首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxamate, a structural analog of pyruvate, known as a potent inhibitor of lactic dehydrogenase, lactic dehydrogenase, produces an inhibition of gluconeogenic flux in isolated perfused rat liver or hepatocyte suspensions from low concentrations of pyruvate (less than 0.5 mM) or substrates yielding pyruvate. The following observations indicate that oxamate inhibits flux through pyruvate carboxylase: accumulation of substrates and decreased concentration of all metabolic intermediates beyond pyruvate; decreased levels of aspartate, glutamate, and alanine; and enhanced ketone body production, which is a sensitive indicator of decreased mitochondrial free oxaloacetate levels. The decreased pyruvate carboxylase flux does not seem to be the result of a direct inhibitory action of oxamate on this enzyme but is secondary to a decreased rate of pyruvate entry into the mitochondria. This assumption is based on the following observations: Above 0.4 mM pyruvate, no significant inhibitory effect of oxamate on gluconeogenesis was observed. The competitive nature of oxamate inhibition is in conflict with its effect on isolated pyruvate carboxylase which is noncompetitive for pyruvate. Fatty acid oxidation was effective in stimulating gluconeogenesis in the presence of oxamate only at concentrations of pyruvate above 0.4 mM. Since only at low pyruvate concentrations its entry into the mitochondria occurs via the monocarboxylate translocator, from these observations it follows that pyruvate transport across the mitochondrial membrane, and not its carboxylation, is the first nonequilibrium step in the gluconeogenic pathway. In the presence of oxamate, fatty acid oxidation inhibited gluconeogenesis from lactate, alanine, and low pyruvate concentrations (less than 0.5 mM), and the rate of transfer of reducing equivalents to the cytosol was significantly decreased. Whether fatty acids stimulate or inhibit gluconeogenesis appears to correlate with the rate of flux through pyruvate carboxylase which ultimately seems to rely on pyruvate availability. Unless adequate rates of oxaloacetate formation are maintained, the shift of the mitochondrial NAD couple to a more reduced state during fatty acid oxidation seems to decrease mitochondrial oxaloacetate resulting in a decreased rate of transfer of carbon and reducing power to the cytosol.  相似文献   

2.
3.
13C NMR study of hepatic pyruvate carboxylase activity in tumor rats   总被引:2,自引:0,他引:2  
Alanine and lactate, as major gluconeogenic substrates, must be converted into oxaloacetate by way of pyruvate carboxylase before their entry into gluconeogenesis. Although it is well known that hepatic gluconeogenesis from these substrates is increased in tumor hosts, the involvement of pyruvate carboxylase has not been demonstrated. In the present study, we examined pyruvate carboxylase activity in the perfused livers of tumor rats using 13C NMR spectroscopy with [3-13C]-alanine as the gluconeogenic substrate. A substantial increase in hepatic [3-13C]-aspartate production was found in the tumor rats. Since aspartate accumulation directly reflects fluxes of alanine through pyruvate carboxylase, the observed increase in hepatic production of [3-13C]-aspartate in tumor rats indicates that pyruvate carboxylase activity is significantly enhanced.  相似文献   

4.
1. To examine the role of the hepatic redox state on the rate of gluconeogenesis the effects of sodium crotonate injection (6mmol/kg body wt.) on rat liver metabolite concentrations and gluconeogenesis from lactate were studied in vivo. 2. Crotonate caused a marked oxidation of cytoplasmic and mitochondrial redox couples; decreases were observed in the ratios of [lactate]/[pyruvate], [glycerol 3-phosphate]/[dihydroxyacetone phosphate], [hydroxybutyrate]/[acetoacetate] and measured [NAD(+)]/[NADH]. 3. Increases occurred in the liver concentrations of all gluconeogenic intermediates from pyruvate through to glucose 6-phosphate, but there was no change in lactate concentration. 4. To determine whether gluconeogenesis from lactate was altered by the more-oxidized hepatic redox state l-[2-(14)C]lactic acid was infused into the inferior vena cava (50mumol/min per kg body wt.) and the incorporation of radioactivity into blood glucose was measured. 5. Administration of crotonate transiently decreased the rate of lactate incorporation into glucose but within a few minutes the rate of incorporation returned to that of the controls. 6. The results indicate that in these experiments alteration of the NAD(+)-NADH systems of cytoplasm and mitochondria to a more-oxidized state did not change the rate of gluconeogenesis.  相似文献   

