首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objectives of this study were to determine if the response to luteinizing hormone releasing hormone (LHRH) could be used to select bull calves capable of early sexual maturation and to establish the optimum route and dose of LHRH. In Trial 1, at 4, 10 and 20 week of age, 20 calves were treated iv with 2 microg/kg body weight of LHRH 1 and 5h after commencing a 9-h period of blood sampling. Bulls were separated into early and late maturing (n=10), based on age at puberty (scrotal circumference (SC) of >or=28 cm). At 4 and 20 week of age, peak serum LH concentrations and area under the LH response curve in response to LHRH were lower (P<0.05) in early- versus late-maturing bulls. In Trial 2, calves at 20 week of age were given LHRH as follows: 2 microg/kg body weight iv (n=6), im (n=6) or sc (n=6); 5 microg/kg im (n=6), or ischio-rectally (ir, n=6) or sc (n=6); and 10 microg/kg im (n=6) or sc (n=6). Serum LH concentrations were at a plateau from 30 to 165 min after treatment with 5 microg/kg of LHRH (im or ir; P>0.05). We concluded that the LH responses to LHRH in calves at 4 and 20 week of age could facilitate the development of a simple test (one blood sample prior to treatment with LHRH and a second during the period of sustained response to LHRH) to select early-maturing bulls.  相似文献   

2.
This study examined the impact of the gonadotrophin-releasing hormone (GnRH) antagonist Antarelix on LH, FSH, ovarian steroid hormone secretion, follicular development and pituitary response to LHRH in cycling gilts. Oestrous cycle of 24 Landrace gilts was synchronised with Regumate (for 15 days) followed by 800 IU PMSG 24h later. In experiment 1, Antarelix (n=6 gilts) was injected i.v. (0.5mg per injection) twice daily on four consecutive days from day 3 to 6 (day 0=last day of Regumate feeding). Control gilts (n=6) received saline. Blood was sampled daily, and every 20 min for 6h on days 2, 4, 6, 8 and 10. In experiment 2, gilts (n=12) were assigned to the following treatments: Antarelix; Antarelix + 50 microg LHRH on day 4; Antarelix + 150 microg LHRH on day 4 or control, 50 microg LHRH only on day 4. Blood samples were collected daily and every 20 min for 6h on days 2, 4 and 6 to assess LH pulsatility. Ovarian follicular development was evaluated at slaughter.Antarelix suppressed (P<0.05) serum LH concentrations. The amount of LH released on days 4-9 (experiment 1) was 8.80 versus 36.54 ngml(-1) (S.E.M.=6.54). The pattern of FSH, and the preovulatory oestradiol rise was not affected by GnRH antagonist. Suppression of LH resulted in a failure (P<0.05) of postovulatory progesterone secretion. Exogenous LHRH (experiment 2) induced a preovulatory-like LH peak, however in Antarelix treated gilts the LH surge started earlier and its duration was less compared to controls (P<0.01). Furthermore, the amount of LH released from day 4 to 5 was lower (P<0.01) in Antarelix, Antarelix + 50 and Antarelix + 150 treated animals compared to controls. No differences were estimated in the number of LH pulses between days and treatment. Pulsatile FSH was not affected by treatment. Mean basal LH levels were lower (P<0.05) after antagonist treatment compared to controls. Antarelix blocked the preovulatory LH surge and ovulation, but the effects of Antarelix were reduced by exogenous LHRH treatment. The development of follicles larger than 4mm was suppressed (P<0.05) by antagonist treatment.In conclusion, Antarelix treatment during the follicular phase blocked preovulatory LH surge, while FSH and oestradiol secretion were not affected. Antarelix failed to alter pulsatile LH and FSH secretor or pituitary responsiveness to LHRH during the preovulatory period.  相似文献   

