首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Seven-day-old chick embryo neural retina (NR), telencephalon (T), optic lobe (OL), and rembencephalon (Ro) were dissociated, and the resulting cell suspensions were allowed to reaggregate in vitro during 3 days either independently or in different binary combinations. Interactions could be detected by the comparison of the activity of the enzymes of the cholinergic system, choline acetyltransferase (CAT) and acetylcholinesterase (ACE), in “pure” and “combined” aggregates.The results clearly show that the activity of both enzymes in embryonic neural cells can be modified selectively by interactions between different cell populations. Thus, combined NR-OL aggregates show an increase in CAT without changes in ACE, NR-T an increase in CAT and a decrease in ACE, T-Ro a decrease in both CAT and ACE, and OL-T no changes at all. Experiments in which NR and OL cells were combined in different proportions indicate that the interactions require the presence of defined numbers of cells from each kind. Isochronous and heterochronous combinations of 7- and 10-day-old NR and OL cells show that the interactive capacities of the cells change with development.  相似文献   

2.
Bovine pulmonary artery endothelial cells in culture were used to assess the influence of cyclic nucleotides, isoproterenol (beta adrenergic agonist), and theophylline (phosphodiesterase inhibitor) on angiotensin-I-converting enzyme (ACE) activity of the cells and culture medium. Dibutyryl cAMP (10(-3) M) but not cAMP or dibutyryl cGMP stimulated angiotensin-I-converting enzyme (ACE) activity of cells in culture approximately 50-100% but had little influence on ACE activity of the medium. Theophylline at 10(-3) M concentration produced a three- to fourfold stimulation of both cellular and medium ACE activity. Isoproterenol by itself had no effect on cellular ACE activity but produced a stimulatory effect at 10(-7)-10(-5) M concentration after pretreatment of cells for 24 hr with 10(-4) M theophylline. The results support the concept that ACE activity of endothelial cells is influenced by the cyclic AMP system. ACE activity in cells and that released into medium may be under different regulatory controls.  相似文献   

3.
4.
《Process Biochemistry》2014,49(5):890-897
The present study investigated the antioxidant properties and angiotensin-I converting enzyme (ACE) inhibitory activities of zebra blenny protein hydrolysates (ZBPHs), obtained by treatment with three different crude enzyme extracts, in alloxan induced diabetic rats (AIDR). The thiobarbituric acid-reactive substances (TBARS) level, as an indicator of lipid peroxidation, and the activity of superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT) were examined. The hepatic antioxidant enzyme activities were significantly decreased and the malondialdehyde (MDA) level was increased in AIDR. Interestingly, the administration of ZBPHs to diabetic rats reduced the MDA concentration and increased the antioxidant enzyme activities. Further, ZBPHs were found to modulate ACE activity. In addition, ZBPHs were observed to protect the kidney function efficiently, which were evidenced by the significant decrease in the creatinine, uric acid and urea contents. These results suggest a strong antioxidant and antihypertensive effect of ZBPHs which can delay the occurrence of diabetic complications and be considered as functional food ingredients in nutraceuticals or pharmaceuticals.  相似文献   

5.
Recent reports have shown a decrease in blood pressure associated with the consumption of flavanol-containing foods. However, the mechanism behind this effect is not yet known. Previously we demonstrated that the flavanol epicatechin and its related oligomers, the procyanidins, inhibit angiotensin I converting enzyme (ACE) activity in vitro. In this study, we further characterized epicatechin monomer, dimer, tetramer and hexamer ACE inhibitory effect, by performing fluorescence quenching and kinetic assays, using angiotensin I as substrate. Assessment of ACE activity in cultured human umbilical vein endothelial cells (HUVEC) indicated that the tetramer was the most active inhibitor decreasing the formation of angiotensin II by 52% (P<0.001). When ACE activity was measured using isolated rabbit lung ACE, dimer, tetramer and hexamer inhibited angiotensin II production at IC(50) values of 97.0, 4.4, and 8.2 microM, respectively. The quenching of ACE tryptophan fluorescence was assayed to evaluate the molecular interaction between ACE and procyanidins. The hexamer was the most active quencher decreasing ACE fluorescence by 56%, followed by the tetramer and the dimer, decreasing ACE fluorescence by 37% and 36%, respectively. ACE activity was evaluated in the presence of different concentrations of the ACE activator chloride ion (Cl(-)). Increased Cl(-) concentrations reduced IC(50) values for the dimer and tetramer. Finally, ACE inhibition was determined in the presence of different albumin concentrations. The presence of albumin did not reverse the ACE inhibition by dimer and tetramer, but decreased hexamer inhibition by 65%. In summary, the inhibitory effect of procyanidins on ACE and the extent of this inhibition were largely dependent on procyanidin structure. ACE inhibition by procyanidins in vivo might provide a mechanism to explain the benefits of flavonoid consumption on cardiovascular diseases.  相似文献   