5.
The PDC (pyruvate dehydrogenase complex) is strongly inhibited by phosphorylation during starvation to conserve substrates for gluconeogenesis. The role of PDHK4 (pyruvate dehydrogenase kinase isoenzyme 4) in regulation of PDC by this mechanism was investigated with PDHK4-/- mice (homozygous PDHK4 knockout mice). Starvation lowers blood glucose more in mice lacking PDHK4 than in wild-type mice. The activity state of PDC (percentage dephosphorylated and active) is greater in kidney, gastrocnemius muscle, diaphragm and heart but not in the liver of starved PDHK4-/- mice. Intermediates of the gluconeogenic pathway are lower in concentration in the liver of starved PDHK4-/- mice, consistent with a lower rate of gluconeogenesis due to a substrate supply limitation. The concentration of gluconeogenic substrates is lower in the blood of starved PDHK4-/- mice, consistent with reduced formation in peripheral tissues. Isolated diaphragms from starved PDHK4-/- mice accumulate less lactate and pyruvate because of a faster rate of pyruvate oxidation and a reduced rate of glycolysis. BCAAs (branched chain amino acids) are higher in the blood in starved PDHK4-/- mice, consistent with lower blood alanine levels and the importance of BCAAs as a source of amino groups for alanine formation. Non-esterified fatty acids are also elevated more in the blood of starved PDHK4-/- mice, consistent with lower rates of fatty acid oxidation due to increased rates of glucose and pyruvate oxidation due to greater PDC activity. Up-regulation of PDHK4 in tissues other than the liver is clearly important during starvation for regulation of PDC activity and glucose homoeostasis.  相似文献   

6.
Preservation of bioenergetic homeostasis during the transition from the carbohydrate-laden fetal diet to the high fat, low carbohydrate neonatal diet requires inductions of hepatic fatty acid oxidation, gluconeogenesis, and ketogenesis. Mice with loss-of-function mutation in the extrahepatic mitochondrial enzyme CoA transferase (succinyl-CoA:3-oxoacid CoA transferase, SCOT, encoded by nuclear Oxct1) cannot terminally oxidize ketone bodies and develop lethal hyperketonemic hypoglycemia within 48 h of birth. Here we use this model to demonstrate that loss of ketone body oxidation, an exclusively extrahepatic process, disrupts hepatic intermediary metabolic homeostasis after high fat mother''s milk is ingested. Livers of SCOT-knock-out (SCOT-KO) neonates induce the expression of the genes encoding peroxisome proliferator-activated receptor γ co-activator-1a (PGC-1α), phosphoenolpyruvate carboxykinase (PEPCK), pyruvate carboxylase, and glucose-6-phosphatase, and the neonate''s pools of gluconeogenic alanine and lactate are each diminished by 50%. NMR-based quantitative fate mapping of 13C-labeled substrates revealed that livers of SCOT-KO newborn mice synthesize glucose from exogenously administered pyruvate. However, the contribution of exogenous pyruvate to the tricarboxylic acid cycle as acetyl-CoA is increased in SCOT-KO livers and is associated with diminished terminal oxidation of fatty acids. After mother''s milk provokes hyperketonemia, livers of SCOT-KO mice diminish de novo hepatic β-hydroxybutyrate synthesis by 90%. Disruption of β-hydroxybutyrate production increases hepatic NAD+/NADH ratios 3-fold, oxidizing redox potential in liver but not skeletal muscle. Together, these results indicate that peripheral ketone body oxidation prevents hypoglycemia and supports hepatic metabolic homeostasis, which is critical for the maintenance of glycemia during the adaptation to birth.  相似文献   

