首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Kumar NS  Pinto BM 《Carbohydrate research》2005,340(17):2612-2619
The synthesis of analogues of the naturally occurring glycosidase inhibitor, salacinol, in which the D-arabinitol ring has been replaced by D-lyxitol or D-ribitol, is described. Salacinol is one of the active principles in the aqueous extracts of Salacia reticulata, which are traditionally used in India and Sri Lanka for the treatment of Type II diabetes. The synthetic strategy relies on the nucleophilic attack of 1,4-anhydro-2,3,5-tri-O-p-methoxybenzyl-4-thio-D-lyxitol or 1,4-anhydro-2,3,5-tri-O-p-methoxybenzyl-4-thio-D-ribitol at the least hindered carbon of the benzylidene-protected L-cyclic sulfate derived from L-erythritol. Screening of these compounds against recombinant human maltase glucoamylase (MGA), a critical intestinal glucosidase involved in the processing of oligosaccharides of glucose into glucose itself, shows that they are not effective inhibitors of MGA and demonstrates the importance of the d-arabinitol configuration in the heterocyclic ring for effective inhibition.  相似文献   

2.
Chen W  Sim L  Rose DR  Pinto BM 《Carbohydrate research》2007,342(12-13):1661-1667
The syntheses of analogues of the naturally occurring glycosidase inhibitor, salacinol, containing a carboxylate inner salt are described. Salacinol is a sulfonium ion with an internal sulfate counterion. The synthetic strategy relies on the nucleophilic attack of 1,4-anhydro-2,3,5-tri-O-benzyl-4-thio-D- or L-arabinitol at the least hindered carbon of 4,5-anhydro-2,3-O-isopropylidene-D-ribonic acid benzyl ester to yield coupled adducts. Deprotection of the coupled products gives the target compounds. The compound derived from D-arabinitol inhibits recombinant human maltase glucoamylase, one of the key intestinal enzymes involved in the breakdown of glucose oligosaccharides in the small intestine, with a Ki value of 10+/-1 microM.  相似文献   

3.
Bhat RG  Kumar NS  Pinto BM 《Carbohydrate research》2007,342(12-13):1934-1942
The syntheses of polyhydroxylated imino- and anhydro thio-alditol compounds related to the naturally occurring glycosidase inhibitor, salacinol, containing a phosphate group in the side chain are described. The compounds lack hydroxyl groups on the acyclic side chain and are prototypes of the exact salacinol analogue. The synthetic strategy relies on the Mitsunobu reaction of N- and S-hydroxyalkyl derivatives of 2,3,5-tri-O-benzyl-1,4-dideoxy-1,4-imino-D-arabinitol and 1,4-anhydro-2,3,5-tri-O-benzyl-1-thio-D-arabinitol with dibenzyl phosphate to yield the corresponding protected heteroalditol phosphates. Screening of these compounds against recombinant human maltase glucoamylase (MGA), a critical intestinal glucosidase involved in the processing of oligosaccharides of glucose into glucose itself, shows that they are not effective inhibitors of MGA and demonstrates the importance of the hydroxyl and/or sulfate substituents present on the side chain for effective inhibition. The attempted synthesis of the exact analogue of salacinol by opening of cyclic phosphates is also described.  相似文献   

4.
Two sulfonium salts of 1,4-anhydro-4-thio-D-galactitol, with structures related to the known sulfonium salt glycosidase inhibitor, salacinol, have been synthesized as potential inhibitors of UDP-galactopyranose mutase. The synthetic strategy relies on the alkylation reaction of 1,4-anhydro-2,3,5,6-tetra-O-benzyl-4-thio-D-galactitol at the sulfur atom with 2,4-O-benzylidene-D- or -L-erythritol-1,3-cyclic sulfate. In each case, the reaction proceeded stereoselectively to yield only one stereoisomer at the stereogenic sulfur atom. The effect of the polar solvent, 1,1,1,3,3,3-hexafluoroisopropanol (HFIP), in promoting high-yielding reactions is highlighted. The target compounds are then obtained by hydrogenolysis.  相似文献   

