共查询到20条相似文献,搜索用时 0 毫秒
1.
Reduced inositol polyphosphate accumulation and inositol supply induced by lithium in stimulated cerebral cortex slices. 总被引:14,自引:0,他引:14 下载免费PDF全文
The ability of lithium to interfere with phosphoinositide metabolism in rat cerebral cortex slices has been examined by monitoring the accumulation of CMP-phosphatidate (CMP-PtdOH) and the reduction in Ins(1,4,5)P3 and Ins(1,3,4,5)P4 levels. A small accumulation of [14C]CMP-PtdOH was seen in slices prelabelled with [14C]cytidine and stimulated with carbachol (1 mM) or Li+ (1 mM). However, simultaneous addition of both agents for 30 min produced a 22-fold accumulation, with Li+ producing a half-maximal effect at a concentration of 0.61 +/- 0.19 mM. Kinetic studies revealed that the effects of carbachol and Li+ on CMP-PtdOH accumulation occurred with no initial lag apparent under these conditions and that preincubation with myo-inositol (10 or 30 mM) dramatically attenuated CMP-PtdOH accumulation. myo-Inositol could also attenuate the rate of accumulation of CMP-PtdOH when added 20 min after carbachol and Li+; these effects were not observed when equimolar concentrations of scyllo-inositol were added. Use of specific radioreceptor assays allowed the mass accumulations of Ins(1,4,5)P3 and Ins(1,3,4,5)P4 to be monitored. Following a lag of 5-10 min, Li+ resulted in a marked reduction in the accumulation of both inositol polyphosphates resulting from muscarinic-cholinergic stimulation. Preincubation of cerebral cortex slices with myo- (but not scyllo-) inositol delayed, but did not prevent, the reduction in the accumulation of Ins(1,4,5)P3 or Ins(1,3,4,5)P4. The results suggest that cerebral cortex, at least in vitro, is very sensitive to myo-inositol depletion under conditions of muscarinic receptor stimulation. The relationship of such depletion to the generation of inositol polyphosphate second messengers is discussed. 相似文献
2.
Pawels Kurian Neelam Narang L. Judson Chandler Fulton T. Crews 《Neurochemical research》1993,18(5):639-645
To investigate the effects of increasing concentrations ofmyo-inositol (inositol) on receptor stimulated [3H]inositol polyphosphate formation in the absence of lithium, slices of rat cerebral cortex were incubated with various concentrations of [3H]inositol (1 to 30 M). Carbachol stimulated formation of [3H]inositol trisphosphate (InsP3) and [3H]inositol 1,3,4,5-tetrakisphosphate {Ins(1,3,4,5)P4} increased several fold when the inositol concentration was increased reaching a plateau at approximately 12 M inositol. Time course studies revealed that in the presence of low concentrations of inositol (1 M), [3H]InsP3 and [3H]Ins(1,3,4,5)P4 formation in response to carbachol stimulation increased slowly over a 10 to 20 min time period, whereas in the presence of 4 and 12 M inositol, carbachol stimulated [3H]InsP3 and [3H]Ins(1,3,4,5)P4 formation was rapid and essentially complete within 3 to 5 min after carbachol addition. Although the carbachol dose response in 12 M inositol had a much greater maximal efficacy, there was no change in potency. Similar to the effects of carbachol on [3H]Ins(1,3,4,5)P4 formation from prelabeled phosphoinositides, muscarinic receptor stimulation increased Ins(1,3,4,5)P4 mass formation by seven fold. Furthermore, Li+ (8 mM) completely inhibited carbachol stimulated increases in Ins(1,3,4,5)P4 mass formation. In contrast to the effects of increasing inositol on carbachol stimulated formation of radiolabeled inositol phosphates, increasing inositol had no effect upon mass formation of Ins(1,3,4,5)P4. These results show that when measuring inositol polyphosphate formation by the radiolabeling technique in the absence of Li+, increasing the inositol concentration greatly increases the stimulated component of [3H]InsP3 and [3H]Ins(1,3,4,5)P4 formation. However, this inositol induced increase in agonist stimulated Ins(1,3,4,5)P4 formation is not reflected as an increase in mass formation. 相似文献
3.
