首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbon monoxide binding to myoglobin was characterized using the photothermal beam deflection method. The volume and enthalpy changes coupled to CO dissociation were found to be 9.3+/-0.8 mL x mol(-1) and 7.4+/-2.8 kcal x mol(-1), respectively. The corresponding values observed for CO rebinding have the same magnitude but opposite sign: Delta V=-8.6+/-0.9 mL x mol(-1) and Delta H=-5.8+/-2.9 kcal x mol(-1). Ligand rebinding occurs as a single conformational step with a rate constant of 5 x 10(5) M(-1) s(-1) and with activation enthalpy of 7.1+/-0.8 kcal x mol(-1) and activation entropy of -22.4+/-2.8 cal x mol(-1) K(-1). Activation parameters for the ligand binding correspond to the activation parameters previously obtained using the transient absorption methods. Hence, at room temperature the CO binding to Mb can be described as a two-state model and the observed volume contraction occurs during CO-Fe bond formation. Comparing these results with CO dissociation reactions, for which two discrete intermediates were characterized, indicates differences in mechanism by which the protein modulates ligand association and dissociation.  相似文献   

2.
Photoacoustic calorimetry has been utilized to probe the thermodynamics accompanying photodissociation of the CO mixed valence form of bovine heart cytochrome c oxidase (COMV CcO). At pH's below 9 photolysis of the COMV CcO results in three kinetic phases with the first phase occurring faster than the time resolution of the instrument (i.e., < approximately 50 ns), a second phase occurring with a lifetime of approximately 100 ns and a third phase occurring with a lifetime of approximately 2 micros. The corresponding volume and enthalpy changes for these processes are: DeltaH1, DeltaV1 = +79 +/- 10 kcal mol(-1), +9 +/- 1 mL mol(-1); DeltaH2, DeltaV2 = -79 +/- 5 kcal mol(-1), -9 +/- 2 mL mol(-1); DeltaH3, DeltaV3 = +54 +/- 7 kcal mol(-1), +8 +/- 1 mL mol(-1). At pH's above 9 only one phase is observed, a prompt phase occurring in < 50 ns. The overall volume change is negligible above pH 9 and the enthalpy change is +29 +/- 5 kcal mol(-1). The data are consistent with the prompt phase being associated with CO-Fe(a3) bond cleavage, CO-CuB+ bond formation, Fe(a3) low-spin to high-spin transition and fast electron transfer (ET) from heme a3 to heme a followed by proton transfer from Glu242 to Arg38 on an approximately 100 ns timescale. The slow phase is likely a combination of CO thermal dissociation from CuB and additional ET between heme a3 to heme a. Interestingly, this phase is not evident above pH 9 suggesting linkage between CO dissociation/ET and the protonation state of a group or groups near the binuclear center.  相似文献   

3.
The kinetics of cyanide binding to chloroperoxidase were studied using a high-pressure stopped-flow technique at 25 degrees C and pH 4.7 in a pressure range from 1 to 1000 bar. The activation volume change for the association reaction is delta V not equal to + = -2.5 +/- 0.5 ml/mol. The total reaction volume change, determined from the pressure dependence of the equilibrium constant, is delta V degrees = -17.8 +/- 1.3 ml/mol. The effect of temperature was studied at 1 bar yielding delta H not equal to + = 29 +/- 1 kJ/mol, delta S not equal to + = -58 +/- 4 J/mol per K. Equilibrium studies give delta H degrees = -41 +/- 3 kJ/mol and delta S degrees = -59 +/- 10 J/mol per K. Possible contributions to the binding process are discussed: changes in spin state, bond formation and conformation changes in the protein. An activation volume analog of the Hammond postulate is considered.  相似文献   

