首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The magnitude and diversity of Ag-specific T cell effector activity have been proposed to be controlled by an integration of positive signals transduced by the TCR and negative signals originating from inhibitory cell surface molecules. Although the lectin family of NK cell-associated inhibitory receptors has been reported to regulate the function of murine CTLs, gp49B1, the Ig superfamily member is not known to be expressed on T cells. Moreover, the consequences of the lack of an endogenously expressed NK cell-associated inhibitory receptor on T cell functions are not known. We report that gp49B1 is expressed by nearly all activated CD8 and CD4 T cells in addition to NK cells during an immune response to viral, bacterial, or tumor challenge. Kinetics of gp49B1 expression parallel functional capability and subside in the memory phase. Following vaccinia viral infection, IFN-gamma production by both subsets of T cells and NK cells is enhanced in gp49B1-deficient mice compared with gp49B1(+/+) mice. The stimulation threshold for IFN-gamma production is also lower in gp49B1-deficient T cells. In contrast, no significant differences were observed in the cytotoxic responses. We conclude that gp49B1 is a unique inhibitory receptor that is induced in multiple lineages of innate and adaptive immune cells during an infection and controls their IFN-gamma, but not cytotoxic responses.  相似文献   

2.
Murine NK cells express inhibitory receptors belonging to the C-type lectin-like (Ly-49, CD94/NKG2) and Ig superfamily-related (gp49) receptors. The murine gp49B receptor displays structural homology with human killer inhibitory receptors, and was previously identified to be a receptor on mast cells and activated NK cells. The gp49B receptor is highly related to gp49A, a receptor with unknown function. In this study, using a novel mAb produced against soluble gp49B molecules that cross-reacts with gp49A, we examined the cellular distribution and function of these receptors. gp49 is constitutively expressed on cells of the myeloid lineage throughout development, as well as on mature cells. Importantly, gp49 is not expressed on spleen- and liver-derived lymphocytes, including NK cells, but its expression is induced in vitro on NK cells following IL-2 stimulation, or in vivo by infection with murine CMV. Molecular studies revealed that both the immunoreceptor tyrosine-based inhibitory motif-containing gp49B as well as immunoreceptor tyrosine-based inhibitory motif-less gp49A receptors are up-regulated on NK cells following murine CMV infection. When co-cross-linked with NK1.1, gp49B can inhibit NK1.1-mediated cytokine release by NK cells. Taken together, these studies demonstrate that the expression of gp49B on NK cells is regulated, providing the first example of an in vivo activation-induced NK cell inhibitory receptor, in contrast to the constitutively expressed Ly49 family.  相似文献   

3.
4.
5.
Mouse gp49B is an immunoreceptor tyrosine-based inhibitory motif-bearing receptor identified on mast cells and NK cells. In this report, however, we show that this receptor is expressed on macrophages accumulating in the uterine metrial gland in midgestation, along with gp49A that has a very homologous extracellular domain with gp49B but has a short cytoplasmic domain without ITIM. Culture of bone marrow cells in the conditioned medium of the metrial gland resulted in the selective proliferation of macrophages expressing both Fcgamma-activating receptors and gp49B inhibitory receptor. Stimulation of macrophages with immobilized IgG, but not with anti-FcgammaRII/III, induced a considerable amount of TNF-alpha and IL-10 production, suggesting that the high-affinity receptor for IgG (FcgammaRI) can transmit activating signals in cytokine production of macrophages. Furthermore, coligation of gp49B with FcgammaRI resulted in the inhibition of TNF-alpha production. Thus, our data provide evidence that gp49B is an endogenous negative regulator of macrophage activation and may regulate the function of macrophages during pregnancy.  相似文献   