Rapid formation of inositol 1,3,4,5-tetrakisphosphate following muscarinic receptor stimulation of rat cerebral cortical slices. 总被引:38,自引:39,他引:38 下载免费PDF全文
Carbachol stimulation of muscarinic receptors in rat cortical slices prelabelled with myo-[2-3H]inositol caused the rapid formation of a novel inositol polyphosphate. Evidence derived from its chromatographic behaviour, and from the structure of the products formed in partial dephosphorylation experiments, suggests that it is probably D-myo-inositol 1,3,4,5-tetrakisphosphate. An enzyme in human red cell membranes specifically removes the 5-phosphate from it to form inositol 1,3,4-trisphosphate. It is suggested that inositol 1,3,4,5-tetrakisphosphate is likely to be a second messenger, and that it is the precursor of inositol 1,3,4-trisphosphate and possibly of inositol 1,4,5-trisphosphate. 相似文献
4.
Accumulation of inositol polyphosphate isomers in agonist-stimulated cerebral-cortex slices. Comparison with metabolic profiles in cell-free preparations. 总被引:1,自引:3,他引:1 下载免费PDF全文
1. Basal and carbachol-stimulated accumulations of isomeric [3H]inositol mono-, bis-, tris- and tetrakis-phosphates were examined in rat cerebral-cortex slices labelled with myo-[2-3H]inositol. 2. In control samples the major [3H]inositol phosphates detected were co-eluted on h.p.l.c. with Ins(1)P, Ins(4)P (inositol 1- and 4-monophosphate respectively), Ins(1,4)P2 (inositol 1,4-bisphosphate), Ins(1,4,5)P3 (inositol 1,4,5-tris-phosphate) and Ins(1,3,4,5)P4 (inositol 1,3,4,5-tetrakisphosphate). 3. After stimulation to steady state with carbachol, accumulation of each of these products was markedly increased. 4. Agonist stimulation, however, also evoked much more dramatic increased accumulations of a second [3H]inositol trisphosphate, which was co-eluted on h.p.l.c. with authentic Ins(1,3,4)P3 (inositol 1,3,4-trisphosphate) and of three further [3H]inositol bisphosphates ([3H]InsP2(s]. 5. Examination of the latter by chemical degradation by periodate oxidation and/or h.p.l.c. allowed identification of these as [3H]Ins(1,3)P2, [3H]Ins(3,4)P2 and [3H]Ins(4,5)P2 (inositol 1,3-, 3,4- and 4,5-bisphosphates respectively), which respectively accounted for about 22%, 8% and 3% of total [3H]InsP2 in extracts from stimulated tissue slices. 6. By using a h.p.l.c. method which clearly resolves Ins(1,3,4,5)P4 and Ins(1,3,4,6)P4 (inositol 1,3,4,6-tetrakisphosphate), only the former isomer could be detected in extracts from either control or stimulated tissue slices. Similarly, [3H]inositol pentakis- and hexakis-phosphates were not detectable either in the presence or absence of carbachol under the radiolabelling conditions described. 7. The catabolism of [3H]Ins(1,4,5)P3 and [3H]Ins(1,3,4)P3 by cell-free preparations from cerebral cortex was also studied. 8. In the presence of Mg2+, [3H]Ins(1,4,5)P3 was specifically dephosphorylated via [3H]Ins(1,4)P2 and [3H]Ins(4)P to free [3H]inositol, whereas [3H]Ins(1,3,4)P3 was degraded via [3H]Ins(3,4)P2 and, to a lesser extent, via [3H]Ins(1,3)P2 to D- and/or L-[3H]Ins(1)P and [3H]inositol. 9. In the presence of EDTA, hydrolysis of [3H]Ins(1,4,5)P3 was greater than or equal to 95% inhibited, whereas [3H]Ins(1,3,4)P3 was still degraded, but yielded only a single [3H]InsP2 identified as [3H]Ins(1,3)P2. 10. The significance of these observations with cell-free preparations is discussed in relation to the proportions of the separate isomeric [3H]inositol phosphates measured in stimulated tissue slices. 相似文献
5.
