首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Pentachlorophenol (PCP) use as a general biocide, particularly for treating wood, has led to widespread environmental contamination. Biodegradation has emerged as the main mechanism for PCP degradation in soil and groundwater and a key strategy for remediation. Examining the microbial biodegrading potential for PCP at a contaminated site is crucial in determining its fate. Hundreds of studies have been published on PCP microbial degradation, but few have described the biodegradation of PCP that has been in contact with soils for many years. The bioavailability of “aged” hydrophobic organics is a significant concern. PCP- and 2,3,4,6-tetrachlorophenol (2,3,4,6-TeCP)-contaminated soil samples from several depths at a former wood treatment site were placed under varying conditions in the laboratory to determine the anaerobic and aerobic potential for biodegradation of chlorophenols at the site. PCP biodegradation occurred in both anaerobic and aerobic soil samples. Rapid aerobic degradation occurred in samples spiked with 2- and 4-chlorophenol, but not with 3-chlorophenol. Reductive dechlorination of PCP in anaerobic samples resulted in the accumulation of 3-chlorophenol. In most anaerobic replicates, 3-chlorophenol was degraded with the appearance of detectable, but not quantifiable amounts of phenol. These results indicate excellent potential for remediation at the site using the indigenous microorganisms under both aerobic and anaerobic conditions. However, a fraction of the PCP was unavailable for degradation.  相似文献   

2.
Simulated atmospheric gas-phase reactions of naphthalene, fluorene and phenanthrene have been carried out in an environmental chamber with bioassay-directed chemical analysis of the reaction products. Nitro-PAH were found to be the most significant mutagens formed from the reactions of naphthalene and fluorene. The mutagram (bar graph of mutagenic activity versus HPLC fraction) of the phenanthrene reaction products closely resembled that of an ambient air particulate extract with the most mutagenic activity being in a fraction more polar than that in which the nitro-PAH elute. Nitrophenanthrene lactones (nitro-6H-dibenzo[b,d]pyran-6-ones) were found to account for the observed activity of this polar fraction of the phenanthrene reaction products. It has been shown that the utilization of an environmental chamber with a known PAH-starting material and the ability to produce sufficient product for isomer-specific identifications of mutagens is a promising complement to bioassay-directed fractionation of ambient air particulate extracts.  相似文献   

3.
Antimicrobial dendrimeric peptides.   总被引:2,自引:0,他引:2  
Dendrimeric peptides selective for microbial surfaces have been developed to achieve broad antimicrobial activity and low hemolytic activity to human erythrocytes. The dendrimeric core is an asymmetric lysine branching tethered with two to eight copies of a tetrapeptide (R4) or an octapeptide (R8). The R4 tetrapeptide (RLYR) contains a putative microbial surface recognition BHHB motif (B = basic, H = hydrophobic amino acid) found in protegrins and tachyplesins whereas the octapeptide R8 (RLYRKVYG) consists of an R4 and a degenerated R4 repeat. Antimicrobial assays against 10 organisms in high- and low-salt conditions showed that the R4 and R8 monomers as well as their divalent dendrimers contain no to low activity. In contrast, the tetra- and octavalent R4 and R8 dendrimers are broadly active under either conditions, exhibiting relatively similar potency with minimal inhibition concentrations < 1 microm against both bacteria and fungi. Based on their size and charge similarities, the potency and activity spectrum of the tetravalent R4 dendrimer are comparable to protegrins and tachyplesins, a family of potent antimicrobials containing 17-19 residues. Compared with a series of linearly repeating R4 peptides, the R4 dendrimers show comparable antimicrobial potency, but are more aqueous soluble, more stable to proteolysis, less toxic to human cells and more easily synthesized chemically. These results suggest repeating peptides that cluster the charge and hydrophobic residues may represent a primitive form of microbial pattern-recognition. Incorporating such knowledge in a dendrimeric design therefore presents an attractive approach for developing novel peptide antibiotics.  相似文献   

