首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: Extracellular 5-hydroxytryptamine (5-HT) in the median raphe and dorsal hippocampus was measured using in vivo microdialysis. Administration of 60 m M K+ through the probe into the median raphe region significantly increased 5-HT output from the median raphe and the right dorsal hippocampus. Local infusion of 10 µ M tetrodotoxin into the median raphe region substantially decreased 5-HT in the median raphe and left and right dorsal hippocampus. Systemic administration (0.3 mg/kg s.c.) of 8-hydroxy-2-(di- n -propylamino)tetralin (8-OH-DPAT) decreased the 5-HT levels in the dialysates from both the median raphe region and dorsal hippocampus. Administration of 30 n M 8-OH-DPAT through the dialysis probe into the median raphe region decreased 5-HT output from the median raphe and dorsal hippocampus significantly, whereas at concentrations from 60 n M to 10 µ M , no significant effects were found in either region. With 100 µ M 8-OH-DPAT, a significant increase was seen in the median raphe region, but not in dorsal hippocampus. Similar findings were obtained following microinjections of different doses of the compound into the median raphe region. The results of this study indicate that the somatodendritic release of 5-HT is impulse flow-dependent. Moreover, the decrease of 5-HT in the median raphe region by low nanomolar concentrations of 8-OH-DPAT supports the notion that somatodendritic 5-HT release is subject to a local negative feedback mechanism through 5-HT1A autoreceptors.  相似文献   

2.
Abstract: Recent neurochemical studies of the properties of 5-hydroxytryptamine (5-HT) pathways arising from the dorsal raphe nucleus (DRN) and median raphe nucleus (MRN) have measured extracellular 5-HT in brain regions with reported preferential DRN or MRN 5-HT inputs. Here, we have tested whether electrical stimulation of the DRN and MRN releases 5-HT in rat forebrain regions in a pattern that fits the reported distribution of DRN/MRN pathways. The effect on extracellular 5-HT of electrical stimulation (5 Hz, 300 µA, 20 min) of the DRN, and then MRN, was determined in six regions of the anaesthetised rat. Stimulation of the DRN evoked a short-lasting but clear-cut release of 5-HT (+70–100%) in regions (frontal cortex, dorsal striatum, globus pallidus, and ventral hippocampus) reported to receive a 5-HT projection from the DRN. Regions receiving an MRN innervation (dorsal hippocampus, medial septum, and ventral hippocampus) released 5-HT (+70–100%) in response to MRN stimulation. Regions reported to receive a preferential DRN innervation (frontal cortex, dorsal striatum, and globus pallidus) did not respond to MRN stimulation. Of two regions (dorsal hippocampus and medial septum) reported to receive a preferential MRN innervation, one did not respond to DRN stimulation (dorsal hippocampus) although the other (medial septum) did. In summary, electrical stimulation of the DRN and MRN released 5-HT in a regionally specific pattern. With the exception of one region (medial septum), this pattern of release bears a strong relationship to the distribution of 5-HT projections from the DRN and MRN reported by anatomical studies. The combination of raphe stimulation with microdialysis may be a useful way to study the in vivo neurochemistry of DRN/MRN 5-HT pathways.  相似文献   

3.
The effect of manipulating the activity of central 5-hydroxytryptamine (5-HT) neurones on extracellular 5-HT in ventral hippocampus of the chloral hydrate-anaesthetized rat was studied using the brain perfusion method, microdialysis. Basal levels of 5-HT in the dialysates were close to the detection limits of our assay using HPLC with electrochemical detection. However, addition of the selective 5-HT reuptake inhibitor citalopram (10(-6) M) to the perfusion medium produced readily measurable amounts of dialysate 5-HT. Citalopram, therefore, was used throughout our experiments. Hippocampal dialysate levels of 5-HT sharply declined over the first hour after dialysis probe implantation, but then became constant. This stable output of 5-HT was reduced by 57% in rats treated 14 days previously with intracerebroventricular injections of the 5-HT neurotoxin 5,7-dihydroxytryptamine. Electrical stimulation (1-ms pulse width, 300 microA, 2-20 Hz) of the dorsal raphe nucleus for 20 min caused a rapid rise in hippocampal 5-HT output, which immediately declined on cessation of the stimulus and was frequency-dependent. Addition of tetrodotoxin (10(-6) M) to the perfusion medium reduced 5-HT levels to 75% of predrug values. Injection of the 5-HT1A agonist 8-hydroxy-2-(di-n-propylamino)tetralin (0.5 and 2.5 micrograms) into the dorsal raphe nucleus caused a dose-related fall in hippocampal output of 5-HT compared to saline-injected controls. We conclude from these data that the spontaneous output of endogenous 5-HT into hippocampal dialysates, measured under our experimental conditions, predominantly originates from central 5-HT neurones and changes in accordance with their electrical activity.  相似文献   