3.
It has been suggested that in superovulated women the endogenous LH surge is attenuated by a non-steroidal factor, called gonadotrophin surge-attenuating factor (GnSAF), which reduces gonadotrophin secretion in response to LHRH. To determine whether human follicular fluid (hFF) from superovulated women contains GnSAF activity, the secretion of LH and FSH by cultured sheep pituitaries was studied. After charcoal extraction of steroids, hFF was treated by heparin/Sepharose chromatography, which reversibly binds inhibin. The effects of whole hFF and the bound and unbound fractions on basal and LHRH-induced gonadotrophin secretion were then assessed. Steroid-free hFF significantly reduced basal FSH, but not basal LH, secretion, and significantly attenuated the LH and FSH responses to LHRH. The bound (inhibin) fraction significantly decreased both basal and LHRH-induced FSH secretion but did not affect LH release. The unbound fraction had no effect on basal LH or FSH secretion, but significantly attenuated LHRH-induced secretion of both LH and FSH. We conclude that the unbound fraction of hFF from superovulated women contains GnSAF. It has been demonstrated that GnSAF is a non-steroidal factor and its activity is distinct from that of inhibin.  相似文献   

4.
This experiment determined if the degree of stimulation of the pituitary gland by GnRH affects the suppressive actions of inhibin and testosterone on gonadotropin secretion in rams. Two groups (n = 5) of castrated adult rams underwent hypothalamopituitary disconnection and were given two i.v. injections of vehicle or 0.64 microg/kg of recombinant human inhibin A (rh-inhibin) 6 h apart when treated with i.m. injections of oil and testosterone propionate every 12 h for at least 7 days. Each treatment was administered when the rams were infused i.v. with 125 ng of GnRH every 4 h (i.e., slow-pulse frequency) and 125 ng of GnRH every hour (i.e., fast-pulse frequency). The FSH concentrations and LH pulse amplitude were lower and the LH concentrations higher during the fast GnRH pulse frequency. The GnRH pulse frequency did not influence the ability of rh-inhibin and testosterone to suppress FSH secretion. Testosterone did not affect LH secretion. Following rh-inhibin treatment, LH pulse amplitude decreased at the slow, but not at the fast, GnRH pulse frequency, and LH concentrations decreased at both GnRH pulse frequencies. We conclude that the degree of stimulation of the pituitary by GnRH does not influence the ability of inhibin or testosterone to suppress FSH secretion in rams. Inhibin may be capable of suppressing LH secretion under conditions of low GnRH.  相似文献   

5.
Activin A regulation of the expression of mRNA for the LH receptor, FSH receptor, and the inhibin alpha subunit as well as the effect of activin A on the secretion of progesterone were investigated in chicken granulosa cell cultures. Granulosa layers were isolated from the F(1) and F(3) + F(4) follicles from five hens, pooled according to size, dispersed, and cultured for 48 h. In experiment 1 (n = 3 replications), granulosa cells were cultured with or without highly purified ovine (o) FSH at 50 ng/ml and in the presence of 0, 10, or 50 ng/ml of recombinant chicken activin A. Experiment 2 (n = 4 replications) followed the same protocol as experiment 1, except that oFSH was replaced with oLH. Results from these experiments showed that addition of activin A to the granulosa cell cultures had no effect on the expression of mRNA for the inhibin alpha subunit or the FSH receptor, but it did affect the expression of mRNA for the LH receptor. Treatment of F(3) + F(4) granulosa cells with LH stimulated the expression of mRNA for the LH receptor; however, when LH was combined with either dose of activin A, this induction was prevented. The highest dose of activin A with or without LH resulted in decreased expression of the LH receptor compared to the untreated controls in the F(3) + F(4) cell cultures. Progesterone secretion by the granulosa cells from both follicle sizes was not altered by activin A. In experiment 3 (n = 3 replications), the effect of activin A on the growth of granulosa cells was examined with the following treatments: 0, 10, or 50 ng/ml of activin A; 50 ng/ml of either oLH or oFSH; and oLH or oFSH combined with 10 ng/ml of activin A. The highest dose of activin reduced the rate of granulosa cell proliferation in both follicle types. Growth of F(1) and F(3) + F(4) granulosa cells was stimulated by the addition of either gonadotropin, and the presence of 10 ng/ml of activin A with either gonadotropin did not alter this proliferation, except for the LH-treated F(3) + F(4) granulosa cells, in which the increase in proliferation was prevented. The results suggest that activin A could act as a local factor that regulates follicular maturation by preventing excessive or untimely LH receptor expression.  相似文献   