4.
Photoacoustic calorimetry and transient absorption spectroscopy were used to study conformational dynamics associated with CO photodissociation from horse heart myoglobin (Mb) reconstituted with either Fe protoporphyrin IX dimethylester (FePPDME), Fe octaethylporphyrin (FeOEP), or with native Fe protoporphyrin IX (FePPIX). The volume and enthalpy changes associated with the Fe-CO bond dissociation and formation of a transient deoxyMb intermediate for the reconstituted Mbs were found to be similar to those determined for native Mb (DeltaV1 = -2.5+/-0.6 ml mol(-1) and DeltaH1 = 8.1+/-3.0 kcal mol(-1)). The replacement of FePPIX by FeOEP significantly alters the conformational dynamics associated with CO release from protein. Ligand escape from FeOEP reconstituted Mb was determined to be roughly a factor of two faster (tau=330 ns) relative to native protein (tau=700 ns) and accompanying reaction volume and enthalpy changes were also found to be smaller (DeltaV2 = 5.4+/-2.5 ml mol(-1) and DeltaH2 = 0.7+/-2.2 kcal mol(-1)) than those for native Mb (DeltaV2 = 14.3+/-0.8 ml mol(-1) and DeltaH2 = 7.8+/-3.5 kcal mol(-1)). On the other hand, volume and enthalpy changes for CO release from FePPIX or FePPDME reconstituted Mb were nearly identical to those of the native protein. These results suggest that the hydrogen bonding network between heme propionate groups and nearby amino acid residues likely play an important role in regulating ligand diffusion through protein matrix. Disruption of this network leads to a partially open conformation of protein with less restricted ligand access to the heme binding pocket.  相似文献   

5.
The dynamics of the enthalpy and volume changes found in the photodissociation of CO from sperm whale carboxymyoglobin and two site-directed mutants in which arginine-45 is replaced by glycine and asparagine are examined by photoacoustic calorimetry. An intermediate is observed whose lifetime at 20 degrees C is 700 ns. The enthalpy of the intermediate increases by approximately 7 kcal/mol upon replacing arginine-45 with either asparagine or glycine. These observations support recent proposals that an arginine-45 salt bridge is broken upon ligand dissociation.  相似文献   

6.
Miksovská J  Gennis RB  Larsen RW 《FEBS letters》2005,579(14):3014-3018
Here, we report the volume and enthalpy changes accompanying CO photodissociation from the mixed valence form of cytochrome bo3 oxidase from Escherichia coli. The results of photoacoustic calorimetry indicate two kinetic phases with distinct volume and enthalpy changes accompanying CO photodissociation from heme o3 and its transfer to CuB. The first phase occurring on a timescale of <50 ns is characterized by a volume decrease of -1.3+/-0.3 mL mol-1 and enthalpy change of 32+/-1.6 kcal mol-1. Subsequently, a volume increase of 2.9 mL mol-1 with an enthalpy change of -5.3+/-2.5 kcal mol-1 is observed with the lifetime of approximately 250 ns (this phase has not been detected in previous optical studies). These volume and enthalpy changes differ from the volume and enthalpy changes observed for CO dissociation from fully reduced cytochrome bo3 oxidase indicating that the heme o3/CuB active site dynamics are affected by the redox state of heme b.  相似文献   

7.
Conversion of a steroid receptor complex from the 8 S to the 4S form results in new interactions between the steroid and the receptor and/or formation of new intra-protein bonds within the receptor molecule itself. These bonds must be broken before the steroid is released. In order to localize these newly formed interactions, the dissociation kinetics of meroreceptors derived from 4 S and 8 S (molybdate-stabilized) receptor complexes were examined. At temperatures between 6 and 30 degrees C, no differences in the rates of dissociation were observed for the meroreceptors derived from the two forms of estrogen receptor, whereas approximately a twofold difference in dissociation rates for 4 S intact receptor versus 8 S intact receptor was detected. These findings indicate that the new interactions accompanying this conversion are likely to occur in regions of the receptor molecule other than the C-terminal portion of the steroid-binding site. The thermodynamic parameters of the dissociation reaction for the intact 4 S, and 8 S, and meroreceptor forms, respectively were: delta H [symbol; see text] = 26.2 +/- 1.3, 19.7 +/- 1.7, and 23.2 +/- 1.0 kcal/mol; +T delta S [symbol; see text] = 9.4 +/- 1.2, 3.2 +/- 1.7 and 6.6 +/- 0.9 kcal/mol (at 25 degrees C); and delta G [symbol; see text] = 16.8 +/- 2.5, 16.5 +/- 3.4, and 16.7 +/- 1.9 kcal/mol. As is the case for other steroid receptors, an increase in the enthalpy of steroid-receptor interaction after this conversion reflects the stability of the 4 S estrogen receptor complex.  相似文献   