4.
Abstract: Serotonergic neurons of the dorsal and median raphe nuclei are morphologically dissimilar. Recent results challenge previous evidence indicating a greater inhibition of dorsal raphe neurons after 5-hydroxytryptamine1A (5-HT1A) autoreceptor activation. As both nuclei innervate different forebrain territories, this issue is critical to understanding the changes in brain function induced by anxiolytic and antidepressant drugs. Using microdialysis, we examined the modifications of 5-HT release induced by the selective 5-HT1A agonist ipsapirone in both neuronal pathways. Maximal and minimal basal 5-HT values (in the presence of 1 µ M citalopram) were 45.0 ± 4.8 fmol/fraction in the median raphe nucleus and 8.4 ± 0.4 fmol/fraction in the dorsal hippocampus. Ipsapirone (0.3, 3, and 10 mg/kg s.c.) reduced dose-dependently 5-HT in the two raphe nuclei and four forebrain areas. Maximal reductions (to ∼25% of predrug values) were observed in cortex and striatum and in median raphe nucleus. The effects were more moderate in dorsal and ventral hippocampus (to 66 and 50% of baseline, respectively). These results are consistent with a higher sensitivity of dorsal raphe neurons to 5-HT1A autoreceptor activation. Yet the differential reduction of 5-HT release in the median raphe nucleus and hippocampus suggests the presence of complex mechanisms of control of 5-HT release in these neurons.  相似文献   

5.
Serotonin 5-HT1A receptors in rat hippocampal membranes were solubilized by 10 mM 3-[3-(cholamidopropyl)dimethylammonio]-1-propane sulfonate (CHAPS) and chromatographed on various gels in an attempt to design a relevant protocol for their (partial) purification. In particular, an affinity gel made of the 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) derivative 8-methoxy-2-[(N-propyl, N-butylamino)amino]tetralin (8-MeO-N-PBAT) coupled to Affigel 202 was specially developed for this purpose. First, studies of the effects of various compounds (detergents, lipids, reducing agents, sugars, etc.) on the specific binding of [3H]8-OH-DPAT and on the rate of heat-induced inactivation of solubilized 5-HT1A sites led to a buffer composed of 50 mM Tris-HCl, 50 microM dithiothreitol, 1 mM CHAPS, 10% glycerol, 0.1 mM MnCl2, and 50 micrograms/ml of cholesteryl hemisuccinate, pH 7.4, ensuring a high degree of stability of solubilized 5-HT1A sites, compatible with chromatographic analyses for 2-4 days at 4 degrees C. Adsorption and subsequent elution of [3H]8-OH-DPAT specific binding sites were found with several chromatographic gels, including wheat germ agglutinin-agarose, phenyl-Sepharose, hydroxylapatite-Ultrogel, diethylaminoethyl (DEAE)-Sepharose, and DEAE-Sephacel. Similarly, 8-MeO-N-PBAT-Affigel 202 allowed the adsorption and subsequent elution (by 1 mM 5-HT) of active 5-HT1A binding sites solubilized from rat hippocampal membranes. The two-step chromatography using 8-MeO-N-PBAT-Affigel 202 followed by wheat germ agglutinin-agarose gave a fraction enriched (by at least 400-fold) in 5-HT1A sites. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of this partially purified fraction revealed a major protein band with Mr close to 60,000.  相似文献   