Rat cerebral cortical slices labelled with [3H]-inositol were incubated with the muscarinic agonist carbachol in media containing normal 5.9 mM or elevated 24 mM K+ ions. Over the first few minutes both carbachol and elevated K+ stimulated the production of [3H]-inositol phosphates. The very rapid formation of [3H]-inositol tetrakis, tris and bisphosphate was followed by accumulation of [3H]-inositol monophosphate. However, elevated K+ resulted in a relatively larger stimulation of [3H]-inositol bisphosphate than muscarinic receptor stimulation. When carbachol effects were examined in media containing elevated K+, production of [3H]-inositol trisphosphate was apparently additive whereas the mono and bisphosphate displayed somewhat synergistic responses after 1-2 minutes. In contrast, [3H]-inositol tetrakisphosphate production was greatly enhanced and marked synergy was observed between the K+ and carbachol responses. The production of the tetrakisphosphate under these conditions was dependent on extracellular Ca2+ and a stimulatory effect of this divalent ion on the 3-kinase is discussed. 相似文献
6.
Brandish PE Su M Holder DJ Hodor P Szumiloski J Kleinhanz RR Forbes JE McWhorter ME Duenwald SJ Parrish ML Na S Liu Y Phillips RL Renger JJ Sankaranarayanan S Simon AJ Scolnick EM 《Neuron》2005,45(6):861-872
Lithium inhibits inositol monophosphatase at therapeutically effective concentrations, and it has been hypothesized that depletion of brain inositol levels is an important chemical alteration for lithium's therapeutic efficacy in bipolar disorder. We have employed adult rat cortical slices as a model to investigate the gene regulatory consequences of inositol depletion effected by lithium using cytidine diphosphoryl-diacylglycerol as a functionally relevant biochemical marker to define treatment conditions. Genes coding for the neuropeptide hormone pituitary adenylate cyclase activating polypeptide (PACAP) and the enzyme that processes PACAP's precursor to the mature form, peptidylglycine alpha-amidating monooxygenase, were upregulated by inositol depletion. Previous work has shown that PACAP can increase tyrosine hydroxylase (TH) activity and dopamine release, and we found that the gene for GTP cyclohydrolase, which effectively regulates TH through synthesis of tetrahydrobiopterin, was also upregulated by inositol depletion. We propose that modulation of brain PACAP signaling might represent a new opportunity in the treatment of bipolar disorder. 相似文献
7.
Mass measurements of inositol(1,4,5)trisphosphate in rat cerebral cortex slices using a radioreceptor assay: effects of neurotransmitters and depolarization 总被引:29,自引:0,他引:29
R A Challiss I H Batty S R Nahorski 《Biochemical and biophysical research communications》1988,157(2):684-691
The specific binding of [3H] and [32P]Ins(1,4,5)P3 to a particulate preparation of bovine adrenal cortex has been used as a radioreceptor assay to determine the concentration of Ins(1,4,5)P3 in agonist- and depolarization-stimulated rat cerebral cortex slices. The resting concentration of Ins(1,4,5)P3 in slices that had been preincubated in a physiological medium was 18.8 +/- 2.6 pmol/mg prot. Carbachol evoked a rapid and dose-related increase in the concentration of Ins(1,4,5)P3. Maximal stimulation (80%) was already seen at the earliest point (10 sec) examined and was maintained for at least 5 min. The EC50 for carbachol was 75 +/- 17 microM and the response was totally suppressed by the muscarinic antagonist atropine. A direct comparison in the same slices was made between mass determinations and [3H]Ins(1,4,5)P3 and [3H]Ins(1,3,4)P3 accumulation determined by h.p.l.c. Although an identical time course was observed for cold and radiolabelled Ins(1,4,5)P3, the greater stimulation of [3H]Ins(1,4,5)P3 may indicate changes in specific radioactivity. Of a variety of other receptor agonists studied, only the glutamate receptor agonist quisqualate, and noradrenaline significantly increased the mass of Ins(1,4,5)P3 in cerebral cortical slices. However, depolarizing concentrations of K+ were as effective as carbachol at elevating this second messenger. 相似文献
8.