7.
The regulation of fatty acid synthesis, measured by 3H2O incorporation into fatty acids, was studied in hepatocytes from rats meal-fed a high carbohydrate diet. Ca2+ increased fatty acid synthesis, which became maximal at physiological concentrations of Ca2+. Ethanol markedly inhibited fatty acid synthesis. Maximum inhibition was reached at 4 mm ethanol. However, ethanol did not decrease lipogenesis in the presence of pyruvate. dl-3-Hydroxybutyrate increased fatty acid synthesis. Acetoacetate decreased lipogenesis when used alone and reversed the effect of dl-3-hydroxybutyrate when both were added. dl-3-Hydroxybutyrate moderately decreased flux through the pyruvate dehydrogenase system and markedly inhibited citric acid cycle flux. By measurement of glycolytic intermediates, two ethanol-induced crossover points were observed: one between fructose 6-phosphate and fructose 1,6-diphosphate and the other between glyceraldehyde 3-phosphate and 1,3-diphosphoglycerate. The concentrations of pyruvate and citrate were decreased by ethanol and increased by dl-3-hydroxybutyrate. Aminooxyacetate and l-cycloserine inhibited fatty acid synthesis and these effects were overcome by dl-3-hydroxybutyrate. Results indicate that in hepatocytes in a metabolic state favoring a high rate of lipogenesis, production of reducing equivalents in the cytosol via ethanol metabolism inhibits fatty acid synthesis from glucose by inhibition of both phosphofructokinase and glyceraldehyde 3-phosphate dehydrogenase and by promoting reduction of pyruvate to lactate. Production of reducing equivalents in the mitochondria via dl-3-hydroxybutyrate enhances fatty acid synthesis in liver cells by altering the partition of citrate between oxidation in the citric acid cycle and conversion to fatty acids in favor of the latter pathway. These interactions indicate the importance of the intracellular pyridine nucleotide redox states in the rate control of hepatic fatty acid synthesis.  相似文献   

8.
Control of gluconeogenesis from lactate was studied by titrating rat liver cells with lactate and pyruvate in a ratio of 10:1 in a perifusion system. At different steady states of glucose formation, the concentration of key gluconeogenic intermediates was measured and plotted against gluconeogenic flux (J glucose). Complete saturation was observed only in the plot relating J glucose to the extracellular pyruvate concentration. Measurement of pyruvate distribution in the cell showed that the mitochondrial pyruvate translocator operates close to equilibrium at high lactate and pyruvate concentrations. It can therefore be concluded that pyruvate carboxylase limits maximal gluconeogenic flux. Addition of glucagon did not cause a shift in the plots relating J glucose to glucose 6-phosphate, dihydroxyacetone phosphate, 3-phosphoglycerate, and phosphoenolpyruvate. It can thus be concluded that glucagon does not affect the kinetic parameters of the enzymes involved in the conversion of phosphoenolpyruvate to glucose. Addition of glucagon led to a shift in the curves relating J glucose to the concentration of cytosolic oxalacetate and extracellular pyruvate. The shift in the curve relating J glucose to oxalacetate is due to glucagon-induced inhibition of pyruvate kinase. The stimulation of gluconeogenesis by glucagon can be accounted for almost completely by inhibition of pyruvate kinase. There was almost no stimulation by glucagon of pyruvate carboxylation. In the absence of glucagon, control on gluconeogenesis from lactate is distributed among different steps including pyruvate carboxylase and pyruvate kinase. Assuming that in the presence of glucagon all pyruvate kinase flux is inhibited, the control of gluconeogenesis in the presence of the hormone is confined exclusively to pyruvate carboxylase.  相似文献   

9.
Inhibition of fatty acid oxidation with pent-4-enoate in suckling newborn rats caused a fall in blood [glucose] and blood [ketone bodies] and inhibition of gluconeogenesis from lactate. Glucose utilization was not increased in newborn rats injected with pent-4-enoate. Active fatty acid oxidation appears to be essential to support gluconeogenesis and to maintain normal blood [glucose] in suckling newborn rats.  相似文献   