6.
We define by molecular, pharmacologic, and physiologic approaches the proximal mechanism by which the immunoglobulin superfamily member gp49B1 inhibits mast cell activation mediated by the high affinity Fc receptor for IgE (FcepsilonRI). In rat basophilic leukemia-2H3 cells expressing transfected mouse gp49B1, mutation of tyrosine to phenylalanine in either of the two immunoreceptor tyrosine-based inhibitory motifs of the gp49B1 cytoplasmic domain partially suppressed gp49B1-mediated inhibition of exocytosis, whereas mutation of both abolished inhibitory capacity. Sodium pervanadate elicited tyrosine phosphorylation of native gp49B1 and association of the tyrosine phosphatases src homology 2 domain-containing phosphatase-1 (SHP-1) and SHP-2 in mouse bone marrow-derived mast cells (mBMMCs). SHP-1 associated transiently with gp49B1 within 1 min after coligation of gp49B1 with cross-linked FcepsilonRI in mBMMCs. SHP-1-deficient mBMMCs exhibited a partial loss of gp49B1-mediated inhibition of FcepsilonRI-induced exocytosis at concentrations of IgE providing optimal exocytosis, revealing a central, but not exclusive, SHP-1 requirement in the counter-regulatory pathway. Coligation of gp49B1 with cross-linked FcepsilonRI on mBMMCs inhibited early release of calcium from intracellular stores and subsequent influx of extracellular calcium, consistent with SHP-1 participation. Because exocytosis is complete within 2 min in mBMMCs, our studies establish a role for SHP-1 in the initial counter-regulatory cellular responses whereby gp49B1 immunoreceptor tyrosine-based inhibition motifs rapidly transmit inhibition of FcepsilonRI-mediated exocytosis.  相似文献   

7.
Mast cell-mediated responses are likely to be regulated by the cross talk between activatory and inhibitory signals. We have screened human cord blood mast cells for recently characterized inhibitory receptors expressed on NK cells. We found that IRp60, an Ig superfamily member, is expressed on human mast cells. On NK cells, IRp60 cross-linking leads to the inhibition of cytotoxic activity vs target cells in vitro. IRp60 is constitutively expressed on mast cells but is down-regulated in vitro by the eosinophil proteins major basic protein and eosinophil-derived neurotoxin. An immune complex-mediated cross-linking of IRp60 led to inhibition of IgE-induced degranulation and stem cell factor-mediated survival via a mechanism involving tyrosine phosphorylation, phosphatase recruitment, and termination of cellular calcium influx. To evaluate the role of IRp60 in regulation of allergic responses in vivo, a murine model of allergic peritonitis was used in which the murine homolog of IRp60, LMIR1, was neutralized in BALB/c mice by mAbs. This neutralization led to a significantly augmented release of inflammatory mediators and eosinophilic infiltration. These data demonstrate a novel pathway for the regulation of human mast cell function and allergic responses, indicating IRp60 as a candidate target for future treatment of allergic and mast cell-associated diseases.  相似文献   

8.
NK cell self-tolerance is maintained by inhibitory receptors specific for MHC class I molecules. Inhibitory NK receptors are also expressed on memory CD8 T cells but their biological relevance on T cells is unclear. In this study, we describe the expression of the Ly49A receptor on a subset of autoreactive T cells which persist in mice double-transgenic for the lymphocytic choriomeningitis virus-derived peptide gp33 and a TCRalphabeta specific for the gp33. No Ly49A-expressing cells are found in TCRalphabeta single-transgenic mice, indicating that the presence of the autoantigen is required for Ly49A induction. Direct evidence for an Ag-specific initiation of Ly49A expression has been obtained in vitro after stimulation of autoreactive TCRalphabeta T cells with the cognate self-Ag. This expression of Ly49A substantially reduces Ag-specific activation of autoreactive T cells. These findings thus suggest that autoantigen-specific induction of inhibitory NK cell receptors on T cells may contribute to peripheral self-tolerance.  相似文献   