4.
Simulated atmospheric gas-phase reactions of naphthalene, fluorene and phenanthrene have been carried out in an environmental chamber with bioassay-directed chemical analysis of the reaction products. Nitro-PAH were found to be the most significant mutagens formed from the reactions of naphthalene and fluorene. The mutagram (bar graph of mutagenic activity versus HPLC fraction) of the phenanthrene reaction products closely resembled that of an ambient air particulate extract with the most mutagenic activity being in a fraction more polar than that in which the nitro-PAH elute. Nitrophenanthrene lactones (nitro-6H-dibenzo[b,d]pyran-6-ones) were found to account for the observed activity of this polar fraction of the phenanthrene reaction products. It has been shown that the utilization of an environmental chamber with a known PAH-starting material and the ability to produce sufficient product for isomer-specific identifications of mutagens is a promising complement to bioassaydirected fractionation of ambient air particulate extracts.  相似文献   

5.
Soil fauna can influence soil processes through interactions with the microbial community. Due to the complexity of the functional roles of fauna and their effects on microbes, little consensus has been reached on the extent to which soil fauna can regulate microbial activities. We quantified soil microbial biomass and maximum growth rates in control and fauna-excluded treatments in dry and wet tropical forests and north- and south-facing subalpine forests to test whether soil fauna effects on microbes are different in tropical and subalpine forests. Exclusion of fauna was established by physically removing the soil macrofauna and applying naphthalene. The effect of naphthalene application on the biomass of microbes that mineralize salicylate was quantified using the substrate induced growth response method. We found that: (1) the exclusion of soil fauna resulted in a higher total microbial biomass and lower maximum growth rate in the subalpine forests, (2) soil fauna exclusion did not affect the microbial biomass and growth rate in the tropical forests, and (3) the microbial biomass of salicylate mineralizers was significantly enhanced in the fauna-exclusion treatment in the tropical wet and the south-facing subalpine forests. We conclude that non-target effects of naphthalene on the microbial community alone cannot explain the large differences in total microbial biomass found between control and fauna-excluded treatments in the subalpine forests. Soil fauna have relatively larger effects on the microbial activities in the subalpine forests than in tropical dry and wet forests.  相似文献   

6.
The effect of microbial inoculation on the mineralization of naphthalene in a bioslurry treatment was evaluated in soil slurry microcosms. Inoculation by Pseudomonas putida G7 carrying the naphthalene dioxygenase (nahA) gene resulted in rapid mineralization of naphthalene, whereas indigenous microorganisms in the PAH-contaminated soil required a 28 h adaptation period before significant mineralization occurred. The number of nahA-like gene copies increased in both the inoculated and non-inoculated soil as mineralization proceeded, indicating selection towards naphthalene dioxygenase producing bacteria in the microbial community. In addition, 16S rRNA analysis by denaturing gradient gel electrophoresis (DGGE) analysis showed that significant selection occurred in the microbial community as a result of biodegradation. However, the indigenous soil bacteria were not able to compete with the P. putida G7 inoculum adapted to naphthalene biodegradation, even though the soil microbial community slightly suppressed naphthalene mineralization by P. putida G7.  相似文献   

7.