6.
The frequency of spontaneous luteinizing hormone (LH) pulses is thought to be a direct result of the frequency of luteinizing hormone-releasing hormone (LHRH) pulses from the hypothalamus. By contrast, the amplitude of spontaneous LH pulses may be controlled by several factors other than the amplitude of LHRH pulses. We tested two hypotheses: 1) that LH pulse amplitude is determined in part by the frequency of LHRH pulses of constant magnitude, and 2) that testosterone (T) exerts a direct feedback effect on the pituitary gland to regulate LH pulse amplitude. Gonadal feedback was eliminated by castrating adult male rats (n = 20). Endogenous LHRH secretion was eliminated by lesioning the medial basal hypothalamus. Serum LH levels (0.19 +/- 0.04 ng/ml RP-2, mean +/- SEM) and T levels (0.15 +/- 0.02 ng/ml), measured several weeks after hypothalamic lesioning, confirmed the hypogonadotropic hypogonadal state of the animals. During a 8-h period, unanesthetized, unrestrained animals were injected with 40-ng pulses of LHRH via catheters into the jugular vein, and blood samples for LH measurement were drawn at 10-min intervals. The LHRH pulse interval was 20 min during the first 4 h in all animals. The pulse interval was doubled to 40 min in half of the animals (n = 10) during the next 4 hours; in the other 10 animals, the pulse interval was maintained constant at 20 min throughout the study. Within both of these groups, one-half of the animals (n = 5) were infused with T to achieve a physiological level of T in serum (2.46 +/- 0.36 ng/ml at 4 h), while the other half received vehicle.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Summary 1. In the rat, the LH-dependent ovarian progesterone rise mediates several actions of the primary surge of LH on the ovary. This experiment was aimed at elucidating the effects of the antiprogestagen RU486 on the LH-dependent decrease in both the serum concentrations and the ovarian content of inhibin.2. All rats in this experiment were treated with an antagonist of LHRH (1 mg/200 µl saline at 0800 h in proestrus) to supress the endogenous release of LH. One group of rats received 32 µg LH/250 µl saline at 1200 h in proestrus. Other group was given 4 mg RU486/200 µl oil at 0800 h in proestrus. The third group was injected with both RU486 and LH. Rats from the control group were injected with 250 µl saline and 200 µl oil. Animals were decapitated at 1700 h in proestrus and trunk blood and ovaries collected to determine the serum concentrations of LH, FSH, progesterone, 17ß-estradiol and inhibin as well as the ovarian content of inhibin.3. The ovulatory dose of LH in LHRHa-treated rats decreased both the serum concentrations and the ovarian content of inhibin and increased the serum concentrations of FSH. The administration of RU486 blocked the effect of LH on the serum concentrations of inhibin but not that on the ovarian content of inhibin.4. Since the antiprogestagen RU486 blocked the effect of LH on the serum concentrations of inhibin, we conclude that ovarian progesterone, besides mediating the effects of the primary LH surge on the ovulatory process and luteinization, participates in the LH-dependent drop in the serum concentrations of inhibin in proestrous afternoon.  相似文献   

8.
We have shown that 4 ng luteinizing hormone releasing hormone (LHRH) pulses induced significantly greater luteinizing hormone (LH) release from proestrous rat superfused anterior pituitary cells with no cycle related differences in follicle stimulating hormone (FSH). Current studies gave 8 ng LHRH in various pulse regimens to study amplitude, duration and frequency effects on LH and FSH secretion from estrous 0800, proestrous 1500 and proestrous 1900 cells. Regimen 1 gave 8 ng LHRH as a single bolus once/h; regimen 2 divided the 8 ng into 3 equal 'minipulses' given at 4 min intervals to extend duration; regimen 3 gave the 3 'minipulses' at 10 min intervals, thereby further extending duration: regimen 4 was the same as regimen 2, except that the 3 'minipulses' were given at a pulse frequency of 2 h rather than 1 h. In experiment 1, all four regimens were employed at proestrus 1900. FSH was significantly elevated by all 8 ng regimens as compared to 4 ng pulses; further, 8 ng divided into 3 equal 'minipulses' separated by 4 min at 1 and 3 h frequencies (regimens 2 and 4) resulted in FSH secretion that was significantly greater than with either a single 8 ng bolus (regimen 1) or when the 'minipulses' were separated by 10 min (regimen 3). In experiment 2, at proestrus 1500, FSH response to the second pulse of regimen 4 was significantly greater than in regimen 2; LH release was significantly suppressed at pulse 2 compared to regimen 2 accentuating divergent FSH secretion. At estrus 0800, FSH response to the second pulse of regimen 4 was significantly stimulated FSH at proestrus 1900, 1500 and estrus 0800, FSH divergence was most marked at proestrus 1500. These data indicate a potential role for hypothalamic LHRH secretory pattern in inducing divergent gonadotropin secretion in the rat.  相似文献   

