首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A slow growing nitrogen-fixing strain ofVigna radiata var.aureus (mung bean)Rhizobium which expressed nitrogenase activity in a synthetic medium was isolated from its native population. Mutants with decreased and increased nitrogenase activity were derived from this strain by treatment with acridine orange and ethidium bromide. These mutants were tested for symbiotic effectivity invivo. The effectivity of mutants with decreased nitrogenase activity in the culture medium was lower than the parent strain; however, the effectivity of mutants with higher nitrogenase activity did not increase above that of the parent. This suggests that the plant is perhaps a limiting factor in the full expression of rhizobial nitrogenase in the nodules.  相似文献   

2.
The photosynthetic bacterium, Rhodospirillum rubrum (ATCC 11170), was tested for its ability to fix nitrogen (acetylene reduction) under aerobic and dark-anaerobic conditions. Whole cells reduced acetylene under darkanaerobic conditions if pyruvate was supplied. Reactions of the cells were inhibited less by oxygen in the dark than in the light, and the cells were capable of acetylene reduction in the presence of low levels of oxygen (0.6%) in the dark. Crude extracts of R. rubrum reduced acetylene if pyruvate and Coenzyme A were added; ferredoxin from R. rubrum greatly increased the pyruvate-driven activity in crude extracts. It was not possible to demonstrate light-driven acetylene reduction in crude extracts unless a reductant (dithionite) was added.Abbreviations Fld flavodoxin - DTT dithiothreitol  相似文献   

3.
The mode of interaction in haploid Saccharomyces cerevisiae of two pso mutations with each other and with rad mutations affected in their excision-resynthesis (rad3), error-prone (rad6), and deoxyribonucleic acid double-strand break (rad52) repair pathways was determined for various double mutant combinations. Survival data for 8-methoxypsoralen photoaddition, 254-nm ultraviolet light and gamma rays are presented. For 8-methoxypsoralen photoaddition, which induces both deoxyribonucleic acid interstrand cross-links and monoadditions, the pso1 mutation is epistatic to the rad6, rad52, and pso2 mutations, whereas it is synergistic to rad3. The pso2 mutation, which is specifically sensitive to photoaddition of psoralens, is epistatic to rad3 and demonstrates a nonepistatic interaction with rad6 and rad52. rad3 and rad6, as well as rad 6 and rad52, show synergistic interactions with each other, whereas rad 3 is epistatic to rad52. Consequently, it is proposed that PSO1 and RAD3 genes govern steps in the independent pathways. The PSO1 activity leading to an intermediate which is repaired via the three incidence pathways controlled by RAD6, RAD52, and PSO2 genes. Since pso1 interacts synergistically with rad3 and rad52 and epistatically with rad6 after UV radiation, the PSO1 gene appears to belong to the RAD6 group. For gamma ray sensitivity, pso1 is epistatic to rad6 and rad52, which suggests that this gene controls a step which is common to the two other independent pathways.  相似文献   

4.
In several acute and chronic exposures to various chemicals in vivo and in vitro, the average sister-chromatid exchange (SCE) frequencies in human, mouse, rat, and rabbit lymphocytes generally decrease with time following treatment. The rate of this decline varies, but little data have been published pertaining to the comparative kinetics of SCEs both in vivo and in vivo/in vitro (exposure of animals to the test compound and culturing of cells) simultaneously in the same tissues. In this study, a single dose of cyclophosphamide (40 mg/kg) was injected for varying periods (6-48 h) and its effects, as assessed by the induction of SCEs, were analyzed under both in vivo and in vivo/in vitro conditions in mouse bone marrow and spleen cells. In vivo, the cyclophosphamide-induced SCEs increased with increasing time up to 12 h, stayed at approximately the same level until 24 h, and then decreased with increase in post-exposure time. However, the SCE levels remained significantly higher than controls at 48 h post-exposure time in both bone marrow and spleen cells. Under in vivo/in vitro conditions, the SCEs in bone marrow decreased with increase in post-exposure time until reaching control values by 48 h post exposure. However, in spleen cells, the decrease in SCE level was gradual, and by 48 h post-exposure time, the cells still had approximately 6 times higher SCEs than the control values. These results suggest that there are pharmacokinetic differences for cyclophosphamide in mouse bone marrow and spleen. Also, there is a differential SCE response to cyclophosphamide under in vivo and in vivo/in vitro conditions.  相似文献   