5.
2-Deoxy-2-fluorosalacinol and a 1,2-ene derivative of the naturally occurring glycosidase inhibitor salacinol were synthesized for structure activity studies with human maltase glucoamylase (MGA). 2-Deoxy-2-fluorosalacinol was synthesized through the coupling reaction of 2-deoxy-2-fluoro-3,5-di-O-p-methoxybenzyl-1,4-anhydro-4-thio-D-arabinitol with 2,4-O-benzylidene-l-erythritol-1,3-cyclic sulfate in hexafluoroisopropanol (HFIP) containing 0.3 equiv of K(2)CO(3). Excess of K(2)CO(3) resulted in the elimination of HF from the coupled product, and the formation of an alkene derivative of salacinol. Nucleophilic attack of the 1,4-anhydro-4-thio-D-arabinitol moiety on the cyclic sulfate did not proceed in the absence of K(2)CO(3). No reaction was observed in acetonitrile containing K(2)CO(3). The target compounds were obtained by deprotection with TFA. The 2-deoxy-1-ene derivative of salacinol and 2-deoxy-2-fluorosalacinol inhibited recombinant human maltase glucoamylase, one of the key intestinal enzymes involved in the breakdown of glucose, with an IC(50) value of 150 microM and a K(i) value of 6+/-1 microM, respectively.  相似文献   

6.
Mohan S  Pinto BM 《Carbohydrate research》2007,342(12-13):1551-1580
Natural products with interesting biological properties and structural diversity have often served as valuable lead drug candidates for the treatment of human diseases. Salacinol, a naturally occurring alpha-glucosidase inhibitor, was shown to be one of the active principles of the aqueous extract of a medicinal plant that has been prescribed traditionally as an Ayurvedic treatment for type II diabetes. Salacinol contains an intriguing zwitterionic sulfonium-sulfate structure that comprises a 1,4-anhydro-4-thio-D-arabinitol core and a polyhydroxylated acyclic chain. Due to the unique structural features and its potential to become a lead drug candidate in the treatment of type II diabetes, a great deal of attention has been focused on salacinol and its analogues. Since the isolation of salacinol, several papers describing various synthetic routes to salacinol and its analogues have appeared in the literature. This review is aimed at highlighting the synthetic aspects of salacinol and related compounds as well as their structure-activity relationship studies.  相似文献   

7.
Luminous acorn worm, Ptychodera flava emits green light by stimulating with diluted hydrogen peroxide. We have recently reported isolation and structure determination of 2,3,5,6-tetrabromohydroquinone as a luminous substance and riboflavin as a possible light emitter. There are three other luminous substances in the extracts from P. flava, so here we report the isolation and structure determination of other luminous substances as 2,3,5-tribromohydroquinone, tetrabromo-1,4-benzoquinone, and 2,3,5-tribromo-6-(2,3,5-tribromo-4-hydroxy-phenoxy)-benzene-1,4-diol. Besides, this is the first report of isolation of tetrabromo-1,4-benzoquinone from acorn worm. Structure-activity relationship of chemiluminescence activity of halogenated quinone derivatives reveals that a highly halogen substitution and 1,4-quinone skeleton are important for high chemiluminescence activity.  相似文献   

8.
Kumar NS  Pinto BM 《Carbohydrate research》2006,341(10):1685-1691
The synthesis of a bicyclic sulfonium-ion analogue of a naturally occurring glycosidase inhibitor, swainsonine, in which the bridgehead nitrogen atom is replaced by a sulfonium ion, has been achieved by a multi-step synthesis starting from 1,4-anhydro-2,3-di-O-benzyl-4-thio-D-lyxitol. The synthetic strategy relies on the intramolecular displacement of a leaving group on a pendant acyclic chain by a cyclic thioether. This bicyclic sulfonium salt will serve as a candidate to test the hypothesis that a sulfonium salt carrying a permanent positive charge would be an effective glycosidase inhibitor.  相似文献   