6.
Abstract: We examined the effect of kindling on serotonergic neurotransmission in the hippocampus by measuring serotonin (5-HT) release and uptake in hippocampal synaptosomes and 5-HT1A and 5-HT4 receptor subtypes during and at different times after electrical kindling of the dentate gyrus. Using quantitative receptor autoradiography, we found that binding of 8-[3H]hydroxy-2-(di- n -propylamino)tetralin ([3H]8-OH-DPAT) to 5-HT1A receptors was selectively increased by 20% on average ( p < 0.05) in the dentate gyrus of the stimulated and contralateral hippocampus 2 days after stage 2 (stereotypes and occasional retraction of a forelimb) and by 100% on average ( p < 0.05) 1 week after stage 5 (tonic-clonic seizures) compared with sham-stimulated rats. A 20% increase ( p < 0.05) was observed 1 month after the last generalized seizure. No changes were found after a single afterdischarge. 5-HT4 receptors, which colocalize with 5-HT1A receptors on hippocampal neurons, were not modified in kindled tissue. [3H]5-HT uptake and its release as well as the 5-HT1B autoreceptor function did not differ from shams in hippocampal synaptosomes at stages 2 and 5. Systemic administration of 100 and 1,000 µg kg−1 8-OH-DPAT or 1,000 µg kg−1 WAY-100,635, 30 min before each electrical stimulation, did not significantly alter kindling progression or the occurrence of stage 5 seizures in fully kindled rats. The changes in 5-HT1A receptor density in the dentate gyrus are part of the plastic modifications occurring during kindling and may contribute to modulating tissue hyperexcitability.  相似文献   

7.
Abstract: 5-HT1A autoreceptor antagonists enhance the effects of antidepressants by preventing a negative feedback of serotonin (5-HT) at somatodendritic level. The maximal elevations of extracellular concentration of 5-HT (5-HText) induced by the 5-HT uptake inhibitor paroxetine in forebrain were potentiated by the 5-HT1A antagonist WAY-100635 (1 mg/kg s.c.) in a regionally dependent manner (striatum > frontal cortex > dorsal hippocampus). Paroxetine (3 mg/kg s.c.) decreased forebrain 5-HText during local blockade of uptake. This reduction was greater in striatum and frontal cortex than in dorsal hippocampus and was counteracted by the local and systemic administration of WAY-100635. The perfusion of 50 µmol/L citalopram in the dorsal or median raphe nucleus reduced 5-HText in frontal cortex or dorsal hippocampus to 40 and 65% of baseline, respectively. The reduction of cortical 5-HText induced by perfusion of citalopram in midbrain raphe was fully reversed by WAY-100635 (1 mg/kg s.c.). Together, these data suggest that dorsal raphe neurons projecting to striatum and frontal cortex are more sensitive to self-inhibition mediated by 5-HT1A autoreceptors than median raphe neurons projecting to the hippocampus. Therefore, potentiation by 5-HT1A antagonists occurs preferentially in forebrain areas innervated by serotonergic neurons of the dorsal raphe nucleus.  相似文献   

8.
Abstract: The characteristics of the serotonin (5-HT) output in the dorsal and median raphe nuclei of the rat were studied using in vivo microdialysis. The basal output of 5-HT increased after KC1 was added to the perfusion fluid. In contrast, neither the omission of calcium ions nor the addition of 0.5 nM tetrodotoxin affected dialysate 5-HT or 5-hy-droxyindoleacetic acid (5-H1AA). Reserpine did not decrease the output of 5-HT and 5-HIAA 24 h later and p-chloroamphetamine increased 5-HT in both vehicle- and reserpine-treated rats severalfold. 8-Hydroxy-2-(di-n-pro-pylamino)tetralin (8-OH-DPAT), at 1 or 10 μM, perfused into the raphe did not change the outputs of 5-HT or 5-HIAA. Higher doses (0.1, Land 10 mM) increased extracellular 5-HT in the raphe, probably via an inhibition of uptake. In animals bearing two probes (raphe nuclei and ventral hippocampus), only the 10 vaM dose of 8-OH-DPAT perfused into the raphe decreased the hippocampal output of 5-HT and 5-HIAA. The systemic injection of 0.1 mg/kg 8-OH-DPAT decreased dialysate 5-HT and 5-HIAA in the raphe and hippocampus. These results suggest that extracellular 5-HT in raphe nuclei originates from a cytoplasmic pool and is not dependent on either nerve impulse of 5-HT neurons or local activation of 5-HT1A receptors.  相似文献   