9.
The effects of an LHRH agonist (LHRHa), [D-Ser (tBu)]6 des-Gly-NH210) ethylamide, on endocrine function and the LHRH and LH/hCG receptors in the pituitary-gonadal axis were examined. The LHRHa was injected at 100 ng/100 g body weight into male rats once a day for 4 weeks and its effects were observed until 2 weeks after the end of treatment. Due to LHRHa treatment, the plasma LH concentration began to increase on day 3, reached a peak on day 7, and then decreased, although it remained above the control level during the treatment. The pituitary LH content decreased on day 1, reached a minimum (about 40% of the control) between days 3 and 7, and then was maintained at 60% of the control level until week 4. In contrast, the pituitary LHRH receptor concentration increased only on day 3, and the association constant (Ka) remained unchanged during the observation period. The testis weight and plasma testosterone concentration began to decrease on day 3, reached the minimum on day 7 and remained at this level until week 4, and their levels were not completely restored to normal 2 weeks after cessation of treatment. The testicular LH/hCG receptor concentration was decreased on day 1, and markedly decreased to 10-15% of the control value between day 7 and week 4, but the Ka value was slightly increased during the treatment. However, these values had completely recovered 2 weeks after the cessation of treatment. The testicular LHRH receptor concentration increased between days 1 and 7, returned to the control level in weeks 2 and 4, and then decreased 2 weeks after cessation of treatment. Its Ka value was reduced in weeks 2 and 4. These data suggest that the inhibitory effect of LHRHa on the gonad in male rats is not due to reduced pituitary LH release, but to changes in the number and Ka values of gonadal receptors for LH/hCG and LHRH.  相似文献   

10.
Using a homogeneous inhibin preparation from human seminal plasma with a molecular weight of about 19 000, a sensitive and specific radioimmunoassay (RIA) for inhibin has been developed. None of the purified hormones tested, such as LH, FSH and prolactin from different species, showed any cross-reaction in this RIA. Steroid hormones such as testosterone, dihydrotestosterone, oestradiol-17 beta and progesterone did not interfere with the assay. The antiserum had an affinity constant (Ka) of 2.379 X 10(9). The assay sensitivity was 10-15 ng per tube and the intra- and inter-assay coefficients of variation were 5-7% (n = 6) and 15% (n = 10) respectively. The recovery for inhibin added to the serum of a castrated man was 95-110%. Using this RIA, inhibin levels in various biological fluids and tissues were measured. Normo-spermic semen contained significantly higher levels of inhibin than did oligospermic semen. Human prostate contained a substantial quantity of inhibin. Monkey semen, rat serum, and bovine, ovine and porcine follicular fluids cross-reacted in the RIA, while ram testicular inhibin and bull semen did not do so. In developing (9-28 days of age) male rats, circulating inhibin levels showed an inverse relationship with serum FSH levels. In female rats of this age endogenous inhibin concentrations changed in parallel with those of serum FSH.  相似文献   