Invasive plants may modify soil properties through the release of phenolic compounds. The effects of phenolics produced by a noxious invader, Reynoutria japonica, on soil microorganisms have rarely been studied in experimental conditions. We performed a laboratory experiment to assess the influence of extracts from R. japonica on soil microbial activity, biomass, and community structure. Two types of extracts (shoots and rhizomes) were added in four concentrations (control—no extract, low—extract diluted 100 times, medium—extract diluted ten times, and high—undiluted extract) to soil collected under native plant species. Concentrations of 12 phenolic compounds, namely catechin, chlorogenic acid, emodin, epicatechin, hyperoside, quercetin, physcion, piceatannol, polydatin, procyanidin B3, resveratrol, and resveratroloside were analyzed in the extract and soil. We measured the activity of five enzymes, namely acid and alkaline phosphatases, β-glucosidase, phenoloxidase, peroxidase, the activity of bacteria on Biolog Ecoplates, as well as the biomass of bacteria, saprotrophic fungi, arbuscular mycorrhizal fungi (AMF), and microbial community structure using phospholipid (PLFA) and neutral (NLFA) fatty acid analysis. Many microbial parameters, namely phosphatase activities, total microbial, AMF, and G?+?bacterial biomass, were reduced following the addition of extracts. This was likely related to phenolics as concentrations of these compounds in soil increased with the concentration of extract added. In contrast, saprotrophic fungi and G- bacteria were largely positively affected by extract addition. Shoot and rhizome extracts had relatively similar effects on the soil properties. The changes in soil biota caused by R. japonica invasion may have implications for restoration of invaded areas.

  相似文献   

8.
Ma J  Ibekwe AM  Wang H  Xu J  Leddy M  Yang CH  Crowley DE 《PloS one》2012,7(4):e28519
Assimilable organic carbon (AOC) is commonly used to measure the growth potential of microorganisms in water, but has not yet been investigated for measuring microbial growth potential in soils. In this study, a simple, rapid, and non-growth based assay to determine AOC in soil was developed using a naturally occurring luminous strain Vibrio harveyi BB721 to determine the fraction of low molecular weight organic carbon in soil water extract. Calibration of the assay was achieved by measuring the luminescence intensity of starved V. harveyi BB721 cells in the late exponential phase with a concentration range from 0 to 800 μg l(-1) glucose (equivalent to 0-16.0 mg glucose C kg(-1) soil) with the detection limit of 10 μg l(-1) equivalent to 0.20 mg glucose C kg(-1) soil. Results showed that bioluminescence was proportional to the concentration of glucose added to soil. The luminescence intensity of the cells was highly pH dependent and the optimal pH was about 7.0. The average AOC concentration in 32 soils tested was 2.9±2.2 mg glucose C kg(-1). Our data showed that AOC levels in soil water extracts were significantly correlated (P<0.05) with microbial biomass determined as microbial biomass carbon, indicating that the AOC concentrations determined by the method developed might be a good indicator of soil microbial biomass. Our findings provide a new approach that may be used to determine AOC in environmental samples using a non-growth bioluminescence based assay. Understanding the levels of AOC in soil water extract provides new insights into our ability to estimate the most available carbon pool to bacteria in soil that may be easily assimilated into cells for many metabolic processes and suggest possible the links between AOC, microbial regrowth potential, and microbial biomass in soils.  相似文献   

9.
This study examined the microbial degradation of acenaphthene and naphthalene under denitrification conditions at soil-to-water ratios of 1:25 and 1:50 with soil containing approximately 10(5) denitrifying organisms per g of soil. Under nitrate-excess conditions, both acenaphthene and naphthalene were degraded from initial aqueous-phase concentrations of about 1 and several mg/liter respectively, to nondetectable levels (less than 0.01 mg/liter) in less than 9 weeks. Acclimation periods of 12 to 36 days were observed prior to the onset of microbial degradation in tests with soil not previously exposed to polycyclic aromatic hydrocarbon (PAH) compounds, whereas acclimation periods were absent in tests with soil reserved from prior PAH degradation tests. It was judged that the apparent acclimation period resulted from the time required for a small population of organisms capable of PAH degradation to attain sufficient densities to exhibit detectable PAH reduction, rather than being a result of enzyme induction, mutation, or use of preferential substrate. About 0.9% of the naturally occurring soil organic carbon could be mineralized under denitrification conditions, and this accounted for the greater proportion of the nitrate depletion. Mineralization of the labile fraction of the soil organic carbon via microbial denitrification occurred without an observed acclimation period and was rapid compared with PAH degradation. Under nitrate-limiting conditions the PAH compounds were stable owing to the depletion of nitrate via the more rapid process of soil organic carbon mineralization. Soil sorption tests showed at the initiation of a test that the total mass of PAH compound was divided in comparable proportions between solute in the aqueous phase and solute sorbed on the solid phase. The microbial degradation of the PAH compound depends on the interrelationships between (i) the desorption kinetics and the reversibility of desorption of sorbed compound from the soil, (ii) the concentration of PAH-degrading microorganisms, and (iii) the competing reaction for nitrate utilization via mineralization of the labile fraction of naturally occurring soil organic carbon.  相似文献   