8.
Both the nonactivated and activated forms of the chick oviduct cytosol progesterone receptor-hormone complexes displayed first-order dissociation kinetics at temperatures between 0 and 25 degrees C. The rate constant was always 2-3-times greater for the nonactivated than for the activated complex. The thermodynamic parameters calculated from the Eyring plot for the nonactivated and activated forms, respectively, were: delta H+ = 28.6 +/- 0.2 and 29.9 +/- 1.5 kcal/mol; -T delta S+ = 7.4 +/- 0.6 and 7.7 +/- 1.6 kcal/mol; and delta G+ = 21.3 +/- 0.5 and 22.1 +/- 0.1 kcal/mol. These values suggest that activation results in an increase in enthalpy of the ligand-receptor interaction, thus stabilizing the complex. The dissociation rate constants for the native complex obtained by two different experimental approaches, namely, isotope dilution ('chase') and dissociation against charcoal, indicated the absence of cooperativity in the receptor-ligand binding.  相似文献   

9.
Enthalpy changes of alpha-chymotrypsin acylation by 3-(2-furyl)acryloylimidazole (FAI) were calorimetrically determined as a function of pH. By observing the functional dependence of acylation enthalpies on buffer ionization heats, a complex pH profile was obtained describing proton release accompanying formation of acyl-enzyme. A pKa of 4.0 for FAI ionization and apparent pKa values of 6.8, 7.55 and 8.8 on the enzyme were used to account for the proton release data. A model which accounts for the proton release behavior was used to fit the acylation enthalpy data and values for the apparent dissociation enthalpies of the groups involved were obtained along with a pH-independent intrinsic enthalpy of acylation. This model suggests a group with an apparent pK = 6.8 and delta Hion = 8.7 kcal/mol which is perturbed to a pK of 7.55 and delta Hion = 7.6 kcal/mol on attachment of the acyl moiety to the enzyme. The apparent ionization enthalpy change for the active-inactive transition (pK3 = 8.8; delta H = 3.0 kcal/mol) corresponds with that calculated from the data of Fersht (J. Mol. Biol. 64 (1972) 497). The pH-independent intrinsic enthalpy of acylation (delta H = -7.9 kcal/mol) is corrected for group ionizations linked to the acylation process. Consequently, it more closely reflects molecular processes of interest such as substrate binding, covalent bond rearrangement, and product release.  相似文献   

10.
We have studied the photoinduced volume changes, energetics, and kinetics in the early steps of the bacteriorhodopsin (BR) photocycle with pulsed, time-resolved photoacoustics. Our data show that there are two volume changes. The fast volume change ( < or = 200 ns) is an expansion (2.5 +/- 0.3 A3/molecule) and is observed exclusively in the purple membrane (PM), vanishing in the 3-[(3-cholamidopropyl)-dimethylammonio] -1-propane-sulfonate-sulfonate-solubilized BR sample; the slow change (approximately 1 micros) is a volume contraction (-3.7 +/- 0.3 A3/molecule). The fast expansion is assigned to the restructuring of the aggregated BR in the PM, and the 1-micros contraction to the change in hydrogen bonding of water at Asp 212 (Kandori et al. 1995. J. Am. Chem. Soc. 117:2118-2119). The formation of the K intermediate releases most of the absorbed energy as heat, with delta Hk = -36 +/- 8 kJ/mol. The activation energy of the K --> L step is 49 +/- 6 kJ/mol, but the enthalpy change is small, -4 +/- 10 kJ/mol. On the time scale we studied, the primary photochemical kinetics, enthalpy, and volume changes are not affected by substituting the solvent D2O for H2O. Comparing data on monomeric and aggregated BR, we conclude that the functional unit for the photocycle is the BR monomer, because both the kinetics (rate constant and activation energy) and the enthalpy changes are independent of its aggregation state.  相似文献   