11.
The objectives were to determine hypothalamic regulation of pulsatile luteinizing hormone (LH) secretion in female pigs and the biphasic feedback actions of estradiol-17beta (E(2)-17beta). In the first study, the minimum effective dosage of E(2)-17beta that would induce estrus in ovariectomized gilts was determined to be 20microg/kg body weight. In the second study, ovariectomized gilts were assigned randomly on day 0 to treatments: (a) hypophyseal stalk transection (HST), (b) cranial sham-operated control (SOC), and (c) unoperated control (UOC). On day 3, gilts from each group received a single i.m. injection of either E(2)-17beta (20microg/kg body weight) or sesame oil. Blood was collected from an indwelling jugular cannula at 15min intervals for 3h before (day -2) and after treatment (day 2) from HST, SOC and UOC gilts. On day 3, blood was collected at 2h intervals for 12h after E(2)-17beta or sesame oil injection and at 4h intervals thereafter for 108h. Pulsatile LH secretion in all gilts 2 days after ovariectomy exhibited a frequency of 0.9+/-0.06peaks/h, amplitude of 1.3+/-0.13ng/ml, baseline of 0.8+/-0.07. Serum LH concentrations from SOC and UOC gilts were similar on day 2 and profiles did not differ from those on day -2. In HST gilts pulsatile LH release was abolished and mean LH concentration decreased compared with controls (0 versus 0.9+/-0. 06peaks/h and 0.77+/-0.03 versus 1.07+/-0.07ng/ml, respectively; P<0. 05). E(2)-17beta or sesame oil did not affect serum LH concentration in HST gilts, and LH remained constant throughout 120h (0.7+/-0. 07ng/ml). In SOC and UOC control gilts, E(2)-17beta induced a 60% decrease (P<0.05) in LH concentration within 12h, and LH remained low until 48h, then increased to peak values (P<0.05) by 72h, followed by a gradual decline to 120h. Although pituitary weight decreased 31% in HST gilts compared with controls (228 versus 332mg, P<0.05), an abundance of normal basophils was evident in coronal sections of the adenohypophysis of HST comparable to that seen in control gilts. The third and fourth studies determined that hourly i. v. infusions of LHRH (2microg) and a second injection of E(2)-17beta 48h after the first had no effect on the positive feedback action of estrogen in UOC. However, in HST gilts that received LHRH hourly, the first injection of E(2)-17beta decreased (P<0.05) plasma LH concentrations while the second injection of E(2)-17beta failed to induce a positive response to estrogen. These results indicate that both pulsatile LH secretion and the biphasic feedback action of E(2)-17beta on LH secretion depend on hypothalamic regulatory mechanisms in the gilts. The isolated pituitary of HST gilts is capable of autonomous secretion of LH; E(2)-17beta will elicit direct negative feedback action on the isolated pituitary gland if the gonadotropes are supported by exogenous LHRH, but E(2)-17beta at high concentrations will not induce positive feedback in isolated pituitaries. Thus, the direct effect of E(2)-17beta on the pituitary of monkeys cannot be mimicked in pigs.  相似文献   

12.
Circulating inhibin A, inhibin B, activin A, total immunoreactive inhibin alpha-subunit (ir-alpha inhibin), LH, FSH and progesterone concentrations were measured throughout the normal ovulatory cycle and after cessation of egg laying induced by feed restriction to investigate the potential involvement of inhibins and activins in the ovulatory cycle of the domestic hen. Plasma inhibin A varied significantly (P < 0.05) during the ovulatory cycle; the concentration was highest at the preovulatory LH surge and reached a nadir 10 h later, at about the time the F(2) follicle makes the transition to become the new F(1) follicle. Plasma FSH concentrations did not change significantly throughout the cycle and showed no correlation with inhibin A. Total ir-alpha inhibin concentrations were much higher than those of inhibin A at all stages of the ovulatory cycle and showed no correlation with inhibin A or FSH. Plasma concentrations of inhibin B and of activin A were below the detection limit of the assays in all plasma samples analysed. In the feed restriction study, plasma inhibin A and total ir-alpha inhibin showed little change until the last day of oviposition (day 0) after which they fell significantly (P < 0.05) and remained low to the end of the experiment (approximately 70-78% decrease relative to day -4). Conversely, plasma FSH increased after cessation of laying and was significantly higher (P < 0.05) from day 3 to the end of the study (approximately 50% increase on day 6 relative to day -4). Plasma FSH values were negatively correlated with inhibin A (r = -0.39; P < 0.005) and total ir-alpha inhibin (r = -0.36; P < 0.005). Plasma LH and progesterone also decreased (P < 0.05) during feed restriction. The decrease in LH preceded the terminal oviposition and the associated fall in inhibin A by 2 days; there was a positive correlation between LH and inhibin A (r = 0.35; P < 0.005). Taken together these findings support (i) a role for LH in promoting inhibin A secretion by preovulatory follicles and (ii) an endocrine role for inhibin A secreted by preovulatory follicles in the maintenance of tonic FSH secretion in laying hens.  相似文献   