5.
6.
In vitro and in vivo investigations of human microsporidia.   总被引:4,自引:0,他引:4  
The numerous infections of microsporidia which have been diagnosed in patients with AIDS have revealed the potential of these organisms for establishing themselves when the immune status of the host is compromised. Two species of Encephalitozoon, E. cuniculi and E. hellem, have been diagnosed in man, the former infecting a variety of tissues, the latter restricted to the corneal and conjunctival epithelia. These species are morphologically indistinguishable even at the ultrastructural level but can be separated biochemically. Two human sera were found to react with equal intensity in the ELISA on spores of E. cuniculi and E. hellem purified from in vitro cultures, and gave similar binding patterns in Western blots on SDS-PAGE protein profiles of the two species. This has raised questions about the identity of Encephalitozoon infections diagnosed previously in man. The diagnosis of Enterocytozoon bieneusi, which infects the intestinal enterocytes of AIDS patients and is associated with chronic diarrhoea, requires observation of smears or sections of biopsies or specialist observation of stool preparations. In vitro cultures, which would facilitate the raising of specific antisera, have proved difficult to establish. In vitro and in vivo systems for assaying drugs for microsporidia have revealed that albendazole has a marked effect on parasite numbers and morphology but does not eliminate infection, which resurges when drug pressure is removed.  相似文献   

7.
A fluorescent antibody has been employed for investigating the estradiol intracellular kinetics in target cells.In vivo observations showed that in the very immature rats (5-day-old) the translocation in the nucleus of the cytoplasmic bound estradiol, seems impaired at the level of the nuclear membrane; while in older animals (30-day-old) a normal, predominantly nuclear localization of the estradiol was observed.In vitro studies allowed the demonstration of the specific binding of the estradiol to the cytoplasm, nuclear chromatin, chromosomes and nucleolus, in various experimental conditions.Some defects of the cytoplasmie uptake, translocation and nuclear binding of the estradiol, which might be relevant to the hormone-dependence, have been demonstrated in cells from human breast cancers.  相似文献   

8.
9.
Rhodobacter capsulatus strains E1F1 and B10 and Rhodobacter sphaeroides DSM 158 did not use hydroxylamine as nitrogen source for growth but metabolized it mainly through the glutamine synthetase reaction. Hydroxylamine had a high toxicity for cells growing either under phototrophic or dark-aerobic conditions. l-methionine-d,l-sulfoximine partially inhibited hydroxylamine uptake and increased the inhibition time of nitrogenase activity by this nitrogen compound. Nitric oxide was also a powerful inhibitor of nitrogenase in intact cells of R. capsulatus. Since low amounts of NO were produced from hydroxylamine, short-term inhibition of nitrogenase in the presence of this compound could be mediated in vivo by nitric oxide.Abbreviations GS glutamine synthetase - MSX l-methionine-d,l-sulfoximine - MTA mixed alkyltrimethylammonium bromide  相似文献   

10.
In vivo and in vitro arginine methylation of RNA-binding proteins.   总被引:18,自引:3,他引:18       下载免费PDF全文
Heterogenous nuclear ribonucleoproteins (hnRNPs) bind pre-mRNAs and facilitate their processing into mRNAs. Many of the hnRNPs undergo extensive posttranslational modifications including methylation on arginine residues. hnRNPs contain about 65% of the total NG,NG-dimethylarginine found in the cell nucleus. The role of this modification is not known. Here we identify the hnRNPs that are methylated in HeLa cells and demonstrate that most of the pre-mRNA-binding proteins receive this modification. Using recombinant human hnRNP A1 as a substrate, we have partially purified and characterized a protein-arginine N-methyltransferase specific for hnRNPs from HeLa cells. This methyltransferase can methylate the same subset of hnRNPs in vitro as are methylated in vivo. Furthermore, it can also methylate other RNA-binding proteins that contain the RGG motif RNA-binding domain. This activity is evolutionarily conserved from lower eukaryotes to mammals, suggesting that methylation has a significant role in the function of RNA-binding proteins.  相似文献   