9.
NK cells represent a potent immune effector cell type that have the ability to recognize and lyse tumors. However, the existence and function of NK cells in the traditionally "immune-privileged" CNS is controversial. Furthermore, the cellular interactions involved in NK cell anti-CNS tumor immunity are even less well understood. We administered non-Ag-loaded, immature dendritic cells (DC) to CD8alpha knockout (KO) mice and studied their anti-CNS tumor immune responses. DC administration induced dramatic antitumor immune protection in CD8alpha KO mice that were challenged with B16 melanoma both s.c. and in the brain. The CNS antitumor immunity was dependent on both CD4+ T cells and NK cells. Administration of non-Ag-loaded, immature DC resulted in significant CD4+ T cell and NK cell expansion in the draining lymph nodes at 6 days postvaccination, which persisted for 2 wk. Finally, DC administration in CD8alpha KO mice was associated with robust infiltration of CD4+ T cells and NK cells into the brain tumor parenchyma. These results represent the first demonstration of a potent innate antitumor immune response against CNS tumors in the absence of toxicity. Thus, non-Ag-loaded, immature DC administration, in the setting of CD8 genetically deficient mice, can induce dramatic antitumor immune responses within the CNS that surpass the effects observed in wild-type mice. Our results suggest that a better understanding of the cross-talk between DC and innate immune cells may provide improved methods to vaccinate patients with tumors located both systemically and within the CNS.  相似文献   

10.
Loss of IFN-gamma production by invariant NK T cells in advanced cancer   总被引:10,自引:0,他引:10  
Invariant NK T cells express certain NK cell receptors and an invariant TCRalpha chain specific for the MHC class I-like CD1d protein. These invariant NK T cells can regulate diverse immune responses in mice, including antitumor responses, through mechanisms including rapid production of IL-4 and IFN-gamma, but their physiological functions remain uncertain. Invariant NK T cells were markedly decreased in peripheral blood from advanced prostate cancer patients, and their ex vivo expansion with a CD1d-presented lipid Ag (alpha-galactosylceramide) was diminished compared with healthy donors. Invariant NK T cells from healthy donors produced high levels of both IFN-gamma and IL-4. In contrast, whereas invariant NK T cells from prostate cancer patients also produced IL-4, they had diminished IFN-gamma production and a striking decrease in their IFN-gamma:IL-4 ratio. The IFN-gamma deficit was specific to the invariant NK T cells, as bulk T cells from prostate cancer patients produced normal levels of IFN-gamma and IL-4. These findings support an immunoregulatory function for invariant NK T cells in humans mediated by differential production of Th1 vs Th2 cytokines. They further indicate that antitumor responses may be suppressed by the marked Th2 bias of invariant NK T cells in advanced cancer patients.  相似文献   

11.
 Members of the gp49-related family of mouse and human immunoglobulin (Ig) superfamily receptors have significant amino acid sequence homology in their C2-type, Ig-like domains and include the killer cell Ig-like receptors (KIRs) for major histocompatibility complex class I molecules. We now report the cloning, complete sequence, and organization of the mouse gp49A gene that encodes the only member of this newly-appreciated family without either of two mutually exclusive functional motifs, namely, immunoreceptor tyrosine-based inhibitory motifs (ITIMs) or a charged transmembrane amino acid for heterodimerization with activation molecules. The gp49A and gp49B genes are 94% identical over 5.6 kilobases, the 5′ flanking regions are 94% identical over 1900 nucleotides, and the 3′ flanking regions are 97% identical for 121 nucleotides and then diverge completely; the gp49B gene encodes gp49B1 bearing two ITIMs. As measured by flow cytometry with specific antibody, gp49A is expressed on immature bone-marrow-derived mast cells, mature serosal mast cells, and several mouse mast cell lines. The substantial sequence identity of the introns of the gp49A and gp49B genes is comparable to that of the exons, establishing the gene pair as the most homologous of the gp49-related family and suggesting that the gp49A and gp49B genes arose by duplication with relatively little subsequent mutation. The findings also represent the first demonstration that gp49A is expressed on mast cells in tandem with inhibitory gp49B1, and establish that the gp49A gene is not a pseudogene, but rather encodes a protein product with characteristics different from the other family members. Received: 28 April 1999 / Accepted: 28 June 1999  相似文献   