10.
为探讨极端干旱区风沙土土壤微生物与土壤环境因子的作用规律,采用相关分析法研究了塔里木沙漠公路防护林地土壤微生物生物量与理化因子和酶活性的关系.结果表明:土壤容重和粒径减小(R<-0.84)、含水量和孔隙增大(R>0.85)时,防护林地中土壤微生物数量和生物量有增大趋势,由容重与微生物量的相关性主导;土壤养分含量与土壤微生物数量和生物量呈正相关,主要由速效养分和放线菌、微生物生物量C、P的相关性所致;土壤酶活性与土壤微生物数量和生物量的相关性差异较大,R在0.51~0.91,主要取决于蔗糖酶、磷酸酶与放线菌、微生物量C的相关;土壤盐分增加不利于土壤微生物生物量的积累(R<-0.71);土壤微生物数量与生物量呈较高正相关(R>0.63).实践中应为干旱区林地土壤微生物营造良好的土体,促进土壤物质循环.  相似文献   

11.
This study examined the microbial degradation of acenaphthene and naphthalene under denitrification conditions at soil-to-water ratios of 1:25 and 1:50 with soil containing approximately 10(5) denitrifying organisms per g of soil. Under nitrate-excess conditions, both acenaphthene and naphthalene were degraded from initial aqueous-phase concentrations of about 1 and several mg/liter respectively, to nondetectable levels (less than 0.01 mg/liter) in less than 9 weeks. Acclimation periods of 12 to 36 days were observed prior to the onset of microbial degradation in tests with soil not previously exposed to polycyclic aromatic hydrocarbon (PAH) compounds, whereas acclimation periods were absent in tests with soil reserved from prior PAH degradation tests. It was judged that the apparent acclimation period resulted from the time required for a small population of organisms capable of PAH degradation to attain sufficient densities to exhibit detectable PAH reduction, rather than being a result of enzyme induction, mutation, or use of preferential substrate. About 0.9% of the naturally occurring soil organic carbon could be mineralized under denitrification conditions, and this accounted for the greater proportion of the nitrate depletion. Mineralization of the labile fraction of the soil organic carbon via microbial denitrification occurred without an observed acclimation period and was rapid compared with PAH degradation. Under nitrate-limiting conditions the PAH compounds were stable owing to the depletion of nitrate via the more rapid process of soil organic carbon mineralization. Soil sorption tests showed at the initiation of a test that the total mass of PAH compound was divided in comparable proportions between solute in the aqueous phase and solute sorbed on the solid phase. The microbial degradation of the PAH compound depends on the interrelationships between (i) the desorption kinetics and the reversibility of desorption of sorbed compound from the soil, (ii) the concentration of PAH-degrading microorganisms, and (iii) the competing reaction for nitrate utilization via mineralization of the labile fraction of naturally occurring soil organic carbon.  相似文献   