9.
Serotonin 5-HT1A receptors have been reported to be negatively coupled to muscarinic receptor-stimulated phosphoinositide turnover in the rat hippocampus. In the present study, we have investigated further the pharmacological specificity of this negative control and attempted to elucidate the mechanism whereby 5-HT1A receptor activation inhibits the carbachol-stimulated phosphoinositide response in immature or adult rat hippocampal slices. Various 5-HT1A receptor agonists were found to inhibit carbachol (10 microM)-stimulated formation of total inositol phosphates in immature rat hippocampal slices with the following rank order of potency (IC50 values in nM): 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) (11) greater than ipsapirone (20) greater than gepirone (120) greater than RU 24969 (140) greater than buspirone (560) greater than 1-(m-trifluoromethylphenyl)piperazine (1,500) greater than methysergide (5,644); selective 5-HT1B, 5-HT2, and 5-HT3 receptor agonists were inactive. The potency of the 5-HT1A receptor agonists investigated as inhibitors of the carbachol response was well correlated (r = 0.92) with their potency as inhibitors of the forskolin-stimulated adenylate cyclase in guinea pig hippocampal membranes. 8-OH-DPAT (10 microM) fully inhibited the carbachol-stimulated formation of inositol di-, tris-, and tetrakisphosphate but only partially antagonized (-40%) inositol monophosphate production. The effect of 8-OH-DPAT on carbachol-stimulated phosphoinositide turnover was not prevented by addition of tetrodotoxin (1 microM), by prior destruction of serotonergic afferents, by experimental manipulations causing an increase in cyclic AMP levels (addition of 10 microM forskolin), or by changes in membrane potential (increase in K+ concentration or addition of tetraethylammonium). Prior intrahippocampal injection of pertussis toxin also failed to alter the ability of 8-OH-DPAT to inhibit the carbachol response. Carbachol-stimulated phosphoinositide turnover in immature rat hippocampal slices was inhibited by the protein kinase C activators phorbol 12-myristate 13-acetate (10 microM) and arachidonic acid (100 microM). Moreover, the inhibitory effect of 8-OH-DPAT on the carbachol response was blocked by 10 microM quinacrine (a phospholipase A2 inhibitor) but not by BW 755C (100 microM), a cyclooxygenase and lipoxygenase inhibitor. These results collectively suggest that 5-HT1A receptor activation inhibits carbachol-stimulated phosphoinositide turnover by stimulating a phospholipase A2 coupled to 5-HT1A receptors, leading to arachidonic acid release. Arachidonic acid could in turn activate a gamma-protein kinase C with as a consequence an inhibition of carbachol-stimulated phosphoinositide turnover. This inhibition may be the consequence of a phospholipase C phosphorylation and/or a direct effect on the muscarinic receptor.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Abstract : Single treatment with the serotonin (5-hydroxytryptamine) 5-HT1A receptor agonists 8-hydroxy-2-(di- n -propylamino)tetralin (8-OH-DPAT) and alnespirone (S-20499) reduces the extracellular 5-HT concentration (5-HText) in the rat midbrain and forebrain. Given the therapeutic potential of selective 5-HT1A agonists in the treatment of affective disorders, we have examined the changes in 5-HT1A receptors induced by 2-week minipump administration of alnespirone (0.3 and 3 mg/kg/day) and 8-OH-DPAT (0.1 and 0.3 mg/kg/day). The treatment with alnespirone did not modify baseline 5-HText but significantly attenuated the ability of 0.3 mg/kg s.c. alnespirone to reduce 5-HText in the dorsal raphe nucleus (DRN) and frontal cortex. In contrast, the ability of 8-OH-DPAT (0.025 and 0.1 mg/kg s.c.) to reduce 5-HText in both areas was unchanged by 8-OH-DPAT pretreatment. Autoradiographic analysis revealed a significant reduction of [3H]8-OH-DPAT and [3H]WAY-100635 {3H-labeled N -[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]- N -(2-pyridyl)cyclohexanecarboxamide · 3HCl} binding to somatodendritic 5-HT1A receptors (but not to postsynaptic 5-HT1A receptors) of rats pretreated with alnespirone but not with 8-OH-DPAT. In situ hybridization analysis revealed no change of the density of the mRNA encoding the 5-HT1A receptors in the DRN after either treatment. These data indicate that continuous treatment for 2 weeks with alnespirone, but not with 8-OH-DPAT, causes a functional desensitization of somatodendritic 5-HT1A receptors controlling 5-HT release in the DRN and frontal cortex.  相似文献   