Breakdown of polyphosphoinositides and not phosphatidylinositol accounts for muscarinic agonist-stimulated inositol phospholipid metabolism in rat parotid glands. 总被引:21,自引:18,他引:21 下载免费PDF全文
The molecular mechanisms underlying the ability of muscarinic agonists to enhance the metabolism of inositol phospholipids were studied using rat parotid gland slices prelabelled with tracer quantities of [3H]inositol and then washed with 10 mM unlabelled inositol. Carbachol treatment caused rapid and marked increases in the levels of radioactive inositol 1-phosphate, inositol 1,4-bisphosphate, inositol 1,4,5-trisphosphate and an accumulation of label in the free inositol pool. There were much less marked changes in the levels of [3H]phosphatidylinositol, [3H]phosphatidylinositol 4-phosphate and [3H]phosphatidylinositol 4,5-bisphosphate. At 5 s after stimulation with carbachol there were large increases in [3H]inositol 1,4-bisphosphate and [3H]inositol 1,4,5-trisphosphate, but not in [3H]inositol 1-phosphate. After stimulation with carbachol for 10 min the levels of radioactive inositol 1,4-bisphosphate and inositol 1,4,5-trisphosphate greatly exceeded the starting level of radioactivity in phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate respectively. When carbachol treatment was followed by addition of sufficient atropine to block all the muscarinic receptors the radioactive inositol phosphates rapidly returned towards control levels. The carbachol-evoked changes in radioactive inositol phosphate and phospholipid levels were blocked in the presence of 2,4-dinitrophenol (an uncoupler of oxidative phosphorylation). The results suggest that muscarinic agonists stimulate a polyphosphoinositide-specific phospholipase C and that these lipids are continuously replenished from the labelled phosphatidylinositol pool. [3H]Inositol 1-phosphate in the stimulated glands probably arises via hydrolysis of inositol 1,4-bisphosphate and not directly from phosphatidylinositol. 相似文献
9.
《Neurochemistry international》2007,50(8):729-736
The aim of the current study was to characterize the effects of chemical ischemia and reperfusion at the transductional level in the brain. Protein kinase C isoforms (α, β1, β2, γ, δ and ɛ) total levels and their distribution in the particulate and cytosolic compartments were investigated in superfused rat cerebral cortex slices: (i) under control conditions; (ii) immediately after a 5-min treatment with 10 mM NaN3, combined with 2 mM 2-deoxyglucose (chemical ischemia); (iii) 1 h after chemical ischemia (reperfusion). In control samples, all the PKC isoforms were detected; immediately after chemical ischemia, PKC β1, δ and ɛ isoforms total levels (cytosol + particulate) were increased by 2.9, 2.7 and 9.9 times, respectively, while α isoform was slightly reduced and γ isoform was no longer detectable. After reperfusion, the changes displayed by α, β1, γ, δ and ɛ were maintained and even potentiated, moreover, an increase in β2 (by 41 ± 12%) total levels became significant. Chemical ischemia-induced a significant translocation to the particulate compartment of PKC α isoform, which following reperfusion was found only in the cytosol. PKC β1 and δ isoforms particulate levels were significantly higher both in ischemic and in reperfused samples than in the controls. Conversely, following reperfusion, PKC β2 and ɛ isoforms displayed a reduction in their particulate to total level ratios. The intracellular calcium chelator, 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid, 1 mM, but not the N-methyl-d-asparate receptor antagonist, MK-801, 1 μM, prevented the translocation of β1 isoform observed during ischemia. Both drugs were effective in counteracting reperfusion-induced changes in β2 and ɛ isoforms, suggesting the involvement of glutamate-induced calcium overload. These findings demonstrate that: (i) PKC isoforms participate differently in neurotoxicity/neuroprotection events; (ii) the changes observed following chemical ischemia are pharmacologically modulable; (iii) the protocol of in vitro chemical ischemia is suitable for drug screening. 相似文献
10.
