首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
In Xenopus, the Mix/Bix family of homeobox genes has been implicated in mesendoderm development. Mixl1 is the only known murine member of this family. To examine the role of Mixl1 in murine embryogenesis, we used gene targeting to create mice bearing a null mutation of Mixl1. Homozygous Mixl1 mutant embryos can be distinguished from their littermates by a marked thickening of the primitive streak. By the early somite stage, embryonic development is arrested, with the formation of abnormal head folds, foreshortened body axis, absence of heart tube and gut, deficient paraxial mesoderm, and an enlarged midline tissue mass that replaces the notochord. Development of extra-embryonic structures is generally normal except that the allantois is often disproportionately large for the size of the mutant embryo. In chimeras, Mixl1(-/-) mutant cells can contribute to all embryonic structures, with the exception of the hindgut, suggesting that Mixl1 activity is most crucial for endodermal differentiation. Mixl1 is therefore required for the morphogenesis of axial mesoderm, the heart and the gut during embryogenesis.  相似文献   

5.
6.
7.
8.
9.
10.
Mixl1 is the only member of the Mix/Bix homeobox gene family identified in mammals. During mouse embryogenesis, Mixl1 is first expressed at embryonic day (E)5.5 in cells of the visceral endoderm (VE). At the time of gastrulation, Mixl1 expression is detected in the vicinity of the primitive streak. Mixl1 is expressed in cells located within the primitive streak, in nascent mesoderm cells exiting the primitive streak, and in posterior VE overlying the primitive streak. Genetic ablation of Mixl1 in mice has revealed its crucial role in mesoderm and endoderm cell specification and tissue morphogenesis during early embryonic development. However, the early lethality of the constitutive Mixl1?/? mutant precludes the study of its role at later stages of embryogenesis and in adult mice. To circumvent this limitation, we have generated a conditional Mixl1 allele (Mixl1cKO) that permits temporal as well as spatial control of gene ablation. Animals homozygous for the Mixl1cKO conditional allele were viable and fertile. Mixl1KO/KO embryos generated by crossing of Mixl1cKO/cKO mice with Sox2‐Cre or EIIa‐Cre transgenic mice were embryonic lethal at early somite stages. By contrast to wild‐type embryos, Mixl1KO/KO embryos contained no detectable Mixl1, validating the Mixl1cKO as a protein null after Cre‐mediated excision. Mixl1KO/KO embryos resembled the previously reported Mixl1?/? mutant phenotype. Therefore, the Mixl1 cKO allele provides a tool for investigating the temporal and tissue‐specific requirements for Mixl1 in the mouse. genesis 52:417–423, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号