11.
Previous studies on central 5-hydroxytryptamine1A (5-HT1A) receptors have consistently shown the existence of a GTP-insensitive component of agonist binding, i.e., binding of [3H]8-hydroxy-2-(di-n-propylamino)tetralin ([3H]8-OH-DPAT) that persists in the presence of 0.1 mM GTP or guanylylimidodiphosphate (GppNHp). The molecular basis for this apparent heterogeneity was investigated pharmacologically and biochemically in the present study. The GppNHp-insensitive component of [3H]8-OH-DPAT binding increased spontaneously by exposure of rat hippocampal membranes or their 3-[3-(cholamidopropyl)dimethylammonio]-1-propane sulfonate-soluble extracts to air; it was reduced by preincubation of solubilized 5-HT1A binding sites in the presence of dithiothreitol and, in contrast, reversibly increased by preincubation in the presence of various oxidizing reagents like sodium tetrathionate or hydrogen peroxide. In addition, exposure of hippocampal soluble extracts to short-cross-linking reagents specific for thiols produced an irreversible increase in the proportion of GppNHp-insensitive over total [3H]8-OH-DPAT binding. The pharmacological properties of this GppNHp-insensitive component of [3H]8-OH-DPAT binding were similar to those of 5-HT1A sites in the absence of nucleotide. Sucrose gradient sedimentation of solubilized 5-HT1A binding sites treated by dithiothreitol or sodium tetrathionate showed that oxidation prevented the dissociation by GTP of the complex formed by the 5-HT1A receptor binding subunit (R[5-HT1A]) and a guanine nucleotide-binding protein (G protein). Moreover, the oxidation of -SH groups by sodium tetrathionate did not prevent the inactivation of [3H]8-OH-DPAT specific binding by N-ethylmaleimide, in contrast to that expected from an interaction of both reagents with the same -SH groups on the R[5-HT1A]-G protein complex. These data suggest that the appearance of GTP-insensitive [3H]8-OH-DPAT specific binding occurs as a result of the (spontaneous) oxidation of essential -SH groups (different from those preferentially inactivated by N-ethylmaleimide) on the R[5-HT1A]-G protein complex.  相似文献   

12.
Serotonin1 (5-hydroxytryptamine1, 5-HT1) binding sites have been solubilized from bovine brain cortex using a mixture of 0.1% Nonidet P-40 and 0.3% digitonin in a low-salt buffer containing 0.1% ascorbic acid. The affinity of [3H]5-HT for the soluble cortical binding sites (2.1 nM) is identical to its affinity at membrane-bound binding sites (2.1 nM). [3H]8-Hydroxy-2-(di-n-propylamino)tetralin ([3H]DPAT), a selective 5-HT1a radioligand, also binds to soluble cortical binding sites with high affinity (1.8 nM) comparable with its affinity in the crude membranes (1.7 nM). A significant correlation exists in the rank order potency of serotonergic agents for [3H]5-HT binding and for [3H]DPAT binding to crude and soluble membranes. The density of [3H]DPAT binding sites relative to the [3H]5-HT sites in the solubilized cortical membranes (35%) corresponds well with the proportion of 5-HT1a sites in the crude membranes determined by spiperone displacement (33%), suggesting that both the 5-HT1a and 5-HT1b binding sites have been cosolubilized. [3H]5-HT binding in the soluble preparations was inhibited by GTP, suggesting that a receptor complex may have been solubilized. [3H]Spiperone-specific binding was not detectable in this preparation, suggesting that 5-HT2 sites were not cosolubilized.  相似文献   