13.
The aim of this study was to examine the role of LH on the growth of the large preovulatory follicle and its secretion of hormones in sheep. Ewes with ovarian autotransplants were treated with GnRH-antagonist at the time of luteal regression and different LH regimes applied for 60-66 h before administration of an ovulatory stimulus (hCG). In Experiment 1 (N = 24; n = 8), ewes received either no LH or constant or pulsatile infusion of LH at the same dose (1.25 microg/h). In Experiment 2 (N = 12, n = 6), LH was constantly infused at a rate of 1.25 microg or 2.5 microg oLH/h. In Experiment 1, animals receiving either pulsatile or constant LH exhibited increases in estradiol and inhibin A secretion (P < 0.001) and a depression in FSH (P < 0.001) that resembled the normal follicular phase. Similarly in Experiment 2, doubling the dose of LH resulted in a two-fold increase in ovarian estradiol secretion (P < 0.05) but no other changes. All animals receiving LH, regardless of the pattern of stimulation, ovulated and established a normal luteal phase. In contrast, no LH treatment resulted in constant immuno-active LH without pulses, unchanged FSH and inhibin A concentrations (P < 0.05), and basal estradiol secretion (P < 0.001). Morphologically normal large antral follicles were observed in this group and although corpora lutea formed in response to hCG, progesterone profiles were abnormal. In conclusion, these results suggest that LH is an essential requirement for normal ovulatory follicle development and subsequent luteal function and show that a pulsatile mode of LH stimulation is not required by ovulatory follicles.  相似文献   

14.
The change in serum gonadotrophin concentration in response to synthetic Luteinizing Hormone Releasing Hormone (LHRH - 400 ng i.v.) was investigated under barbiturate anaesthesia in adult male rats either chronically castrated, rendered aspermatogenic by the administration of α-chlorohydrin 12–16 weeks previously (to remove inhibin), or treated with vehicle. A single injection of LHRH increased serum LH and FSH concentrations similarly in both intact and aspermatogenic rats. In castrated rats the amount of LH released was much greater and the FSH secretion sustained. A second injection produced a similar increase although a second peak of FSH could not be detected in castrated rats as the FSH level was still elevated. The increase in LH levels was two to three times larger in response to the second injection of LHRH than to the first in all groups. The results do not support the hypothesis that the enhanced gonadotropin response to castration in the aspermatogenic rat is due to increased pituitary sensitivity to LHRH.  相似文献   

15.
The hypothesis tested was that availability of glucose modulates the control of luteinizing hormone (LH) release. A second objective was to determine the role of testicular hormones in the control of pulsatile LH secretion during depressed blood glucose. Serial blood samples were collected at 15 min intervals for 8 h from intact pubertal Suffolk rams (n = 8; 7 months old) on consecutive days (Days 1, 2 and 3). Rams were castrated after sampling on Day 3 and samples were collected 3 weeks later on consecutive days (Days 4, 5 and 6). Insulin (120 units, iv) was given at Hour 4 of each of the six days to lower blood glucose. On Days 1 and 4, no other treatments were given (Control). On Days 2 and 5, LH releasing hormone (LHRH; 5 ng/kg, iv) was given at Hours 5, 6 and 7 to assess the ability of the pituitary to release LH. On Days 3 and 6, N-methyl-D,L-aspartate (NMA; 5 mg/kg, iv) was given at Hours 5, 6 and 7 to assess the ability of the hypothalamus to release LHRH. Insulin reduced plasma glucose by 52% for at least 3 h (P < 0.001). Insulin reduced the mean LH concentration (P < 0.05) and tended to reduce the LH response area (P < 0.10) in castrated animals during the control period. LHRH increased LH pulse number (P < 0.001) in intact rams and increased mean LH concentration (P < 0.01), LH pulse amplitude (P < 0.05) and LH response area (P < 0.01) in castrated animals compared to respective control periods. NMA increased mean LH concentration in intact rams (P < 0.0001) but did not affect mean LH in castrates. NMA increased LH pulse number in rams (P < 0.0001) but decreased number of pulses in castrates (P < 0.0001) compared to control periods. NMA increased LH pulse amplitude in both intact (P < 0.001) and castrated animals (P < 0.05). In conclusion, these results support the hypothesis that blood glucose concentrations influence the control of LH release in sheep. In addition, LH release in response to the LHRH secretagogue, NMA, is positively influenced by testicular hormones.  相似文献   