6.
We investigated the molecular mechanisms involved in the angiotensin‐converting enzyme (ACE) inhibition by (?)‐epigallocatechin‐3‐gallate (EGCg), a major tea catechin. EGCg inhibited both the ACE activity in the lysate of human colorectal cancer cells and human recombinant ACE (rh‐ACE) in a dose‐dependent manner. Co‐incubation with zinc sulfate showed no influence on the rh‐ACE inhibition by EGCg, whereas it completely counteracted the inhibitory effect of ethylenediaminetetraacetic acid, a chelating‐type ACE inhibitor. Although hydrogen peroxide was produced by the autoxidation of EGCg, hydrogen peroxide itself had little effect on the ACE activity. Conversely, the co‐incubation of EGCg with borate or ascorbic acid significantly diminished the EGCg inhibition. A redox‐cycling staining experiment revealed that rh‐ACE was covalently modified by EGCg. A Lineweaver–Burk plot analysis indicated that EGCg inhibited the ACE activity in a non‐competitive manner. These results suggested that EGCg might allosterically inhibit the ACE activity through oxidative conversion into an electrophilic quinone.  相似文献   

7.
The paramagnetic effects of the bound manganese ion and of a covalently attached spin label on proton nuclear spin relaxation rates have been used to calculate distances for a structural model of the MnADP and creatine complexed to creatine kinase from rabbit muscle. The nucleotide and guanidino substrates are so aligned on the enzyme that the transferable phosphoryl group on one substrate is in apposition to the acceptor moiety on the second substrate. The divalent metal ion is most probably liganded to the alpha and beta phosphates of the nucleotide substrate, both in the abortive MnADP-creatine-enzyme complex and in the active MnATP-creatine-enzyme complex. The metal ion-formate distance approximately 5 A in the Mn(II)ADP-formate-creatine-enzyme complex and less than 5 A in the Co(II)ADP-formate-creatine-enzyme complex is consistent with the suggestion that the monovalent anion is binding at the site normally occupied by the transferable phosphoryl group, thus producing a complex which mimics the transition state. Although only an upper limit of the distance from Mn(II) to the guanidino substrate could be determined in the presence of formate, it could be concluded that the disposition of the guanidino substrate changes upon addition of formate, since the relative distances of the methyl and methylene group are inverted. The effect of formate and nitrate on increasing the residence time of creatine in the MnADP-creatine-enzyme complex as determined by NMR provides evidence that the complexes observed by NMR are identical with those involved in the catalytic mechanism, since a parallel effect of formate and nitrate is observed in the kinetics of the enzymatic reaction, where the dissociation constant of creatine from the abortive quaternary complex decreases in the presence of the anions as had been determined from their inhibition of the forward reaction (Milner-White, E.J., and Watts, D.C. (1971) Biochem. J. 122, 727-740). Although the guanidino substrate is not directly liganded to the divalent metal ion, the electron paramagnetic resonance spectrum of manganese in the transition state analog complexes, i.e. nitrate-ADP-guanidino substrate-enzyme, is strongly dependent on catalytic activity of the guanidino substrate. The structural differences observed by EPR among transition state analog complexes with various guanidino substrates were not reflected in distances from Mn(II) to the guanidino substrate, which were 10% and 0.3% as active as creatine. Within the experimental error of 1 A, the distances were the same. The enzyme or the enzyme-substrate complexes may be considered to exist in a number of structurally distinct conformations in equilibrium based on the EPR spectra and on the anomalous temperature-dependence of the relaxation rates of the formate proton of the transition state analog complexes...  相似文献   