13.
Abstract: In vivo microdialysis was used to examine the efflux of cyclic AMP (cAMP) into the extracellular fluid of the ventral hippocampus in the freely moving rat. The changes in extracellular cAMP concentration were monitored in response to forskolin and the serotonin 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT). The basal level of hippocampal extracellular cAMP was 2.3 ± 0.2 pmol/ml (n = 6), after a 3-h postsur- gery stabilisation period. Perfusion of forskolin (100 μM) through the probe for 30 min significantly increased the efflux of cAMP, which returned to baseline levels within 90 min. 8-OH-DPAT (0.3 mg/kg s.c.) also significantly increased cAMP efflux, whereas a similar volume of saline had no effect. Desensitisation of the 8-OH-DPAT-induced increase in cAMP efflux was observed following a second administration of 8-OH-DPAT after a 4-h interval. Administration of 8-OH-DPAT did not alter the efflux of cAMP when forskolin was perfused through the probe. Pretreatment with WAY 100135 [N-tert-butyl 3–4-(2-methoxyphenyl)piperazine-1 -yl-2-phenylpropanamide dihydrochloride] (5 mg/kg s.c.), a specific 5-HT1A receptor antagonist, prevented the 8-OH-DPAT-induced increase in cAMP efflux. The data indicate that the 8-OH-DPAT-induced increase in cAMP efflux in vivo is mediated by a 5-HT1A receptor.  相似文献   

14.
The specific binding of [3H]8-hydroxy-2-(di-n-propylamino)tetralin ([ 3H]8-OH-DPAT) to 5-hydroxytryptamine (5-HT)-related sites was investigated in several regions of the rat brain. Marked differences were observed in the characteristics of binding to membranes from hippocampus, striatum, and cerebral cortex. Hippocampal sites exhibited the highest affinity (KD approximately 2 nM) followed by the cerebral cortex (KD approximately 6 nM) and the striatum (KD approximately 10 nM). Ascorbic acid inhibited specific [3H]8-OH-DPAT binding in all three regions but millimolar concentrations of Ca2+, Mg2+, and Mn2+ enhanced specific binding to hippocampal membranes, whereas only Mn2+ increased it in the cerebral cortex and all three cations inhibited specific binding to striatal membranes. Guanine nucleotides (0.1 mM GDP, GTP) inhibited binding to hippocampal and cortical membranes only. As intracerebral 5,7-dihydroxytryptamine markedly decreased [3H]8-OH-DPAT binding sites in the striatum, but not in the hippocampus, the striatal sites appear to be on serotoninergic afferent fibers. In contrast, in the hippocampus the sites appear to be on postsynaptic 5-HT target cells, as local injection of kainic acid decreased their density. Both types of sites appear to be present in the cerebral cortex. The postsynaptic hippocampal [3H]8-OH-DPAT binding sites are probably identical to the 5-HT1A subsites, but the relationship between the presynaptic binding sites and the presynaptic autoreceptors controlling 5-HT release deserves further investigation.  相似文献   

15.
This study investigates, using in vivo microdialysis, the role of serotonin2A (5-HT2A) and 5-HT(2B/2C) receptors in the effect of dorsal raphe nucleus (DRN) electrical stimulation on dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), and 5-hydroxyindoleacetic acid (5-HIAA) extracellular levels monitored in the nucleus accumbens (NAC) and the striatum of halothane-anesthetized rats. Following DRN stimulation (300 microA, 1 ms, 20 Hz, 15 min) DA release was enhanced in the NAC and reduced in the striatum. The 5-HT2A antagonist SR 46349B (0.5 mg/kg) and the mixed 5-HT(2A/2B/2C) antagonist ritanserin (0.63 mg/kg) significantly reduced the effect of DRN stimulation on DA release in the NAC but not in the striatum. DA responses to DRN stimulation were not affected by the 5-HT(2B/2C) antagonist SB 206553 (5 mg/kg) in either region. None of these compounds was able to modify the enhancement of DOPAC and 5-HIAA outflow induced by DRN stimulation in either the NAC or the striatum. Finally, in both brain regions basal DA release was significantly increased only by SB 206553. These results indicate that 5-HT2A but not 5-HT(2B/2C) receptors participate in the facilitatory control exerted by endogenous 5-HT on accumbal DA release. Conversely, 5-HT(2B/2C) receptors tonically inhibit basal DA release in both brain regions.  相似文献   