Selvatici R Falzarano S Franceschetti L Cavallini S Marino S Siniscalchi A 《Neurochemistry international》2006,49(8):729-736
The aim of the current study was to characterize the effects of chemical ischemia and reperfusion at the transductional level in the brain. Protein kinase C isoforms (, β1, β2, γ, δ and ) total levels and their distribution in the particulate and cytosolic compartments were investigated in superfused rat cerebral cortex slices: (i) under control conditions; (ii) immediately after a 5-min treatment with 10 mM NaN3, combined with 2 mM 2-deoxyglucose (chemical ischemia); (iii) 1 h after chemical ischemia (reperfusion). In control samples, all the PKC isoforms were detected; immediately after chemical ischemia, PKC β1, δ and isoforms total levels (cytosol + particulate) were increased by 2.9, 2.7 and 9.9 times, respectively, while isoform was slightly reduced and γ isoform was no longer detectable. After reperfusion, the changes displayed by , β1, γ, δ and were maintained and even potentiated, moreover, an increase in β2 (by 41 ± 12%) total levels became significant. Chemical ischemia-induced a significant translocation to the particulate compartment of PKC isoform, which following reperfusion was found only in the cytosol. PKC β1 and δ isoforms particulate levels were significantly higher both in ischemic and in reperfused samples than in the controls. Conversely, following reperfusion, PKC β2 and isoforms displayed a reduction in their particulate to total level ratios. The intracellular calcium chelator, 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid, 1 mM, but not the N-methyl-d-asparate receptor antagonist, MK-801, 1 μM, prevented the translocation of β1 isoform observed during ischemia. Both drugs were effective in counteracting reperfusion-induced changes in β2 and isoforms, suggesting the involvement of glutamate-induced calcium overload. These findings demonstrate that: (i) PKC isoforms participate differently in neurotoxicity/neuroprotection events; (ii) the changes observed following chemical ischemia are pharmacologically modulable; (iii) the protocol of in vitro chemical ischemia is suitable for drug screening. 相似文献
11.
Trophic factor effects on cholinergic innervation in the cerebral cortex of the adult rat brain 总被引:3,自引:0,他引:3
The cholinergic pathway ascending from the nucleus basalis magnocellularis (NBM) to the cortex has been implicated in several
important higher brain functions such as learning and memory. Following infarction of the frontoparietal cortical area in
the rat, a retrograde atrophy of cholinergic cell bodies and fiber networks occurs in the basalocortical cholinergic system.
We have observed that neuronal atrophy in the NBM induced by this lesion can be prevented by intracerebroventricular administration
of exogenous nerve growth factor (NGF) or the monosialoganglioside GM1. In addition, these agents can upregulate levels of cortical choline acetyltransferase (ChAT) activity in the remaining cortex
adjacent to the lesion site. Furthermore, an enhancement in cortical high-affinity3H-choline uptake and a sustained in vivo release of cortical acetylcholine (ACh) after K+ stimulation are also observed after the application of neurotrophic agents. Moreover, these biochemical changes in the cortex
are accompanied by an anatomical remodeling of cortical ChAT-immunoreactive fibers and their synaptic boutons. 相似文献
12.
The effects of several different types of antidepressant drugs on phosphoinositide hydrolysis by slices of rat cerebral cortex was investigated by prelabeling inositol phospholipids with [3H]inositol and then measuring the formation of [3H]inositol phosphates (a total fraction consisting of the mono-and poly-phosphates was collected) in the presence of 10 mM LiCl. All of the drugs tested (amitriptyline, trimipramine, mianserin, desipramine, tranylcypromine, and citalopram) inhibited NE-stimulated [3H]inositol phosphate formation. This inhibition appeared to be due to antagonism of 1-receptors. In addition to inhibiting the effects of NE, the tricyclic antidepressants themselves were able to stimulate [3H]inositol phosphate formation. This stimulation occurred at drug concentrations higher than that needed to inhibit stimulation by NE. Stimulatory effects of the antidepressants themselves were not blocked by the 1-antagonist, prazosin. An examination of the types of inositol phosphates formed revealed that formation of inositol monophosphate was stimulated, but that inostiol biphosphate production was decreased by tricyclic antidepressants compared to control. 相似文献
13.