8.
We have previously reported that poly(l-lysine)-graft-dextran cationic comb-type copolymers accelerate strand exchange reaction between duplex DNA and its complementary single strand by >4 orders of magnitude, while stabilizing duplex. However, the stabilization of the duplex is considered principally unfavourable for the accelerating activity since the strand exchange reaction requires, at least, partial melting of the initial duplex. Here we report the effects of different cationic moieties of cationic comb-type copolymers on the accelerating activity. The copolymer having guanidino groups exhibited markedly higher accelerating effect on strand exchange reactions than that having primary amino groups. The high accelerating effect of the former is considered to be due to its lower stabilizing effect on duplex DNA, resulting from its increased affinity to single-stranded DNA. The difference in affinity was clearly demonstrated by a fluorescence correlation spectroscopy study; the interaction of the former with single-stranded DNA still remained high even at 1 M NaCl, while that of the latter completely disappeared. These results suggest that some modes of interactions, such as hydrogen bonding, other than electrostatic interactions between the copolymers having guanidino groups and DNAs may be involved in strand exchange activation.  相似文献   

9.
Summary Previous work has suggested that not all immunoreactive angiotensin-converting enzyme (ACE) in tissues or cells is in a biologically active state. We have explored this possibility in cultured human umbilical vein endothelial cells (HUVEC), one of the most widely studied in vitro endothelial cell systems. Our approach included characterization of the effect of increasing passage number on ACE activity and expression of immunoreactive ACE at the single cell level, the subcellular compartmentalization of active ACE, and the effect of phorbol ester (PMA) treatment. We found that both ACE activity and expression of ACE antigen were downregulated by cultivation (30% of ACE-positive cells at seventh passage vs. 90% in primary culture). ACE downregulation is specific (number of CD31-positive cells did not change with cultivation) and correlated with downregulation of factor VIII-antigen. The percentage of ACE-positive cells in permeabilized HUVEC at third passage was almost twice that in nonpermeabilized HUVEC (90% vs. 50%), indicating that HUVEC contain intracellular immunoreactive ACE. ACE activity, however, was similar when measured in intact cells and in cell lysates. Moreover, diazonium salt of sulfanilic acid (DASA), a membrane-impermeable ACE inhibitor, inhibited ACE activity in intact cells and in cell lysates at the same extent, thus implying that intracellular ACE is inactive. PMA (100 nM) treatment increased the percentage of ACE-positive cells at third passage from 57 to 96%. ACE activity was increased 3-fold in cell and 1.5-fold in the culture medium of PMA-treated cells. Analysis of ACE activity in intact monolayers and cell lysates of control and PMA-treated cells revealed that all enzymatically active ACE in PMA-treated cells is localized on the plasma membrane and acts as an ectoenzyme. We conclude that expression of ACE by HUVEC is downregulated by repeated passage in culture but can be restored by PMA treatment. In addition, ACE expression is heterogeneous between neighboring cells, and total immunoreactive ACE protein associated with HUVEC includes an inactive pool of the enzyme.  相似文献   

10.
Guanidino compounds are known to have important biological roles, such as the participation of arginine in ureagenesis, and of creatine in muscular contraction. On the other hand, the high toxicity of guanidino compounds, such as methylguanidine and guanidine, has been under study for quite a long time in the biochemical as well as clinical fields. In this review, the author summarizes the experimental results of neurophysiological and neurochemical studies on guanidino compound-induced seizures, conducted by his colleagues since 1966, and introduces several topics arising from their recent investigations on guanidino compounds and seizure mechanism, i.e., (1) alpha-guanidino-glutaric acid in the cobalt epileptic focus and its convulsive activity; (2) guanidino-ethanesulfonic acid and epilepsy; (3) delta-guanidinovaleric acid, and endogenous and specific GABA receptor antagonist; and (4) guanidino compounds as radical generators.  相似文献   