16.
Abstract: In this study, we examined the influence of blockade of serotonin (5-HT)1A and/or 5-HT1B autoreceptors on the fluoxetine-induced increase in dialysate levels of 5-HT as compared with dopamine (DA) and noradrenaline (NAD) in single samples of the frontal cortex (FCx) of freely moving rats. Fluoxetine (10.0 mg/kg, s.c.) elicited a twofold increase in dialysate levels of 5-HT relative to baseline values. The selective 5-HT1A antagonist WAY 100,635 (0.16 mg/kg, s.c.) did not influence 5-HT release alone but doubled the influence of fluoxetine on basal levels. Similarly, the selective 5-HT1B/1D antagonist GR 127,935 (2.5 mg/kg, s.c.) did not alter basal 5-HT levels alone and doubled the fluoxetine-induced increase in 5-HT levels. Combined administration of WAY 100,635 and GR 127,935 elicited an (at least) additive rise in the fluoxetine-induced increase in 5-HT levels to eightfold basal values, without modifying resting 5-HT levels. These changes were selective for 5-HT inasmuch as the parallel (twofold) increase in DA and NAD levels provoked by fluoxetine was not potentiated. The present data demonstrate that combined blockade of 5-HT1A and 5-HT1B autoreceptors markedly and selectively potentiates the fluoxetine-induced increase in dialysate levels of 5-HT versus DA and NAD in the FCx of freely moving rats. These observations suggest that 5-HT1A/1B antagonism may represent a novel strategy for the improvement in the therapeutic profile of 5-HT reuptake inhibitor antidepressant agents and that 5-HT may be primarily involved in such interactions.  相似文献   

17.
Abstract: To assess the involvement of the serotonin receptor subtype 5-HT1B as terminal autoreceptor regulating 5-HT release in mice, we compared basal values and potassium-evoked changes of extracellular 5-HT levels obtained by in vivo microdialysis in two serotoninergic terminal projection areas of conscious wild-type mice with those measured in homozygous mutant mice lacking the gene encoding the 5-HT1B receptor. In the frontal cortex and ventral hippocampus, basal and K+-evoked 5-HT release did not differ between the two strains of mice studied. The infusion via reverse microdialysis of the selective 5-HT1B receptor agonist CP-93,129 (500 n M ) decreased significantly K+-evoked 5-HT release in the frontal cortex (by −44%) and ventral hippocampus (by −32%) of wild-type mice but had no effect in mutants. In a similar manner, the mixed 5-HT1B-5-HT1D receptor agonist sumatriptan (800 n M ) decreased significantly K+-evoked 5-HT release in the frontal cortex (by −46%) of wild-type mice but had no effect in mutants. These results demonstrated that 5-HT1B knockout mice are not as sensitive to full (CP-93,129) and mixed (sumatriptan) 5-HT1B receptor agonists as are wild-type mice. These data provide in vivo evidence that, in mice, 5-HT1B, but not 5-HT1D, autoreceptors inhibit 5-HT release at nerve terminals located in the frontal cortex and ventral hippocampus.  相似文献   