11.
K Marr  K S Peters 《Biochemistry》1991,30(5):1254-1258
The enthalpy and volume changes for the conversion of rhodopsin and isorhodopsin to lumirhodopsin have been investigated by time-resolved photoacoustic calorimetry. The conversion of rhodopsin to lumirhodopsin is endothermic by 3.9 +/- 5.9 kcal/mol and is accompanied by an increase in volume of 29.1 +/- 0.8 mL/mol. The lumirhodopsins produced from rhodopsin and isorhodopsin are energetically equivalent.  相似文献   

12.
Differential scanning calorimetric analysis was used as a probe of the conformational alteration in human alpha 2-macroglobulin (AM) upon its complex formation with methylamine and with the protease, human plasmin. The slow electrophoretic form of AM displayed a single thermal transition, characterized by a temperature midpoint (Tm) of 65.8 +/- 0.3 degrees, a calorimetric enthalpy (delta Hc) of 2,550 +/- 150 kcal/mol and a van't Hoff enthalpy (delta Hvh) of 140 kcal/mol. In the presence of sufficient methylamine to irreversibly disrupt the four thiol ester bonds in AM, a single thermal transition was obtained, characterized by a Tm of 62.8 +/- 0.3 degrees, a delta Hc of 1,700 +/- 100 kcal/mol, and a delta Hvh of 169 kcal/mol. These data suggest that a major conformational alteration is produced in AM upon complex formation with methylamine. When plasmin interacts with AM, the resulting thermogram displays Tm values for AM of 68-69 degrees and 77 degrees, also suggestive of a large conformational alteration in AM. However, this latter alteration appears dissimilar to the change induced by methylamine.  相似文献   

13.
Dynamics of the quaternary conformational change in trout hemoglobin   总被引:2,自引:0,他引:2  
The kinetics of conformational changes in trout hemoglobin I have been characterized over the temperature range 2-65 degrees C from time-resolved absorption spectra measured following photodissociation of the carbon monoxide complex. Changes in the spectra of the deoxyheme photoproduct were used to monitor changes in the protein conformation. Although the deoxyheme spectral changes are only about 8% of the total spectral change due to ligand rebinding, a combination of high-precision measurements and singular value decomposition of the data permits a detailed analysis of both their amplitudes and relaxation rates. Systematic variation of the degree of photolysis was used to alter the distribution of liganded tetramers, permitting the assignment of the spectral relaxation at 20 microseconds to the R----T quaternary conformational change of the zero-liganded and singly liganded molecules and spectral relaxations at about 50 ns and 2 microseconds to tertiary conformational changes within the R structure. Analysis of the effect of photoselection by the linearly polarized excitation pulse indicates that a major contribution to the apparent geminate rebinding in the 50-ns relaxation arises from rotational diffusion of molecules containing unphotolyzed heme-CO complexes. The activation enthalpy and activation entropy for the R0----T0 transition are +7.4 kcal/mol and -12 cal mol-1 K-1. Using the equilibrium data, delta H = +29.4 kcal/mol and delta S = +84.4 cal mol-1 K-1 [Barisas, B. G., & Gill, S. J. (1979) Biophys. Chem. 9, 235-244], the activation parameters for the T0----R0 transition are calculated to be delta H = +37 kcal/mol and delta S = +73 cal mol-1 K-1. The similarity of the equilibrium and activation parameters for the T0----R0 transition indicates that the transition state is much more R-like than T-like. This result suggests that in the path from T0 to R0 the subunits have already almost completely rearranged into the R configuration when the transition state is reached, while in the path from R0 to T0 the subunits remain in a configuration close to R in the transition state. The finding of an R-like transition state explains why the binding of ligands causes much smaller changes in the R----T rates than in the T----R rates.  相似文献   

14.
The dynamics of the enthalpy and volume changes related to the photo-dissociation of oxygen from human and bovine oxyhemoglobin are investigated by nanosecond time-resolved photoacoustic calorimetry (PAC). The values of enthalpy and volume change associated with the above process are deltaH = 37.8 +/- 3 kcal/mol, deltaV = 5.0 +/- 1 ml/mol for human HbO(2); and deltaH = 35.7 +/- 3.5 kcal/mol, deltaV = 4.8 +/- 1 ml/mol for bovine HbO(2), respectively. A possible explanation for the similar values between both human and bovine oxyhemoglobin is proposed. In addition, the PAC results for human HbO(2) and HbCO are compared and discussed.  相似文献   

