of which possess the medium-copy number replication origin, p15A ori, isolated from pACYC177. The resident plasmids consisted of the following three components: the p15A ori (0.65-kb BglII fragment), the pVA380-1 basic replicon functional in mutans streptococci (2.5-kb BamHI fragment), and either an erythromycin resistance or a spectinomycin resistance gene (0.9- or 1.1-kb BamHI fragment, respectively). Most of the basic replicon of pVA380-1, except for the 3′-portion of the 0.2-kb region, in the resident plasmid was replaced with a kanamycin resistance gene to construct the four integration plasmids. Therefore, the upstream and downstream anchor sites for the double cross-over event in this new system were 0.65-kb p15A ori and the 0.2-kb portion of the 3′-end of pVA380-1 replicon, respectively. This system was used to clone the gene coding for cycloisomaltooligosaccharide glucanotransferase which produces cycloisomaltooligosaccharide, a potent inhibitor of oral streptococcal glucosyltransferase, isolated from Bacillus circulans chromosome, into Streptococcus gordonii, and its gene product was successfully secreted into the culture media. Plasmids described here should be useful tools for introducing heterologous DNA into resident plasmids following integration in oral streptococci.  相似文献   

20.
Six isolates ofCaedibacter taeniospiralis, collected from four continents, were screened for plasmid DNA. Plasmid DNA species containing between 41.5 and 49.5 kilobase pairs (kb) were observed in all strains. Physical maps of plasmids were constructed by determining relative positions of the restriction endonuclease (BamHI,SalI,XhoI,SacI,PstI,AvaI, andEcoRI) recognition sequences in each plasmid. The physical map of the smallest plasmid (41.5 kb), pKAP30, is reflected in each of the plasmids isolated from the other strains ofC. taeniospiralis. Plasmid DNA from three of the isolates (strains 51 and 116 both from Indiana and strain 169 from Japan) each contain 43 kb, where 41.5 kb appear to be identical to pKAP30 (obtained from the Australian strain, A30). The extra 1.5 kb present in pKAP51, pKAP116, and pKAP169 is included as a single polynucleotide sequence. The 1.5-kb inclusion is located at apparently identical positions in pKAP116 and pKAP169 and at a totally different position in pKAP51. The two remaining plasmids, pKAP47 (from California strain 47) and pKAP298 (from Panama strain 298), both contain 49 kb to include a continuous 41.5-kb sequence that is apparently identical to pKAP30. The results indicate that the polynucleotide sequences of these plasmids are highly conserved and that the observed variations among them may be accounted for by transposable elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号