10.
Experiments were performed in which the effects of inhibiting gluconeogenesis on ketone-body formation were examined in vivo in starved and severely streptozotocin-diabetic rats. The infusion of 3-mercaptopicolinate, an inhibitor of gluconeogenesis (DiTullio et al., 1974), caused decreases in blood [glucose] and increases in blood [lactate] and [pyruvate] in both normal and ketoacidotic rats. Patterns of liver gluconeogenic intermediates after 3-mercaptopicolinate infusion suggested inhibition at the level of phosphoenolpyruvate carboxykinase. This was confirmed by measurement of hepatic oxaloacetate concentrations which were increased 5-fold after 3-mercaptopicolinate administration. The infusion of 3-mercaptopicolinate caused a decrease in total ketone-body concentrations of 30% in starved rats and 73% in the diabetic animals. Blood glycerol and hepatic triglyceride concentrations remained unchanged. The decreases in ketone-body concentrations were associated with increases in the calculated hepatic cytosolic and mitochondrial [NADH]/[NAD+] ratios. The decrease in ketogenesis seen after inhibition of gluconeogenesis may have resulted from an inhibition of hepatic fatty acid oxidation by the more reduced mitochondrial redox state. It was concluded that gluconeogenesis may stimulate ketogenesis by as much as 30% in severe diabetic ketoacidosis.  相似文献   

11.
12.
These studies were undertaken to determine the mechanism by which intravenously administered lead salts inhibit hepatic gluconeogenesis. Within 1 h after the intravenous administration of lead acetate (10 mg), there is 97% inhibition of CO2 fixation in isolated rat liver mitochondria. This effect is concentration-dependent. The induction of phosphoenolpyruvate carboxykinase activity observed with starvation was also inhibited by intravenously administered lead acetate, but the activities of pyruvate kinase, glucose 6-phosphate dehydrogenase and pyruvate carboxylase were unaffected, as was the oxidation of palmitate and palmitoyl-CoA by mitochondria from Pb2+-treated animals. The addition of reduced glutathione to mitochondria from Pb2+-treated animals had no effect on the inhibited CO2 fixation. ATP concentrations in mitochondria from Pb2+-treated animals are decreased and the dose-response relationships for the effect of Pb2+ on CO2 fixation and ATP concentrations correspond. We conclude that the decrease in mitochondrial ATP in Pb2+-treated animals is probably responsible for the marked inhibition ov CO2 fixation, and hence the impairment of gluconeogenesis from alanine, lactate and pyruvate observed by others.  相似文献   

13.
Inhibition of liver aspartate aminotransferase by L-2-amino-4-methoxy-trans-3-butenoic acid in the suckling newborn rat causes a decrease in all gluconeogenic precursors from phosphoenolpyruvate to glucose and an accumulation of lactate but not of pyruvate. This suggests that the aspartate shuttle is operative and confirms the quantitative importance of lactate as a gluconeogenic precursor at this time during development.  相似文献   

14.
Control properties of the gluconeogenic pathway in hepatocytes isolated from starved rats were studied in the presence of glucose. The following observations were made. (1) Glucose stimulated the rate of glucose production from 20 mM-glycerol, from a mixture of 20 mM-lactate and 2 mM-pyruvate, or from pyruvate alone; no stimulation was observed with 20 mM-alanine or 20 mM-dihydroxyacetone. Maximal stimulation was obtained between 2 and 5 mM-glucose, depending on the conditions. At concentrations above 6 mM, gluconeogenesis declined again, so that at 10 mM-glucose the glucose production rate became equal to that in its absence. (2) With glycerol, stimulation of gluconeogenesis by glucose was accompanied by oxidation of cytosolic NADH and reduction of mitochondrial NAD+ and was insensitive to the transaminase inhibitor amino-oxyacetate; this indicated that glucose accelerated the rate of transport of cytosolic reducing equivalents to the mitochondria via the glycerol 1-phosphate shuttle. (3) With lactate plus pyruvate (10:1) as substrates, stimulation of gluconeogenesis by glucose was almost additive to that obtained with glucagon. From an analysis of the effect of glucose on the curves relating gluconeogenic flux and the steady-state intracellular concentrations of gluconeogenic intermediates under various conditions, in the absence and presence of glucagon, it was concluded that addition of glucose stimulated both phosphoenolpyruvate carboxykinase and pyruvate carboxylase activity.  相似文献   