16.
Three experiments were conducted during the operational breeding season to confirm that continuous, subcutaneous infusion of low-dose GnRH would not disrupt established estrous cycles (Experiment 1), and test the hypotheses that a similar treatment would stimulate secretion of LH and induce development of ovulatory follicles in persistently anovulatory mares (Experiments 2 and 3). Treatment with GnRH (5 microg/h) increased (P<0.001) serum P4 during the luteal phase (7.7+/-0.5 versus 6.4+/-0.5 ng/mL), tended to increase serum LH (2.6+/-0.27 versus 1.9+/-0.25 ng/mL), and did not modify interovulatory intervals. In Experiment 2, GnRH treatment (2.5-5 microg/h) of persistently anovulatory mares increased (P<0.001) serum LH compared to controls (0.5+/-0.08 versus 0.1+/-0.03 ng/mL), with all GnRH-treated and no Control mares ovulating. Mares exhibiting Delayed Recrudescence (n=29) or Lactational Anovulation (n=18), were assigned randomly in Experiment 3 to receive either (1) GnRH/GnRH (n=23); 2.5 microg GnRH/h for 14 d (Period I) and 5 microg/h during the subsequent 28 d (Periods II and III); or (2) Control/GnRH (n=24); no treatment during Period I (control period) and GnRH treatments as in 1 during Periods II and III. Percentage of mares ovulating and pregnant during Period I was greater (P<0.05) for GnRH-treated than Control mares. Thereafter, cumulative ovulation frequency (85%), pregnancy (72%) and cycles/conception (1.3+/-0.2) were similar between groups; however, interval to conception was reduced (P<0.01) by 10.3 d in GnRH/GnRH compared to Control/GnRH.  相似文献   

17.
The objectives of the study were firstly to identify the role of the ovary in maintaining plasma luteinising hormone (LH) concentrations in cows treated with an implant of a potent GnRH agonist (deslorelin), and secondly to characterise the changes in LH following ovariectomy (OVX) in the same animals. Oestrus was synchronised in mature Holstein dairy cows and deslorelin implants were inserted 17 days later into two-third of the cows. A further 10 days later (day 0) all cows had bilateral OVX performed. A control group (CON; n=4) received no treatment and had blood samples collected at 15-min intervals for 8h on the day prior to OVX (day -1) and similarly on days 4 and 10. One group (DES_IN; n=4) had implants in place for the duration of the study while another group had implants removed (DES_OUT; n=4) at the time of OVX. DES_IN cows were sampled hourly at each sampling session (days -1, +4 and +10), whereas DES_OUT cows were sampled similarly to CON except on day -1 when hourly samples were collected.Predictable post-operative increases in mean LH (0.61 ng/ml versus 1.79 ng/ml; P<0.01) and LH pulse amplitude (0.66 ng/ml versus 1.56 ng/ml; day -1 versus day +10; P<0.01) occurred after CON cows were ovariectomised. Smoothed LH means showed a delayed effect of time compared to arithmetic means. Pulse frequency was unchanged following OVX in CON cows. A comparison of all cows that had been treated with deslorelin from day -1 showed a significant elevation of smoothed mean LH compared to untreated cows (0.80 ng/ml versus 0.34 ng/ml; DES_IN and DES_OUT versus CON; P<0.05). DES_IN cows had a 54% reduction in mean LH from day -1 to +4 following OVX (1.05 ng/ml versus 0.48 ng/ml; P<0.01) indicating the probable involvement of the ovary in the maintenance of elevated basal LH. No further reduction was detected by day +10. The LH response to an intramuscular (IM) injection of 500 microg 17beta-oestradiol (E2) on day +11 varied significantly between treatment groups (P<0.01). CON cows showed a typical LH surge, reaching maximum concentrations (10.3 ng/ml) at 17.3h post-injection. Even though low amplitude LH pulsatility had been restored in DES_OUT cows by day +4, there was an inconsistent response to E2 on day +12; one cow had an apparently normal surge yet, others showed only attenuated responses. Pulse amplitude in DES_OUT cows was lower at days +4 and +10 compared to CON (P<0.05). DES_IN cows did not produce any surge after E2. Mean LH prior to OVX (day -1) remained unchanged following the 500 microg oestradiol injection (0.38 ng/ml versus 0.45 ng/ml pre-E2 versus post-E2 compared to 1.05 ng/ml pre-OVX).The results of this experiment implicated ovarian involvement in maintaining elevated basal LH output in cows that were chronically treated with a GnRH agonist. Individual cows varied in their LH surge response to exogenous E2 given 12 days after implant removal, even though LH pulse amplitude and frequency had been restored.  相似文献   