Homologous desensitization of substance-P-induced inositol polyphosphate formation in rat parotid acinar cells. 总被引:2,自引:0,他引:2 下载免费PDF全文
Maximal concentrations of substance P and methacholine induced a rapid increase in [3H]inositol trisphosphate ([3H]IP3) formation. After about 1 min, the [3H]IP3 in the substance-P-treated cells ceased to increase further, whereas in the methacholine-treated cells [3H]IP3 continued to increase. Addition of methacholine to the substance-P-treated cells caused a rapid increase in [3H]IP3, whereas a second addition of a 10-fold excess of substance P had no effect. Pretreatment of cells with substance P, followed by removal of the substance P by washing, resulted in a decreased response to a second application of substance P. A similar protocol involving pretreatment with methacholine had no effect on subsequent responsiveness to substance P. Analysis of [3H]substance P binding to substance-P-treated cells indicated that the number of receptors for substance P was decreased, but the affinity of the receptors for substance P was unaffected. After substance P pretreatment, a prolonged incubation (2 h) restored responsiveness of the cells to substance P, measured as [3H]IP3 formation, and restored the number of binding sites to control values. These findings indicate that, in the rat parotid gland, substance P induces a homologous desensitization of its receptor, which involves a slowly reversible down-regulation or sequestration of substance-P-binding sites. 相似文献
14.
Cortical slices from rat brain were used to study carbachol-stimulated inositol phospholipid hydrolysis. Omission of calcium during incubation of slices with [3H]inositol increased its incorporation into receptor-coupled phospholipids. Carbachol-stimulated hydrolysis of [3H]inositol phospholipids in slices was dose-dependent, was affected by the concentrations of calcium and lithium present and resulted in the accumulation of mostly [3H]inositol-l-phosphate. Incubation of slices withN-ethylmaleimide or a phorbol ester reduced the response to carbachol. Membranes prepared from cortical slices labeled with [3H]inositol retained the receptor-stimulated inositol phospholipid hydrolysis reaction. The basal rate of inositol phospholipid hydrolysis was higher than in slices and addition of carbachol further stimulated the process. Addition of GTP stimulated inositol phospholipid hydrolysis, suggesting the presence of a guanine nucleotide-binding protein coupled to phospholipase C. Carbachol and GTP-stimulated inositol phospholipid hydrolysis in membranes was detectable following a 3 min assay period. In contrast to slices, increased levels of inositol bisphosphate and inositol trisphosphate were detected following incubation of membranes with carbachol. These results demonstrate that agonist-responsive receptors are present in cortical membranes, that the receptors may be coupled to phosphatidylinositol 4,5-bisphosphate, rather than phosphatidylinositol, hydrolysis and that a guanine nucleotide-binding protein may mediate the coupling of receptor activation to inositol phospholipid hydrolysis in brain. 相似文献
15.
Hinterhoelzl JK Salimi K Humpel C Singewald N Adlassnig C Fischer-Colbrie R Fleischhacker WW Marksteiner J 《Journal of neurochemistry》2003,87(1):13-21
Phencyclidine (PCP) is a non-competitive NMDA glutamate receptor antagonist that induces psychotomimetic effects in humans and experimental animals. Chronic PCP exposure elicits signs of persistently altered frontal brain activity and related behaviors which are also seen in patients with schizophrenia. Secretogranin II (sg II) belongs to the chromogranin family of proteins that exist in large dense core vesicles in nervous tissue. In the brain, 90% of sg II is processed to the small peptide secretoneurin. We previously detected differential effects of single-dose and subchronic PCP administration on sg II expression in the rat prefrontal cortex (PFC). In the present study, we applied PCP to organotypic PFC slices. PCP application for 28 h induced decreased tissue and culture medium secretoneurin content. In contrast, incubation with the adenylate cyclase activator forskolin caused significantly increased secretoneurin levels after 8 h. PCP for 4 h followed by 24 h without PCP resulted in increased culture medium secretoneurin content but no change in tissue levels. sg II mRNA expression was decreased after 28 h PCP application in cortical neurons. Immunohistochemical and TUNEL staining profiles indicated that the alterations were not due to neurodegeneration. PCP for 5 days changed neither the secretoneurin tissue or culture medium levels, nor the sg II mRNA expression. These results demonstrate that PCP modulates sg II expression in PFC tissue in the absence of afferent inputs and that the nature of these changes is dependent upon the duration of exposure to and/or withdrawal from PCP. 相似文献
16.