11.
Cajal bodies (CBs) are subnuclear domains implicated in small nuclear ribonucleoprotein (snRNP) biogenesis. In most cell types, CBs coincide with nuclear gems, which contain the survival of motor neurons (SMN) complex, an essential snRNP assembly factor. Here, we analyze the exchange kinetics of multiple components of CBs and gems in living cells using photobleaching microscopy. We demonstrate differences in dissociation kinetics of CB constituents and relate them to their functions. Coilin and SMN complex members exhibit relatively long CB residence times, whereas components of snRNPs, small nucleolar RNPs, and factors shared with the nucleolus have significantly shorter residence times. Comparison of the dissociation kinetics of these shared proteins from either the nucleolus or the CB suggests the existence of compartment-specific retention mechanisms. The dynamic properties of several CB components do not depend on their interaction with coilin because their dissociation kinetics are unaltered in residual nuclear bodies of coilin knockout cells. Photobleaching and fluorescence resonance energy transfer experiments demonstrate that coilin and SMN can interact within CBs, but their interaction is not the major determinant of their residence times. These results suggest that CBs and gems are kinetically independent structures.  相似文献   

12.
13.
14.
The in vitro and in vivo developmental capabilities and kinetics of in vitro development of embryos derived from adult ewes and from unstimulated (16- to 24-week-old) and hormone-stimulated prepubertal (3- to 5-week-old) ewes were assessed. Cleavage was lower for hormone-stimulated (617/1025; 60.2%) than unstimulated prepubertal (117/169; 69.2%) and adult ewe oocytes (184/267; 68.9%; P < 0.05). Blastocyst formation by Day 7 (from zygotes) was similar for unstimulated (45/117; 38.5%), hormone-stimulated prepubertal (229/617; 37.1%) and adult ewes (101/184; 54.9%). Blastocysts derived from hormone-stimulated prepubertal ewes developed mainly on day 7, compared with Day 6 for adult and unstimulated prepubertal ewes. Pregnancy rates (day 60) and embryonic loss (between Days 20 and 60) did not differ after transfer to adult recipient ewes of adult, unstimulated and hormone-stimulated prepubertal-derived fresh or frozen-thawed embryos. The number of lambs born as a proportion of embryos transferred did not differ for fresh and frozen embryos derived from adult ewes (3/16; 18.8% and 1/12; 8.3%, respectively) and unstimulated prepubertal lambs (2/6; 33.3%, and 1/10; 10.0%, respectively), but was higher for fresh than frozen embryos from hormone-stimulated prepubertal ewes (7/16; 43.8%, and 2/14; 14.3%, respectively; P < 0.05). There were high rates of in vitro and in vivo development of oocytes from 3- to 5-week-old lambs, but in vitro development was lower than with oocytes from adult ewes. However, the speed of embryonic development in vitro and the in vivo development of fresh and frozen embryos were similar to those derived from adult and unstimulated prepubertal ewes. The present results were an improvement in the efficiency of producing embryos and offspring from hormone-stimulated 3- to 5-week-old lambs.  相似文献   