18.
Serum luteinizing hormone (LH) concentrations were measured at 4, 6, 8 and 10 mo of age in estradiol-17beta (E(2))-treated (n = 4) and contemporary control steers (n = 4). Serum LH was measured in samples collected at 30-min intervals starting at 0600 h for 12 h and for an additional 6 h following luteinizing hormone-releasing hormone (LHRH) injection. Estradiol-17beta suppressed mean serum LH concentrations at all ages (P<0.01), but it suppressed pulsatile release of LH only at 4 and 6 mo (P<0.01), not 8 and 10 mo of age. Luteinizing hormone release in response to LHRH, expressed as the area under the secretory curve, was larger and LH concentrations returned to pre-LHRH levels later in E(2)-treated steers (P<0.01). Peak LH concentrations after LHRH varied with age (P<0.05) but not E(2) treatment. These results suggest that E(2) suppression of LH in steers occurs at the hypothalamic level and developmental changes take place within the hypothalamicpituitary axis in absence of androgen feedback from the testis.  相似文献   

19.
Hemi-pituitary glands of ovariectomized rats were superfused for 4 h with either LHRH or the analog buserelin (HOE 766) at several concentrations, and thereafter with medium only for another 1.5 h. In a further experiment glands were exposed for 2.5 h to LHRH or buserelin at a single concentration (5 ng/ml) and subsequently for another 2.5 h to either the same agonist (LHRH or buserelin) alone (5 ng/ml), the agonist plus an LHRH-antagonist (ORG 30093, 1000 ng/ml), the LHRH- antagonist alone, or medium alone. LHRH and buserelin stimulated gonadotropin release equally well. After cessation of this stimulation, the gonadotropin release by the buserelin-treated pituitary glands and the glands, treated with the highest dose of LHRH (1000 ng/ml), continued, while the release by the glands, treated with the lower doses of LHRH, declined. The LHRH-antagonist completely blocked the release of LH, stimulated by buserelin or LHRH, as well as the prolonged activation of the release, caused by buserelin pre-treatment. In a superfusion experiment with pituitary cell aggregates of 14-day-old intact female rats, buserelin stimulated the release of LH much more effectively than LHRH itself. Moreover, the release caused by buserelin declined more slowly after cessation of the stimulation. Finally, in a pituitary cell monolayer culture the Kd's of LHRH, buserelin and the antagonist were determined as 4.7 X 10(-9) M, 2.4 X 10(-10) M and 4.6 X 10(-9) respectively. It was concluded that the estimates of the potencies of LHRH and buserelin depend on the choice of the test-system. It is suggested that the long duration of action of buserelin is at least partly due to prolonged binding to the LHRH-receptor.  相似文献   

20.
Female hares were given an i.v. injection of 5 micrograms luteinizing-hormone-releasing hormone (LHRH) between Days 7 and 19 (n = 21), 20 and 33 (n = 17) and 34 and 41 (n = 17) of pregnancy, and in the 3 days after parturition (n = 16). Whatever the stage of pregnancy, the LHRH injection induced a release of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) and an acute secretion of progesterone; these hormonal responses increased significantly during pregnancy, to reach values similar to those observed in nonpregnant, nonpseudopregnant females during the breeding season in the 3 days after parturition. However, the release of LH remained monophasic in pregnant and post-partum females, in contrast to the unmated females during the reproductive season, in which there was a biphasic profile. The proportion of ovulating females after LHRH treatment was approximately 60% at the beginning and end of pregnancy; and, after parturition, fell to 23% between Days 20 and 33. After Day 33, the pituitary response to LHRH was significantly higher in ovulating than in nonovulating females. At the beginning of pregnancy, 67% of females aborted after LHRH injection; after Day 20, the incidence of abortion decreased significantly and was 0% from Day 34. The amplitude and duration of progesterone secretion by the new corpora lutea resulting from ovulation after LHRH injection were similar to those of corpora lutea induced in nonpregnant females during the breeding season.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号