12.
Inhibitory receptors specific for alleles of MHC class I proteins play an important role in determining the reactivity and specificity of NK cells. To determine whether these receptors are also able to regulate T cell functions, we have studied anti-viral immune responses in mice transgenic for a class I-specific inhibitory receptor, Ly49A. Although nontransgenic mice express Ly49A primarily on NK cells and some T cells, the Ly49A transgenic mice express Ly49A on all lymphocytes, including T cells. We have assessed the activation, expansion, cytokine production, and cytotoxic activity of CD8 T cells in both transgenic and nontransgenic mice following infection with lymphocytic choriomeningitis virus. As expected, nontransgenic mice made a potent virus-specific CD8 T cell response following virus infection. However, as measured in cytolysis assays and by cytokine production, virus-specific CD8 T cell activity was reduced in Ly49A transgenic mice. This inhibition was largely, but not always exclusively, dependent upon the presence, either in vivo or in vitro, of the Ly49A ligand, H-2Dd. Strikingly Ly49A transgenic mice have reduced capacity to control infection with the virulent lymphocytic choriomeningitis virus variant clone 13. Overall, these studies demonstrate that expression of killer inhibitory receptors can modulate anti-viral T cell responses in vivo and in vitro.  相似文献   

13.
NK cells inhibit T cell proliferation via p21-mediated cell cycle arrest   总被引:4,自引:0,他引:4  
NK cells have been shown to influence immune responses via direct interaction with cells of the adaptive immune system, such as dendritic cells, B cells, and T cells. A role for NK cells in down-regulation of T cell responses has been implicated in several studies; however, the underlying mechanism of this suppression has remained elusive. In this study we show that dark Agouti rat NK cells inhibit syngeneic T cell proliferation via up-regulation of the cell cycle inhibitor, p21, resulting in a G0/G1 stage cell cycle arrest. The inhibition is cell-cell contact dependent, reversible, and Ag nonspecific. Interestingly, NK cells do not inhibit IL-2 secretion or IL-2R up-regulation and do not induce T cell death. Thus, our results show that NK cells do not affect early T cell activation events, but specifically inhibit T cell proliferation by direct interaction with T cells. Our findings suggest that NK cells may play an important role in maintaining immune homeostasis by directly regulating clonal expansion of activated T cells. This novel mechanism of T cell regulation by NK cells provides insight into NK cell-mediated regulation of adaptive immunity and provides a mechanistic link between NK cell function and suppression of T cell responses.  相似文献   

14.
Inhibitory receptors specific for MHC class I molecules are expressed on partially overlapping subpopulations of NK cells and memory T cells. A central question pertinent to NK cell development and function is how the combinatorial expression of different receptors with distinct class I specificities affects functional recognition. We therefore studied the quantitative effects resulting from class I engagement of multiple inhibitory Ly49 receptors. We used a transgenic mouse model in which all NK cells and T cells express two different Ly49 receptors with shared class I specificity. Comparisons of cells from these mice with cells from single transgenic mice and wild-type mice revealed that Ly49 receptors cumulatively inhibit lymphocyte effector functions. Multiple Ly49 interactions also had a cumulative impact on NK cell development. The findings suggest that the interactions of inhibitory receptors with class I are interpreted quantitatively rather than as on/off switches. They have intriguing implications concerning NK cell tolerance and reactivity toward cells with extinguished expression of a limited number of class I molecules.  相似文献   