15.
K B Hall  L W McLaughlin 《Biochemistry》1991,30(44):10606-10613
Four pentamers with the general sequence 5'CU(T)GU(T)G/5'CACAG have been prepared by chemical synthesis in order to generate duplex structures with common sequences. The four duplexes studied include the DNA.DNA duplex (5'dCACAG/5'dCTGTG) and the RNA.RNA duplex (5'rCUGUG/5'rCACAG) as well as the two corresponding DNA.RNA heteroduplexes (5'rCUGUG/5'dCACAG and 5'CACAG/5'dCTGTG). The measured entropy, enthalpy, and free energy changes upon melting are reported for each pentamer and compared to the predicted values where possible. Results show that the two DNA.RNA heteroduplexes are destabilized (delta G degrees 25 = -4.2 +/- 0.4 kcal/mol) relative to either the DNA.DNA duplex (delta G degrees 25 = -4.8 +/- 0.5 kcal/mol) or the RNA.RNA duplex (delta G degrees 25 = -5.8 +/- 0.6 kcal/mol). Circular dichroism spectra indicate that the RNA and the two heteroduplexes adopt an A-form conformation, while the DNA conformation is B-form. Imino proton NMR spectra also show that the heteroduplex structures resemble the RNA.RNA duplex.  相似文献   

16.
D Shortle  A K Meeker  E Freire 《Biochemistry》1988,27(13):4761-4768
By use of intrinsic fluorescence to determine the apparent equilibrium constant Kapp as a function of temperature, the midpoint temperature Tm and apparent enthalpy change delta Happ on reversible thermal denaturation have been determined over a range of pH values for wild-type staphylococcal nuclease and six mutant forms. For wild-type nuclease at pH 7.0, a Tm of 53.3 +/- 0.2 degrees C and a delta Happ of 86.8 +/- 1.4 kcal/mol were obtained, in reasonable agreement with values determined calorimetrically, 52.8 degrees C and 96 +/- 2 kcal/mol. The heat capacity change on denaturation delta Cp was estimated at 1.8 kcal/(mol K) versus the calorimetric value of 2.2 kcal/(mol K). When values of delta Happ and delta Sapp for a series of mutant nucleases that exhibit markedly altered denaturation behavior with guanidine hydrochloride and urea were compared at the same temperature, compensating changes in enthalpy and entropy were observed that greatly reduce the overall effect of the mutations on the free energy of denaturation. In addition, a correlation was found between the estimated delta Cp for the mutant proteins and the d(delta Gapp)/dC for guanidine hydrochloride denaturation. It is proposed that both the enthalpy/entropy compensation and this correlation between two seemingly unrelated denaturation parameters are consequences of large changes in the solvation of the denatured state that result from the mutant amino acid substitutions.  相似文献   

17.
N Noy  Z J Xu 《Biochemistry》1990,29(16):3888-3892
Retinol (vitamin A alcohol) is a hydrophobic compound and distributes in vivo mainly between binding proteins and cellular membranes. To better clarify the nature of the interactions of retinol with these phases which have a high affinity for it, the thermodynamic parameters of these interactions were studied. The temperature-dependence profiles of the binding of retinol to bovine retinol binding protein, bovine serum albumin, unilamellar vesicles of dioleoylphosphatidylcholine, and plasma membranes from rat liver were determined. It was found that binding of retinol to retinol binding protein is characterized by a large increase in entropy (T delta S degrees = +10.32 kcal/mol) and no change in enthalpy. Binding to albumin is driven by enthalpy (delta H degrees = -8.34 kcal/mol) and is accompanied by a decrease in entropy (T delta S degrees = -2.88 kcal/mol). Partitioning of retinal into unilamellar vesicles and into plasma membranes is stabilized both by enthalpic (delta H degrees was -3.3 and -5.5 kcal/mol, respectively) and by entropic (T delta S degrees was +4.44 and +2.91 kcal/mol, respectively) components. The implications of these finding are discussed.  相似文献   