12.
为探讨极端干旱区风沙土土壤微生物与土壤环境因子的作用规律,采用相关分析法研究了塔里木沙漠公路防护林地土壤微生物生物量与理化因子和酶活性的关系.结果表明:土壤容重和粒径减小(R<-0.84)、含水量和孔隙增大(R>0.85)时,防护林地中土壤微生物数量和生物量有增大趋势,由容重与微生物量的相关性主导;土壤养分含量与土壤微生物数量和生物量呈正相关,主要由速效养分和放线菌、微生物生物量C、P的相关性所致;土壤酶活性与土壤微生物数量和生物量的相关性差异较大,R在0.51~0.91,主要取决于蔗糖酶、磷酸酶与放线菌、微生物量C的相关;土壤盐分增加不利于土壤微生物生物量的积累(R<-0.71);土壤微生物数量与生物量呈较高正相关(R>0.63).实践中应为干旱区林地土壤微生物营造良好的土体,促进土壤物质循环.  相似文献   

13.
蓝丽英  寥蓉  杨万勤  吴福忠  杨帆  郭彩虹  袁吉  谭波 《生态学报》2017,37(23):7956-7964
萘作为土壤动物化学抑制剂已在土壤动物生态功能的研究中广泛使用,但其非目标效应使其应用仍存在很大的不确定性。为了解在亚高山森林土壤应用萘抑制土壤动物群落的非目标效应,以川西亚高山森林土壤为研究对象,采用微缩实验研究了土壤微生物生物量、丰度和磷脂脂肪酸对萘胁迫的短期响应。结果表明,萘处理和对照的土壤微生物生物量碳(MBC)、真菌丰度以及细菌、真菌、革兰氏阳性菌(G~+)和革兰氏阴性菌(G~-)PLFAs含量在整个培养期间表现为降低的变化趋势,二者的土壤微生物生物量碳和G~+PLFAs含量以培养52d最低,细菌、真菌和G~-PLFAs含量以培养的45d最低。萘处理和对照的微生物生物量氮(MBN)含量表现出先升高后降低的动态,微生物生物量碳氮比(MBC/MBN)则表现为相反趋势。对照的真菌/细菌PLFAs比值呈现先升高后降低的动态,以培养的17d最高,但萘处理的真菌/细菌PLFAs比值无明显变化规律;萘处理的G~+/G~-PLFAs比值表现为降低的变化趋势,对照的G~+/G~-PLFAs比值表现为先降低后升高的趋势。萘处理仅显著影响了G~+/G~-PLFAs比值,但萘处理和采样时间的交互作用显著影响MBC/MBN、细菌丰度、真菌/细菌丰度比以及细菌、真菌的PLFAs含量、真菌/细菌PLFAs比值、G~+/G~-PLFAs比值。萘作为土壤动物抑制剂对川西亚高山森林土壤微生物群落的非目标效应具有时间变异性。  相似文献   

14.
In this study, we evaluated whether the abundance of the functional gene nahAc reflects aerobic naphthalene degradation potential in subsurface and surface samples taken from three petroleum hydrocarbon contaminated sites in southern Finland. The type of the contamination at the sites varied from lightweight diesel oil to high molecular weight residuals of crude oil. Samples were collected from both oxic and anoxic soil layers. The naphthalene dioxygenase gene nahAc was quantified using a replicate limiting dilution-polymerase chain reaction (RLD-PCR) method with a degenerate primer pair. In the non-contaminated samples nahAc genes were not detected. In the petroleum hydrocarbon-contaminated oxic soil samples nahAc gene abundance [range 3 x 10(1)-9 x 10(4) copies (g dry wt soil)(-1)] was correlated (Kendall non-parametric correlation r2=0.459, p<0.01) with the aerobic 14C-naphthalene mineralization potential (range 1 x 10(-5)-0.1 d(-1)) measured in microcosms at in situ temperatures (8 degrees C for subsurface and 20 degrees C for surface soil samples). In these samples nahAc gene abundance was also correlated with total microbial cell counts (r2=0.471, p<0.01), respiration rate (r2=0.401, p<0.01) and organic matter content (r2=0.341, p<0.05). NahAc genes were amplified from anoxic soil layers indicating that, although involved in aerobic biodegradation of naphthalene, these genes or related sequences were also present in the anoxic subsurface. In the samples taken from the anoxic layers, the aerobic 14C-naphthalene mineralization rates were not correlated with nahAc gene abundance. In conclusion, current sequence information provides the basis for a robust tool to estimate the naphthalene degradation potential at oxic zones of different petroleum hydrocarbon-contaminated sites undergoing in situ bioremediation.  相似文献   