15.
Ly49D is a natural killer (NK) cell activation receptor that is responsible for differential mouse inbred strain-determined lysis of Chinese hamster ovary (CHO) cells. Whereas C57BL/6 NK cells kill CHO, BALB/c-derived NK cells cannot kill because they lack expression of Ly49D. Furthermore, the expression of Ly49D, as detected by monoclonal antibody 4E4, correlates well with CHO lysis by NK cells from different inbred strains. However, one discordant mouse strain was identified; C57L NK cells express the mAb 4E4 epitope but fail to lyse CHO cells. Herein we describe a Ly49 molecule isolated from C57L mice that is recognized by mAb 4E4 (anti-Ly49D). Interestingly, this molecule shares extensive similarity to Ly49D(B6) in its extracellular domain, but its cytoplasmic and transmembrane domains are identical to the inhibitory receptor Ly49A(B6), including a cytoplasmic ITIM. This molecule bears substantial overall homology to the previously cloned Ly49O molecule from 129 mice the serologic reactivity and function of which were undefined. Cytotoxicity experiments revealed that 4E4(+) LAK cells from C57L mice failed to lyse CHO cells and inhibited NK cell function in redirected inhibition assays. MHC class I tetramer staining revealed that the Ly49O(C57L)-bound H-2D(d) and lysis by 4E4(+) C57L LAK cells is inhibited by target H-2D(d). The structural basis for ligand binding was also examined in the context of the recent crystallization of a Ly49A-H-2D(d) complex. Therefore, this apparently "chimeric" Ly49 molecule serologically resembles an NK cell activation receptor but functions as an inhibitory receptor.  相似文献   

16.
Natural Killer (NK) cells are crucial in early resistance to murine cytomegalovirus (MCMV) infection. In B6 mice, the activating Ly49H receptor recognizes the viral m157 glycoprotein on infected cells. We previously identified a mutant strain (MCMVG1F) whose variant m157 also binds the inhibitory Ly49C receptor. Here we show that simultaneous binding of m157 to the two receptors hampers Ly49H-dependent NK cell activation as Ly49C-mediated inhibition destabilizes NK cell conjugation with their targets and prevents the cytoskeleton reorganization that precedes killing. In B6 mice, as most Ly49H+ NK cells do not co-express Ly49C, the overall NK cell response remains able to control MCMVm157G1F infection. However, in B6 Ly49C transgenic mice where all NK cells express the inhibitory receptor, MCMV infection results in altered NK cell activation associated with increased viral replication. Ly49C-mediated inhibition also regulates Ly49H-independent NK cell activation. Most interestingly, MHC class I regulates Ly49C function through cis-interactions that mask the receptor and restricts m157 binding. B6 Ly49C Tg, β2m ko mice, whose Ly49C receptors are unmasked due to MHC class I deficient expression, are highly susceptible to MCMVm157G1F and are unable to control a low-dose infection. Our study provides novel insights into the mechanisms that regulate NK cell activation during viral infection.  相似文献   

17.
Innate immune responses provide the host with its first line of defense against infections. Signals generated by subsets of lymphocytes, including NK cells, NKT cells, and APC during this early host response determine the nature of downstream adaptive immune responses. In the present study, we have examined the role of innate NK cells in an autoimmune model through the use of primary immunization with the myelin oligodendrocyte glycoprotein peptide to induce experimental autoimmune encephalomyelitis (EAE). Our studies have shown that in vivo depletion of NK cells can affect the adaptive immune responses, because NK cells were found to regulate the degree of clinical paralysis and to alter immune adaptive responses to the myelin oligodendrocyte glycoprotein peptide. The requirement for NK cells was reflected by changes in the T cell responses and diminished clinical disease seen in mice treated with anti-NK1.1, anti-asialo GM1, and selected Ly49 subtype-depleted mice. In addition to alteration in T cell responses, the maturational status of dendritic cells in lymph nodes was altered both quantitatively and qualitatively. Finally, examination of TCR Vbeta usage of the brain lymphocytes from EAE mice indicated a spectra-type change in receptor expression in NK- depleted mice as compared with non-NK-depleted EAE mice. These findings further establish a recently postulated link between NK cells and the generation of autoreactive T cells.  相似文献   