15.
16.
Oriented whole cell multilayers of Azotobacter vinelandii and Rhodospirillum rubrum were analyzed by electron spin resonance (ESR) spectroscopy to detect possible structural associations between nitrogenase molybdenum-iron (MoFe) protein and cytoplasmic or intracytoplasmic membrane. Initially, protocols were designed to obtain strong molybdenum-iron protein ESR signals in whole cell samples of each organism. Then, two-dimensional orientation of whole cell membranes was demonstrated in whole cell multilayers using doxyl stearate spin label in A. vinelandii and the bacteriochlorophyll a dimer triplet signal, (BCHl a)T2, from the intracytoplasmic membrane-bound photosynthetic apparatus of R. rubrum. Subsequent analysis of the low-field signals, g = 4.3 and g = 3.6, of molybdenum-iron protein in whole cell multilayers of each organism showed orientation-dependent characteristics, although the properties of each were different. Specifically, as the normal to the membrane plane was rotated from perpendicular to parallel with the ESR magnetic field, the amplitude of the g = 3.6 signal decreased from maximum to about 37% of maximum in A. vinelandii and from maximum to about 88% of maximum in R. rubrum. The angular dependence of the g = 4.3 peak during rotation varied in A. vinelandii, but decreased from maximum to about 63% of maximum in R. rubrum. These data suggest that the molybdenum-iron protein of nitrogenase was oriented in response to the physical orientation of cellular membranes and that a structural association may exist between this nitrogenase component and membrane in these organisms.  相似文献   

17.
T Higashi  M Horike  R Kikuchi  K Shimada 《Steroids》1999,64(10):715-725
Glucuronidation of 24,25-dihydroxyvitamin D3 has been investigated in in vitro and in vivo experiments. Three positional isomers of 24,25-dihydroxyvitamin D3 monoglucuronide were synthesized from 24,25-dihydroxyprovitamin D3 derivatives with Koenigs-Knorr reaction and used as standard samples. In the presence of the rat liver microsomal fraction and uridine-5'-diphosphoglucuronic acid, 24,25-dihydroxyvitamin D3 gave 3- and 24-glucuronides as the main products in almost equal amounts, but only a small amount of the corresponding 25-glucuronide was obtained. 24,25-Dihydroxyvitamin D3 monoglucuronide was deconjugated with rat intestine homogenate, which indicated the entero-hepatic circulation of 24,25-dihydroxyvitamin D3. After the administration of 24,25-dihydroxyvitamin D3 to rats, its 3- and 24-glucuronides were identified from the bile as inferred from the in vitro experiment. However, the in vivo glucuronidation occurred at the 24-position in preference to the 3-position, and the corresponding 25-glucuronide was not detected. These glucuronides were identified in comparison with standard samples based on their chromatographic behavior during high-performance liquid chromatography and data obtained from liquid chromatography-electrospray ionization-mass spectrometry, which was helpful in identifying these compounds.  相似文献   

18.
The molecular basis of prion strain diversity is proposed to be encoded by distinct conformations of the abnormal scrapie isoform of the prion protein (PrP(Sc)). PrP(Sc) formation for the hyper (HY) and drowsy (DY) strains of the transmissible mink encephalopathy (TME) agent was investigated using the cell-free PrP conversion reaction to determine the role of distinct PrP(Sc) conformations in the rate of in vitro conversion of cellular PrP into protease-resistant PrP. PrP conversion increased at an exponential rate for both TME strains until peak levels were reached at 72-96 h of reaction time. The amount and rate of PrP conversion for HY TME was greater than those for DY TME between 48 h and the peak level of PrP conversion. Between 96 and 120 h, there was a negative rate of PrP conversion; and between 120 and 168 h, the net rate of HY and DY PrP conversion approached zero. These findings suggest that PrP conversion can occur in three distinct stages: an elongation phase, a depolymerization phase, and a steady-state phase. Strain-specific properties between the TME strains were identified only during the elongation phase. The steady-state phase could be disrupted by the addition of PrP(Sc) to, or by sonication of, the cell-free PrP conversion reaction. These treatments resulted in an increase in the amount of PrP conversion that was equal to or greater than that found during the peak level of PrP conversion for both TME strains, indicating that the steady-state phase was in dynamic equilibrium. In a related study, the rate of accumulation of HY and DY PrP(Sc) in hamster brain exhibited a strain-specific pattern that had similarities to the strain-specific PrP conversion reaction during the elongation phase. These results suggest that strain-specific conformations of PrP(Sc) have the ability to influence the rate of additional PrP(Sc) formation from cellular PrP both in vitro and in vivo.  相似文献   