15.
Anticancer activity of hydrophobic peptides from soy proteins   总被引:4,自引:0,他引:4  
An anticancer peptide from soy protein was purified and isolated. Defatted soy protein was hydrolyzed with thermoase and hydrophobic peptides were extracted with ethanol. The peptide extract was fractionated by XAD-2 hydrophobic, gel filtration chromatography, and different C18 HPLCs. Anticancer activity of each fraction was assayed by measuring in vitro cytotoxicity on P388D1, a mouse monocyte macrophage cell line. IC50 value of a peptide fraction from Sephadex G-25 chromatography was 0.16 mg/ml. This peptide fraction at 1 mg/ml significantly affected cell cycle progression by arresting P388D1 at G2/M phases. Finally purified peptide from analytical C18 HPLC was nonapeptide of which molecular weight was 1157 Da and the sequence was X-Met-Leu-Pro-Ser-Tye-Ser-Pro-Tyr.  相似文献   

16.
Apple juice prepared from 'Annurca' apple puree was treated with a HPCD batch system. The pH, °Brix, color parameters and microbial load of the treated apple juice were compared with those of thermally processed juice. Thermal processes were carried out at 35, 50, 65, 85°C and treatment times ranging between 10 and 140 minutes. Microbial inactivation kinetics indicated that 5-log reduction of natural flora in apple juice was achieved at 85°C and 60 minutes of treatment time for conventional thermal process and at 16.0 MPa, 60°C and 40 minutes for HPCD process. Results suggested that temperature played a fundamental role on HPCD treatment efficiency, with inactivation significantly enhanced when it increased from 35 to 60°C. Less significant was the role of the pressure at the tested levels of 7.0, 13.0 and 16.0 MPa. Also, 5-log reduction of natural flora in apple juice was obtained at lower temperatures by cyclic treatments of six compression and decompression steps. There were no significant differences between treated and untreated samples in °Brix (α = 0.05). Significant differences were detected in pH values between the untreated and HPCD treated samples (α = 0.05). There was a significant decrease in 'L*' and 'b*' values and also differences were detected in 'a*' values between the untreated and the HPCD treated samples (α = 0.05). Statistical analysis for °Brix, pH and color data showed no differences between the untreated and HPCD treated samples in the first 2 weeks of storage at 4°C. These results emphasize the potential use of HPCD in industrial applications.  相似文献   

17.
Organically bound species have been identified as prominent and mobile forms of nitrogen and phosphorus in soils. Since a large portion of sulphur (S) in soil is bonded to carbon (C) also dissolved organic S likely is a significant constituent in soil water. To investigate the role of dissolved organic forms in leaching and cycling of S in forest soils, we examined concentrations, fluxes, and chemical composition of organic S in forest floor leachates and in soil solutions of Rendzic Leptosols under 90-year-old European beech (Fagus sylvatica L.) and Haplic Arenosols under 160-year-old Scots pine (Pinus sylvestris L.) for 27 months. These soils are low in adsorbed SO42- and receive little atmospheric S depositions at present. The chemical composition of organic S was estimated by fractionation with XAD-8 and wet-chemical characterisation (HI reduction) of binding forms. Although not as prominent as the organic forms of other nutrient elements, organic S proved to be an important contributor to S dissolved in forest floor leachates and in mineral soil solutions. Dissolved organic matter contained on average 29% of total S in forest floor leachates at the pine site and 34% at the beech site. The largest portion of organic S occurred in the subsoil solutions under beech in summer and autumn (up to 53%). Mean concentrations of organic S peaked (up to 1.1 mg l-1) in summer after rainstorms that followed dry periods. Fluxes with forest floor leachates and at 90 cm soil depth were largest in autumn because of huge amounts of rainfall. Organic S contributed significantly to the fluxes of S in the subsoils under beech comprising on average 39% of total dissolved S at 90 cm depth. Organic S produced in the forest floor layers was mainly in the hydrophilic fraction of dissolved organic matter (62 ± 6% at the pine site, 85 ± 4% at the beech site). The major binding form of organic S in the hydrophobic fraction was C-bonded S while in the hydrophilic fraction ester sulphate S, possibly associated with carbohydrates, was more prominent. Since the hydrophobic fraction increased in summer and autumn, C-bonded S was of greater importance during that time of the year than in winter and spring. With depth, concentrations and composition of organic S (and also of C) hardly changed at the pine site because of little retention of dissolved organic matter, presumably because of the small sorption capability of that soil. At the beech where organic C showed a marked decrease with depth, only a slight decrease in organic S, exclusively from the hydrophobic fraction, was found indicating that organic S was mobile compared with organic C. This was probably due to the concentration of S in the hydrophilic fraction of dissolved organic matter. Because of being concentrated in the mobile hydrophilic fraction, ester sulphate S was more mobile in the soil under beech than C-bonded S.  相似文献   