15.
The regulation of the gluconeogenic pathway from the 3-carbon precursors pyruvate, lactate, and alanine was investigated in the isolated perfused rat liver. Using pyruvate (less than 1 mM), lactate, or alanine as the gluconeogenic precursor, infusion of the acetoacetate precursors oleate, acetate, or beta-hydroxybutyrate stimulated the rate of glucose production and, in the case of pyruvate (less than 1 mM), the rate of pyruvate decarboxylation. alpha-Cyanocinnamate, an inhibitor of the monocarboxylate transporter, prevented the stimulation of pyruvate decarboxylation and glucose production due to acetate infusion. With lactate as the gluconeogenic precursor, acetate infusion in the presence of L-carnitine stimulated the rate of gluconeogenesis (100%) and ketogenesis (60%) without altering the tissue acetyl-CoA level usually considered a requisite for the stimulation of gluconeogenesis by fatty acids. Hence, our studies suggest that gluconeogenesis from pyruvate or other substrates which are converted to pyruvate prior to glucose synthesis may be limited or controlled by the rate of entry of pyruvate into the mitochondrial compartment on the monocarboxylate translocator.  相似文献   

16.
Liver slices from chicks affected by the fatty liver and kidney syndrome display an extremely low extent of hepatic gluconeogenesis which is associated with decreased activities of certain rate-limiting gluconeogenic enzymes. Pyruvate carboxylase activity is particularly severely affected, being less than 4% of control values. Incubation of affected slices in a biotin-containing nutrient medium restores both gluconeogenesis and pyruvate carboxylase actiivity (the latter to approx. 35% of the control valve). Activities of the other enzymes studied were not greatly affected by this treatment. Restoration of gluconeogenesis did not occur if biotin was excluded from the nutrient medium, nor was it prevented by protein-synthesis inhibitors. It is concluded that the syndrome involves the lack of available biotin in the liver rather than suppression of apocarboxylase synthesis.  相似文献   

17.
We have used control analysis to quantify the distribution of control in the gluconeogenic pathway in liver cells from starved rats. Lactate and pyruvate were used as gluconeogenic substrates. The flux control coefficients of the various enzymes in the gluconeogenic pathway were calculated from the elasticity coefficients of the enzymes towards their substrates and products and the fluxes through the different branches in the pathway. The elasticity coefficients were either calculated from gamma/Keq. ratios (where gamma is the mass-action ratio and Keq. is the equilibrium constant) and enzyme-kinetic data or measured experimentally. It is concluded that the gluconeogenic enzyme pyruvate carboxylase and the glycolytic enzyme pyruvate kinase play a central role in control of gluconeogenesis. If pyruvate kinase is inactive, gluconeogenic flux from lactate is largely controlled by pyruvate carboxylase. The low elasticity coefficient of pyruvate carboxylase towards its product oxaloacetate minimizes control by steps in the gluconeogenic pathway located after pyruvate carboxylase. This situation occurs when maximal gluconeogenic flux is required, i.e. in the presence of glucagon. In the absence of the hormone, when pyruvate kinase is active, control of gluconeogenesis is distributed among many steps, including pyruvate carboxylase, pyruvate kinase, fructose-1,6-bisphosphatase and also steps outside the classic gluconeogenic pathway such as the adenine-nucleotide translocator.  相似文献   

18.
3-Mercaptopicolinic acid, an inhibitor of gluconeogenesis   总被引:19,自引:16,他引:3  
1. 3-Mercaptopicolinic acid (SK&F 34288) inhibited gluconeogenesis in vitro, with lactate as substrate, in rat kidney-cortex and liver slices. 2. In perfused rat livers, gluconeogenesis was inhibited when lactate, pyruvate or alanine served as substrate, but not with fructose, suggesting pyruvate carboxylase or phosphoenolpyruvate carboxylase as the site of inhibition. No significant effects were evident in O(2) consumption, hepatic glycogen, urea production, or [lactate]/[pyruvate] ratios. 3. A hypoglycaemic effect was evident in vivo in starved and alloxan-diabetic rats, starved guinea pigs and starved mice, but not in 4h-post-absorptive rats. 4. In the starved rat the hypoglycaemia was accompanied by an increase in blood lactate. 5. A trace dose of [(14)C]lactate in vivo was initially oxidized to a lesser extent in inhibitor-treated rats, but during 90min the total CO(2) evolved was slightly greater. The total amount of the tracer oxidized was not significantly different from that in the controls.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号