19.
The urease accessory protein encoded by ureE from Klebsiella aerogenes is proposed to deliver Ni(II) to the urease apoprotein during enzyme activation. Native UreE possesses a histidine-rich region at its carboxyl terminus that binds several equivalents of Ni(2+); however, a truncated form of this protein (H144*UreE) binds only 2 Ni(2+) per dimer and is functionally active (Brayman, T. G., and Hausinger, R. P. (1996) J. Bacteriol. 178, 5410-5416). The urease activation kinetics were studied in vivo by monitoring the development of urease activity upon adding Ni(2+) to spectinomycin-treated Escherichia coli cells that expressed the complete K. aerogenes urease gene cluster with altered forms of ureE. Site-specific alterations of H144*UreE decrease the rate of in vivo urease activation, with the most dramatic changes observed for the H96A, H110A, D111A, and H112A substitutions. Notably, urease activity in cells producing H96A/H144*UreE was lower than cells containing a ureE deletion. Prior studies had shown that H110A and H112A variants each bound a single Ni(2+) per dimer with elevated K(d) values compared with control H144*UreE, whereas the H96A and D111A variants bound 2 Ni(2+) per dimer with unperturbed K(d) values (Colpas, G. J., Brayman, T. G., Ming, L.-J., and Hausinger, R. P. (1999) Biochemistry 38, 4078-4088). To understand why cells containing the latter two proteins showed reduced rates of urease activation, we characterized their metal binding/dissociation kinetics and compared the results to those obtained for H144*UreE. The truncated protein was shown to sequentially bind two Ni(2+) with k(1) approximately 18 and k(2) approximately 100 M(-1) s(-1), and with dissociation rates k(-1) approximately 3 x 10(-3) and k(-2) approximately 10(-4) s(-1). Similar apparent rates of binding and dissociation were noted for the two mutant proteins, suggesting that altered H144*UreE interactions with Ni(2+) do not account for the changes in cellular urease activation. These conclusions are further supported by in vitro experiments demonstrating that addition of H144*UreE to urease apoprotein activation mixtures inhibited the rate and extent of urease formation. Our results highlight the importance of other urease accessory proteins in assisting UreE-dependent urease maturation.  相似文献   

20.
The metabolism of glucose by nongrowing cells of L. lactis strain MG5267 was studied under controlled conditions of pH, temperature, and gas atmosphere (anaerobic and aerobic) using a circulating system coupled to nuclear magnetic resonance (NMR) detection that allowed a noninvasive determination of intracellular pools of intermediate metabolites by 13C-NMR with a time resolution of 30 seconds. In addition, intracellular parameters, such as pH, NTP levels, and concentration of inorganic phosphate in the cytoplasm, could be monitored on-line by 31P-NMR with a time resolution of approx. 3 min. The time course for the concentrations of intracellular fructose 1,6-bisphosphate (FBP), 3-phosphoglycerate (3-PGA), and phosphoenolpyruvate (PEP), together with kinetic measurements of substrate consumption and endproducts formation, were used as a basis for the construction of a mechanistic model for glycolysis. In vivo measurements were complemented with determinations of phosphorylated metabolites in perchloric acid extracts. A top-down model was developed by simplifying the metabolism to the resolution allowed by the experimental data collected by in vivo NMR (grouped in seven metabolic steps). This simplified mechanistic model was adjusted to the metabolite concentrations determined by in vivo NMR. The results obtained led to the rationalization of the dynamics of glucose metabolism as being driven largely by ATP surplus. This excess causes accumulation of FBP due to NAD+ limitation, whose regeneration is dependent on downstream pyruvate reduction. The model was capable of predicting qualitative shifts in the metabolism of glucose when changing from anaerobic to aerobic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号