18.
通过原位控制试验,研究了萘对川西亚高山森林土壤动物抑制效率、土壤呼吸、可溶性有机质和微生物生物量的影响.结果表明:萘施用显著抑制了大型和中小型土壤节肢动物的个体密度和类群数量,个体密度分别下降76.3%~78.5%和83.3%~84.8%,类群数量分别降低48.3%~56.1%和45.8%~58.3%.萘处理与对照的土壤呼吸速率季节动态呈单峰曲线,分别以2月和8月为最低值和最高值,而且未受萘施用的显著影响.与对照相比,萘处理显著降低了8月和10月土壤可溶性碳和可溶性氮含量,以及4月和8月微生物生物量碳,增加了4月的微生物生物量碳氮比.萘处理和采样时间的交互作用显著影响了微生物生物量碳和微生物生物量氮,但对土壤动物个体密度和类群数量以及可溶性碳含量影响不显著.总体上,萘作为抑制剂,在川西亚高山森林土壤能够有效地抑制土壤动物节肢动物,且并未显著影响土壤呼吸,但对土壤碳氮组分造成了不同程度的影响.  相似文献   

19.
An evaluation of microbial DNA pools was performed using direct quantitative isolation of DNA from contemporary soils of Southern Urals and paleosols sealed under burial mounds of early Bronze Age more than 5000 years B.P. Significant regression dependence was found between the biomass and DNA contents in these soils (R2 = 0.97). Activity and dominant ecological strategies of microbial communities of paleosols and contemporary southern black soil were compared from growth parameters obtained by analysis of respiratory curves. The ratio of maximum specific growth rates of soil microorganisms on glucose and on yeast extract was shown to provide an auxotrophy index for soil microbial communities.  相似文献   

20.
In a field experiment we have examined the effect of long-term grassland management regimes (viz., intensive versus extensive) and dominant plant species (viz., Arrhenatherum elatius, Holcus lanatus and Dactylis glomerata) on soil organic carbon (SOC) build up, soil microbial communities using biomarker phospholipid fatty acids (PLFA), and the relationship between SOC and PLFAs of major groups of microorganisms (viz., bacteria, fungi, and actinomycetes). The results have revealed that changes in SOC were not significantly affected by the intensity of management or by the plant species composition or by their interaction. The amount of PLFA of each microbial group was affected weakly by management regime and plant species, but the canonical variance analysis (CVA), based on individual PLFA values, demonstrated significant (P<0.05) effects of management regime and plant species on the composition of microbial community. Positive and significant (P<0.01) relationships were observed between PLFA of bacteria (R2=0.47), fungi (R2=0.33), actinomycetes (R2=0.71) and total microbial PLFA (R2=0.53) and SOC content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号