18.
NK cell responses are determined by signals received through activating and inhibitory cell surface receptors. Ly49H is an NK cell-specific activating receptor that accounts for the genetic resistance to murine CMV (MCMV). The Ly49H receptor has been shown to interact with two adaptor proteins (DAP12 and DAP10). In the context of MCMV infection, interaction of m157 (the MCMV-encoded ligand for Ly49H) with Ly49H results in activation of Ly49H-expressing NK cells. Chronic exposure of Ly49H with m157, however, induces tolerance in these same cells. The mechanism of this tolerance remains poorly understood. Using a transgenic mouse model, we demonstrate that induction of tolerance in Ly49H(+) NK cells by chronic exposure to m157, in vivo, requires signaling through the Ly49H adaptor protein DAP12, but not the DAP10 adaptor protein. Furthermore, mature Ly49H-expressing NK cells from wild-type mice can acquire a tolerant phenotype by 24 h posttransfer into a transgenic C57BL/6 mouse that expresses m157. The tolerant phenotype can be reversed, in vivo, if tolerant NK cells are transferred to mice that do not express the m157 protein. Thus, continuous activating receptor engagement can induce a transient tolerance in mature NK cells in vivo. These observations provide new insight into how activating receptor engagement shapes NK cell function and has important implications in how NK cells respond to tumors and during chronic viral infection.  相似文献   

19.
The immune response to influenza virus infection comprises both innate and adaptive defenses. NK cells play an early role in the destruction of tumors and virally-infected cells. NK cells express a variety of inhibitory receptors, including those of the Ly49 family, which are functional homologs of human killer-cell immunoglobulin-like receptors (KIR). Like human KIR, Ly49 receptors inhibit NK cell-mediated lysis by binding to major histocompatibility complex class I (MHC-I) molecules that are expressed on normal cells. During NK cell maturation, the interaction of NK cell inhibitory Ly49 receptors with their MHC-I ligands results in two types of NK cells: licensed (“functional”), or unlicensed (“hypofunctional”). Despite being completely dysfunctional with regard to rejecting MHC-I-deficient cells, unlicensed NK cells represent up to half of the mature NK cell pool in rodents and humans, suggesting an alternative role for these cells in host defense. Here, we demonstrate that after influenza infection, MHC-I expression on lung epithelial cells is upregulated, and mice bearing unlicensed NK cells (Ly49-deficient NKCKD and MHC-I-deficient B2m-/- mice) survive the infection better than WT mice. Importantly, transgenic expression of an inhibitory self-MHC-I-specific Ly49 receptor in NKCKD mice restores WT influenza susceptibility, confirming a direct role for Ly49. Conversely, F(ab’)2-mediated blockade of self-MHC-I-specific Ly49 inhibitory receptors protects WT mice from influenza virus infection. Mechanistically, perforin-deficient NKCKD mice succumb to influenza infection rapidly, indicating that direct cytotoxicity is necessary for unlicensed NK cell-mediated protection. Our findings demonstrate that Ly49:MHC-I interactions play a critical role in influenza virus pathogenesis. We suggest a similar role may be conserved in human KIR, and their blockade may be protective in humans.  相似文献   

20.
The Ly49H activating receptor on C57BL/6 (B6) NK cells plays a key role in early resistance to murine cytomegalovirus (MCMV) infection through specific recognition of the MCMV-encoded MHC class I-like molecule m157 expressed on infected cells. The m157 molecule is also recognized by the Ly49I inhibitory receptor from the 129/J mouse strain. The m157 gene is highly sequence variable among MCMV isolates, with many m157 variants unable to bind Ly49H(B6). In this study, we have sought to define if m157 variability leads to a wider spectrum of interactions with other Ly49 molecules and if this modifies host susceptibility to MCMV. We have identified novel m157-Ly49 receptor interactions, involving Ly49C inhibitory receptors from B6, BALB/c, and NZB mice, as well as the Ly49H(NZB) activation receptor. Using an MCMV recombinant virus in which m157(K181) was replaced with m157(G1F), which interacts with both Ly49H(B6) and Ly49C(B6), we show that the m157(G1F)-Ly49C interactions cause no apparent attenuating effect on viral clearance in B6 mice. Hence, when m157 can bind both inhibitory and activation NK cell receptors, the outcome is still activation. Thus, these data indicate that whereas m157 variants predominately interact with inhibitory Ly49 receptors, these interactions do not profoundly interfere with early NK cell responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号