Sodium fluoride inhibited carbachol, 5-hydroxytryptamine and noradrenaline stimulated formation of inositol phosphates in rat cerebral cortex. For example, carbachol (1 mM) induced a 337% increase of inositol phosphates above basal in 30 min which was reduced to 69% in the presence of NaF (10 mM). The IC50 for NaF was approximately 1.5 mM and inhibition was mediated by a decrease in maxima of the carbachol dose response curve rather than a shift to the right. This inhibitory action was not mimicked by NaBr or NaI, or by agents which increase cAMP. Inhibition did not appear to result from a toxic action of NaF since it had no effect on the formation of inositol phosphates by high K+; moreover, in higher concentrations NaF stimulated phospholipase C activity. Since fluoride ions are known to activate G-proteins in the concentrations used in this study, these results may indicate the existence of a novel G-protein linked to receptor inhibition of phospholipase C. 相似文献
17.
Ethylamine, octopamine, tryptamine, and carbachol stimulate inositol phosphate accumulation in a dose-dependent way in rat cortical slices. Tyramine at 100 M has no effect. The major inositol phosphate that is accumulated following stimulation is the monophosphate. The effect of carbachol is blocked by atropine but not by cyproheptadine, phenoxybenzamine, haloperidol or propranolol. None of the antagonists tried, including atropine, had an effect on the stimulation caused by ethylamine, octopamine or tryptamine. 相似文献
18.
The effects of chronic haloperidol administration on the accumulation of inositol phosphates were examined in rat brain slices pre-labeled with [3H]myo-inositol and incubated with various dopaminergic drugs. Rats were treated with haloperidol-decanoate or its vehicle (sesame oil) for two, four or six weeks. Dopamine and the selective D1 agonist, SKF38393, induced a significant increase in lithium-dependent accumulation of [3H]inositol monophosphate (IP1) in the frontal cortex, hippocampus and striatum of vehicle-treated animals, while the selective D2 agonist quinpirole did not show any effect on IP1 accumulation. The actions of dopamine and SKF38393 were blocked by the D1 antagonist, SCH23390, but not by the D2 antagonist, spiperone, in all three brain regions. Haloperidol treatment did not affect basal phosphoinositide turnover in the three brain regions. Four or six weeks of haloperidol treatment significantly decreased dopamine-induced IP1 accumulation in the striatum (by 30% and 25%, respectively), but not in the frontal cortex and the hippocampus. Four weeks of treatment with haloperidol significantly decreased IP1 levels in the striatal slices when measured in the presence of quinpirole. However, the accumulation of IP1 measured in the presence of SKF38393 was not significantly altered after haloperidol treatment. The loss of dopamine-sensitive IP accumulation was not observed in the presence of spiperone after haloperidol treatment. The number, but not the affinity, of [3H]sulpiride binding sites in the striatum was significantly increased (by 34–46%) after chronic haloperidol treatment. A timecourse study suggests that the inhibition by chronic haloperidol treatment of dopamine-induced phosphoinositide hydrolysis may involve an effect secondary to an increase in the number of dopamine D2 receptors in the striatum. 相似文献
19.
L I Pavlinova I A Gerasimova T R Bagaeva N A Emel'ianov 《Ukrainski? biokhimicheski? zhurnal》1991,63(1):85-87
Hydrocortisone administered in a dose of 1 and 5 mg per 100 g of mass has increased the rate of 32P turnover in di- and triphosphatidyl inositides up to 170-230% and has no influence on the content of these phospholipids. 相似文献
20.
F P White W J McBride H R Mahler W J Moore 《The Journal of biological chemistry》1972,247(4):1247-1256