18.
NMR study of the alkaline isomerization of ferricytochrome c   总被引:1,自引:0,他引:1  
X L Hong  D W Dixon 《FEBS letters》1989,246(1-2):105-108
The pH-induced isomerization of horse heart cytochrome c has been studied by 1H NMR. We find that the transition occurring in D2O with a pKa measured as 9.5 +/- 0.1 is from the native species to a mixture of two basic forms which have very similar NMR spectra. The heme methyl peaks of these two forms have been assigned by 2D exchange NMR. The forward rate constant (native to alkaline cytochrome c) has a value of 4.0 +/- 0.6 s-1 at 27 degrees C and is independent of pH; the reverse rate constant is pH-dependent. The activation parameters are delta H not equal to = 12.8 +/- 0.8 kcal.mol1, delta S not equal to = -12.9 +/- 2.0 e.u. for the forward reaction and delta H not equal to = 6.0 +/- 0.3 kcal.mol-1, delta S not equal to = -35.1 +/- 1.3 e.u. for the reverse reaction (pH* = 9.28). delta H degree and delta S degree for the isomerization are 6.7 +/- 0.6 kcal.mol-1 and 21.9 +/- 1.0 e.u., respectively.  相似文献   

19.
To further consider the thermochemical method as a useful approach for active transport research and to investigate the characteristic of a proton electrochemical potential (delta mu H+) across the membrane, the energetics of lactose active transport across Escherichia coli membrane vesicles coupled with an artificial electron donor (phenazine methosulfate-ascorbate) has been investigated. The results were compared with those obtained with an enzyme-associated electron donor (lactate dehydrogenase-D-lactate). The oxidation of an electron donor provided the energy necessary for the transport process. The observed higher heat of ascorbate oxidation reaction in the presence of a proton ionophore (carbonyl cyanide m-chlorophenylhydrazone) further confirmed the formation of delta mu H+ across the membrane. Part of the oxidation energy was utilized to form delta mu H+. Comparison of the energetics revealed that the magnitudes of delta Hox (the enthalpy of the oxidation reaction) and delta Hm (the enthalpy of the formation of delta mu H+) in the two energy sources were comparable (-46 kcal/mol of ascorbate to -40 kcal/mol of D-lactate for delta Hox and 9.6 kcal/mol of ascorbate to 14 kcal/mol of D-lactate for delta Hm). Comparable and low value (about 1%) was also found in the free energy transfer (defined by delta Gm/delta Gox) from the oxidation reaction to the formation of delta mu H+. These results, in combination with the close values of delta mu H+ observed in the two systems, suggested that the characteristic of the created delta mu H+ was independent of the energy source. Examination of delta Hm might provide the information on the ratio of the number of protons produced, as 1 mol of two different electron donors was oxidized. The oxidation reaction in the presence of membrane vesicles was discussed.  相似文献   

20.
The binding of alpha-, omega-amino acids, which are important effectors of human plasminogen activation, to the isolated kringle 4 (K4) peptide region of this protein has been investigated by high sensitivity titration calorimetry. The titration curve of the heat changes accompanying binding of the widely employed ligand, epsilon-aminocaproic acid (EACA), to K4 were deconvoluted to yield the following binding characteristics: n = 0.87 +/- 0.08 mol/mol; Ka = 3.82 +/- 0.37 x 10(4) M-1; delta H = -4.50 +/- 0.22 kcal/mol; delta S = 6.01 +/- 0.7 entropy units; and delta G = 6.29 +/- 0.06 kcal/mol. Here, both delta H and delta S provide the driving force of the interaction, with both hydrogen bonds and hydrophobic interactions, the latter which may result from an induced conformational change in K4 upon ligand binding, as well as possible alterations in peptide-bound water structure, providing the stabilizing forces for complex formation. The thermodynamic binding parameters were not greatly influenced by pH between the values of 5.5 and 8.2, suggesting that titratable groups on K4 in this pH region did not influence the binding. Investigations of the binding properties of structural analogues of EACA to K4 demonstrated that definable steric requirements existed for a maximal interaction, with spacing between the functional groups on EACA, as well as a hydrophobic region of this molecule, being important. This rapid and reliable method for measuring all thermodynamic parameters of formation of this complex at a given temperature can now be employed to investigate this important interaction with a wide variety of kringles and modified kringles to provide a more complete understanding of the necessary factors for this binding to occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号