11.
We studied the effects of platelet activating factor (PAF) on angiotensin-converting enzyme (ACE). PAF (1 x 10(-10) to 1 x 10(-6) M) had a novel effect on angiotensin I conversion. Pulmonary artery endothelial cells converted 1 nmol/dish of 125I-angiotensin I to angiotensin II in the absence of PAF. ACE activity was increased to 2.5 nmol/dish by the addition of 1 x 10(-6) M of PAF. To clarify the mechanism of this stimulatory effect of PAF on ACE, Ca2+ influx and inositol 1,4,5-trisphosphate (IP3) release in pulmonary artery endothelial cells were determined. PAF stimulated Ca2+ influx in a dose-dependent manner. PAF also stimulated phospholipase C (PLC) activity and released IP3. To study the relationship between PLC activity and ACE activity, neomycin was added. The Ca2+ influx and IP3 release stimulated by 10(-6) M of PAF were suppressed by about 60-70%. ACE activity was also inhibited up to 70% in the presence of PAF (10(-10) - 10(-6) M) by 50 M of neomycin. These results suggest that ACE was stimulated by PAF, and that its activity in endothelial cells may be mediated by the PI-turnover pathway via changes in PLC activity and IP3-mediated Ca2+ release from intracellular stores.  相似文献   

12.
The purpose of this study was to examine the effects of continuous angiotensin converting enzyme (ACE) blockade in stroke-prone spontaneously hypertensive rats (sp-SHR) on the renin-angiotensin system and on sympathetic activity. The pressor response to angiotensin II (AII) and norepinephrine (NE) were also examined after chronic blockade of ACE and compared to that of saline-treated controls. Captopril treatment had no effect on body weight. Serum ACE was significantly reduced on day 1; an effect that persisted through day 6 and day 10. Plasma renin activity (PRA) was elevated significantly on day 1 and remained at this high level throughout the 10 day observation period. Plasma NE was not altered by the chronic ACE blockade except on day 1, where there was a slight elevation of plasma NE in both groups. Pressor responses to AII and NE were not changed after chronic captopril treatment. It is observed that chronic inhibition of the renin-angiotensin system with captopril in sp-SHR resulted in a reduction of blood pressure, reduced serum ACE activity and elevated PRA. The constant plasma NE levels suggest that chronic inhibition of the renin-angiotensin system does not affect sympathetic activity. This study also indicates that long term inhibition of ACE does not alter pressor responses to either AII or NE.  相似文献   

13.
We have demonstrated previously that a variety of agents including corticosteroids, thyroid hormone, cationophores, methylxanthines, and analogues of cAMP--all of which have diversified functions in various tissues--elevate cellular angiotensin converting enzyme (ACE) activity of bovine endothelial cells in culture. In addition to these agents, we have now found that direct and receptor-mediated stimulators of adenylate cyclase, i.e., forskolin and cholera toxin, increase cellular ACE activity after 48 h incubation in culture. In an attempt to search out a more unifying concept of these stimulatory effects, we have further investigated the roles of second messengers in the stimulatory actions. Ca2+ ionophore A23187 produced significant increases in both intracellular Ca2+ and ACE of endothelial cells. In contrast to Ca2+ ionophore, agents that transiently mobilize Ca2+ from intracellular reserves such as bradykinin, acetylcholine, and ATP have no effect on the level of cellular ACE. Representative agents that elevate cellular cAMP (e.g., isobutyl methylxanthine [IBMX] and dibutyryl cAMP) elevated cellular ACE, but the slightly increased [Ca2+]i produced by these agents did not reach statistical significance. While IBMX, cholera toxin, and forskolin elevated cellular cAMP, other ACE stimulatory agents (hormones and cationophores) had no effect on cAMP. Ca2+ ionophore and the agents that elevated intracellular cAMP potentiated the effect of dexamethasone, thyroid hormone, and aldosterone in elevating cellular ACE activity. Increases in ACE activity produced by all stimulants were inhibited by the presence of 10-50 nM ouabain in the culture medium. Inhibition of ACE elevation by oubain was reversed by increasing the extracellular [K+], thereby implicating Na+, K(+)-ATPase in the ACE regulatory mechanism. These results support the presence of multiple independent mechanisms for the regulation of cellular ACE. In addition to possible involvement of intracellular Ca(2+)- and cAMP-dependent pathways, ACE is also increased by corticosteroids and thyroid hormone through mechanisms unrelated to Ca2+ and cAMP.  相似文献   