18.
Abstract: The K+-evoked overflow of endogenous glutamate from cerebellar synaptosomes was inhibited by serotonin [5-hydroxytryptamine (5-HT); pD2 = 8.95], 8-hydroxy-2-(di- n -propylamino)tetralin (8-OH-DPAT; pD2 = 7.35), and sumatriptan (pD2 = 8.43). These inhibitions were prevented by the selective 5-HT1D receptor antagonist N -[4-methoxy-3-(4-methyl-1-piperazinyl)phenyl]-2'-methyl-4'-(5-methyl-1,2,4-oxadiazol-3-yl)(1,1-biphenyl)-4-carboxamide (GR-127935). The three agonists tested also inhibited the cyclic GMP (cGMP) response provoked in slices by K+ depolarization; pD2 values were 9.37 (5-HT), 9.00 (8-OH-DPAT), and 8.39 (sumatriptan). When cGMP formation was elevated by directly activating glutamate receptors with NMDA or α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA), the inhibition of the cGMP responses displayed the following pattern: 5-HT (pD2 values of 8.68 and 8.72 against NMDA and AMPA, respectively); 8-OH-DPAT (respective pD2 values of 9.15 and 9.00); sumatriptan (0.1 µ M ) was ineffective. The 5-HT1A receptor antagonist ( S )-(+) N-tert -butyl-3-[4-(2-methoxyphenyl)piperazin-1-yl]-2-phenylpropionamide dihydrochloride [(+)-WAY 100135] did not prevent the inhibition of glutamate release by 5-HT but blocked the inhibition by 8-OH-DPAT of the NMDA/AMPA-evoked cGMP responses. It is suggested that presynaptic 5-HT1D receptors mediate inhibition directly of glutamate release and indirectly of the cGMP responses to the released glutamate; on the other hand, activation of (postsynaptic) 5-HT1A receptors causes inhibition of the cGMP responses linked to stimulation of NMDA/AMPA receptors.  相似文献   

19.
Binding of [3H]8-hydroxy-2-(di-n-propylamino) tetralin, a putative ligand for the 5-hydroxytryptamine (5-HT, serotonin) 1A recognition site, was measured in neocortex from postmortem human brain. The substance was found to bind to a saturable site with a KD value and pharmacological profile similar to that of rat. Binding to membranes from normal human temporal cortex was found to significantly correlate (inversely) with age. A significant reduction in binding, reflecting decreased density of recognition sites, was observed in the frontal cortex of patients with Alzheimer's disease (48% loss). This region in the dement brains showed unaltered presynaptic 5-HT function (5-HT and 5-hydroxyindoleacetic acid content) whereas 5-HT concentration was reduced in the temporal cortex.  相似文献   

20.
1-[2-(4-Aminophenyl)ethyl]-4-(3-trifluoromethylphenyl)piperazine (PAPP) inhibits [3H]5-hydroxytryptamine (5-HT, serotonin) binding to 5-HT1A and 5-HT1B sites in rat brain with apparent equilibrium dissociation constants (KD) of 2.9 and 328 nM, respectively. [3H]PAPP was synthesized, its binding to central serotonin receptors was examined, and its potential usefulness as a 5-HT1A receptor radioligand was evaluated. With either 10 microM 5-HT or 1 microM 8-hydroxy-2-(di-n-propylamino)tetralin to define nonspecific binding, [3H]PAPP bound to a single class of sites in rat cortical membranes with a KD of 1.6 nM and a maximal binding density (Bmax) of 162 fmol/mg of protein. d-Lysergic acid diethylamide and 5-HT, two nonselective inhibitors of [3H]5-HT binding, displaced 1 nM [3H]PAPP with a potency that matched their affinity for 5-HT1 receptors. Spiperone and 8-hydroxy-2-(di-n-propylamino)tetralin, two compounds that discriminate [3H]5-HT binding to 5-HT1A and 5-HT1B sites, inhibited [3H]PAPP binding in accordance with their much higher affinities for the 5-HT1A receptor subtype. Furthermore, the ability of N-(m-trifluoromethylphenyl)piperazine and ketanserin to inhibit [3H]PAPP binding reflected their low affinities for the 5-HT1A receptor. Several nonserotonergic compounds were also found to be relatively poor displacers of [3H]PAPP binding. The regional distribution of serotonin-sensitive [3H]PAPP sites correlated with the densities of 5-HT1A receptors in the cortex, hippocampus, corpus striatum, and cerebellum of the rat. These results indicate that [3H]PAPP binds selectively and with high affinity to 5-HT1A receptor sites in rat brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号