14.
Serum angiotensin converting enzyme activities were significantly increased in 26 untreated hyperthyroid patients (20.3 +/- 5.4 U/ml; P less than 0.001) compared with healthy control subjects (13.1 +/- 2.3 U/ml). In 12 patients a significant fall in enzyme activities was observed after treatment compared with pretreatment serum ACE levels (P less than 0.001). Eight patients with hypothyroidism (15.7 +/- 5.1 U/ml) and 11 athyreotic patients, totally thyroidectomized for well-differentiated thyroid cancer, showed no significant differences in serum ACE activities (14.3 +/- 2.2 U/ml) compared with control subjects. After thyroid hormone supplementation a significant increase in serum ACE activity (P less than 0.05) was found in the athyreotic patients. Addition of increasing amounts of L-thyroxine to a serum sample of an athyreotic patient showed no significant effect on ACE activity in vitro. We suggest that the elevated serum ACE activity in hyperthyroidism is not from the thyroid gland, but represents a direct effect of thyroid hormone on ACE synthesis and/or release from endothelial cells.  相似文献   

15.
Yu TZ  Ma CT 《生理学报》1998,50(6):623-628
实验采用分离培养兔肺内小动脉平滑细胞,观察低氧对PASMC的血管紧张素转化酶活性和基因表达的影响。  相似文献   

16.
Feeding flavonoid-rich blueberries to spontaneously hypertensive stroke-prone rats (SHRSP) lowers blood pressure. To determine whether this is due to inhibition of angiotensin-converting enzyme (ACE) activity, as seen with other flavanoid-rich foods, we fed blueberries to SHRSP and normotensive rats and analyzed ACE activity in blood and tissues. After 2 weeks on a control diet, the hypertensive rats showed 56% higher levels of ACE activity in blood as compared with the normotensive rats (p < 0.05). Feeding a 3% blueberry diet for 2 weeks lowered ACE activity in the SHRSP (p < 0.05) but not the normotensive rats. ACE activity in plasma of SHRSP was no longer elevated at weeks 4 and 6, but blueberry feeding inhibited ACE in SHRSP after 6 weeks. Blueberry diets had no effect on ACE activity in lung, testis, kidney, or aorta. Our results suggest that dietary blueberries may be effective in managing early stages of hypertension, partially due to an inhibition of soluble ACE activity.  相似文献   

17.
A testis-specific isoform of angiotensin-converting enzyme (ACE) has been identified in a number of mammalian species. The purpose of this study was to characterize the activity of ACE in equine spermatozoa, seminal plasma, and testis. Activity of ACE was determined in seminal plasma, ejaculated and epididymal spermatozoa from mature stallions as well as from pre- and postpubertal testis. The effect of addition of angiotensin II on equine sperm motility was also evaluated.The activity of ACE in detergent extracted sperm plasma membrane was approximately 13-fold higher than that detected in seminal plasma (93.7 mU/mg versus 7.0 mU/mg protein, respectively). Activity of ACE in equine testis was significantly higher in postpubertal than in prepubertal males (3.0 mU/mg versus 0.4 mU/mg protein, respectively), and ACE activity was reduced (P<0.001) in a dose-dependent fashion by the addition of captopril.The effect of angiotensin II on sperm motility was evaluated by computer-assisted semen analysis in sperm incubated with angiotensin II (0, 1, 10, 100 nM) at 38.5 degrees C. There was no significant effect of angiotensin II on the percent motile sperm; however, there was a significant main effect of angiotensin II (P<0.01) on the kinematic parameters beat cross frequency (BCF), average path velocity (VAP), and curvilinear velocity (VCL), respectively. In addition, there were significant stallionxconcentration interactions for amplitude lateral movement (ALH), BCF, linearity (LIN), straightness (STR), and VCL.This study demonstrates that ACE activity is present in sperm membrane from ejaculated and epididymal spermatozoa and in postpubertal testis. Further studies are required to determine the role of this testis-specific enzyme.  相似文献   

18.
Angiotensin-converting enzyme (ACE, kininase II, dipeptidyl carboxypeptidase, EC 3.4.15.1) was characterized in the adrenal medulla of male Sprague-Dawley rats. Rat adrenal medulla and lung ACE were similar in their susceptibility to Cl- activation and to the inhibition by EDTA, captopril, bacitracin and thiorphan, suggesting that rat adrenal medulla and lung ACE have similar properties. Changes in right adrenal weight and in adrenomedullary ACE activity 5 and 12 days following left unilateral adrenalectomy (UADX) were examined. Compensatory adrenocortical hypertrophy 12 days following UADX was associated with a significant increase in adrenal medullary ACE activity. This change was due not to a modified affinity of ACE for the substrate but to an alteration in ACE maximal velocity or number of available molecules. UADX had no effect on adrenocortical ACE activity. When UADX was combined with right splanchnic denervation, the increase in adrenomedullary ACE activity was blocked. The results support the existence of a functional ACE in adrenal medulla that is under neuronal control.  相似文献   

19.
M K Sim  C S Chan 《Life sciences》1992,50(23):1821-1825
The effect of experimentally-induced hypertension on the angiotensin converting enzyme (ACE) activity in the endothelium and smooth muscle cum adventitia of the Sprague Dawley rats was investigated. The ACE activity in both tissues of the 1-clip 2-kidney renovascular hypertensive rats and the deoxycorticosterone acetate/salt hypertensive rats were significantly higher than those of the normotensive control. These findings (i) support the suggestion that the 1-clip 2-kidney renovascular hypertensive rat represents a model of renin- and angiotensin-dependent hypertension and that the increased vascular ACE activity could play a role in the maintenance of hypertension (ii) provide new information regarding the association of increased vascular ACE activity and hypertension in the mineralocorticoid/salt treated hypertensive rats which may account for the finding by others that captopril is effective in preventing the development of hypertension in this low renin model of hypertension. On the other hand, the data also bring forth the possibility that the observed increase in vascular ACE activity could be the result of hypertension.  相似文献   

20.
Human genetic data have associated angiotensin-converting enzyme (ACE) with Alzheimer disease (AD), and purified ACE has been reported to cleave synthetic amyloid beta-protein (Abeta) in vitro. Whether deficiency in ACE activity, arising from genetic alteration or pharmacological inhibition, can decrease Abeta degradation and allow Abeta accumulation in intact cells is unknown. We cloned ACE from human neuroblastoma cells and showed that it had posttranslational processing and enzymatic activity typical of the endogenous protease. Cellular expression of ACE promoted degradation of naturally secreted Abeta40 and Abeta42, leading to significant clearance of both species. Using site-directed mutagenesis, we determined that both active sites within ACE contribute to Abeta clearance, and an ACE construct bearing mutations in each catalytic domain had no effect on Abeta levels. Pharmacological inhibition of ACE with a widely prescribed drug, captopril, promoted the accumulation of cell-derived Abeta in the media of beta-amyloid precursor-protein expressing cells. Together, these results show that ACE can lower the levels of secreted Abeta in living cells and that this effect is blocked by inhibiting the protease's activity with an ACE inhibitor. This work, combined with the genetic studies, supports the hypothesis that ACE may modulate the susceptibility to and progression of AD via degradation of Abeta. Our data encourage further analyses of the ACE gene for disease association and raise the question of whether currently prescribed ACE inhibitors could elevate cerebral Abeta levels in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号