9.
Convenient extraction and radioimmunoassay methods for measurement of leukotrienes C4 and D4 (LTC4 and LTD4) in biological fluids are described. LTC4 or LTD4 in plasma was extracted with acetonitrile, and the extract was washed with dichloromethane then adjusted to pH 3.5 or 6.0, respectively. Each leukotriene was partially purified by using a C18-bonded silica cartridge and quantitated by radioimmunoassay. Amounts of LTC4 and LTD4 in the range of 0.025-1.6 ng could be assayed in plasma. This procedure was employed to examine the increase in plasma LTC4 (0.249 +/- 0.036 ng/ml) and LTD4 (1.399 +/- 0.235 ng/ml) of guinea pigs during intravenous challenge-induced anaphylactic bronchoconstriction, and the suppression of the increase of bronchoconstriction and leukotrienes by the administration of 5-lipoxygenase inhibitors such as E6080 (6-hydroxy-2-(4-sulfamoylbenzyl-amino)- 4,5,7-trimethylbenzothiazole hydrochloride), AA861 (2,3,5-trimethyl-6-(12-hydroxy-5,10-dodecadiynyl)-1,4-benzoquinone ) and phenidone. On the other hand, LTC4 and LTD4 were not detected in plasma after an inhaled challenge, though significant bronchoconstriction was provoked. It was concluded that the present study validates a new technique for quantitating plasma leukotrienes on the basis of pH and a suitable method for evaluating the pharmacological efficacy of 5-lipoxygenase inhibitors.  相似文献   

10.
Heating of 2,3,5-tri-O-methyl-4-O-p-tolylsulfonyl-D-ribose diethyl dithioacetal and dibenzyl dithioacetal in aqueous pyridine gave 4-S-ethyl-2,3,5-tri-O-methyl-4-thio-l-lyxose and benzyl 2,3,5-tri-O-methyl-α-1,4-dithio-l-lyxofuranoside, respectively. Similar rearrangements to the 4-thiofuranoside were observed with 2,3,5-tri-O-methyl-4-O-p-tolylsulfonyl-D-xylose and -D-lyxose dibenzyl dithioacetals. 2,3,4-Tri-O-methyl- 5-O-p-tolylsulfonyl-D-ribose or -D-xylose dibenzyl dithioacetal, however, gave upon heating with sodium iodide in acetone 2,5-anhydro-3,4-di-O-methyl-D-ribose or -D-xylose dibenzyl dithioacetal, respectively.  相似文献   

11.
Abstract

Ribosylation reactions of previously silylated 3-carbethoxy-8-methyl-1,4-dihydro-4-oxoquinoline (6a) and 3-carbethoxy-6-methyl-1,4-dihydro-4-oxoquinoline (6b) with 1-O-acetyl-2,3,5-tri-O-benzoyl-β-D-ribofuranose (7), under Lewis acid catalysis, were studied. The method using hexamethyldisilazane (HMDS)/trimethylchlorosilane (TMCS) mixture for silylation and anhydrous stannic chloride as catalyst for ribosylation failed to give any nucleoside product. On the other hand, the protected nucleoside 3-carbethoxy-6-methyl-1-(2,3,5-tri-O-benzoyl-β-D-ribofuranosyl)-1,4-dihydro-4-oxoquinoline (8b) was obtained in good yields using bis(trimethylsilyl)trifluoroacetamide (BSTFA) containing 1% of TMCS and the same catalyst. Compound 8b was more easily isolated in higher yields with an improvement of the later method by replacing stannic chloride with trimethylsilyl trifluoromethanesulfonate (TMSOTf).

De-O-benzoylation of 8b with methanolic sodium hydroxide solution afforded the free riboside 3-carbomethoxy-6-methyl-1-β-D-ribofuranosyl-1,4-dihydro-4-oxoquinoline (9b). The structures of the obtained products were confirmed by their LTV, MS, IR, 1H and 13C-NMR data.  相似文献   

12.
Seven 2-substituted derivatives of the nitrogen analogue of salacinol, a naturally occurring glycosidase inhibitor, were synthesized for structure-activity studies with hexosaminidase enzymes. The target zwitterionic compounds were synthesized by means of nucleophilic attack of the 2-azido-1,4-dideoxy-1,4-imino-D-arabinitol at the least hindered carbon atom of 2,4-O-benzylidene-L-erythritol-1,3-cyclic sulfate. Hydrogenation of the azido zwitterionic compound in methanol resulted in the reduction of the azide and subsequent methylation of the resulting amine in one pot. A similar reaction, with ethanol as the solvent, gave the N-ethyl derivative. The 2-amino analogues were finally obtained by the reduction of the azide function using triphenylphosphine. Acylation of the amine using acetic, propionic, or valeric anhydride afforded the corresponding 2-amido derivatives. Deprotection of the acylated, coupled products using 80% trifluoroacetic acid proceeded smoothly. Unlike their sulfonium ion counterparts, these compounds were stable and did not undergo ring opening. We also report the synthesis of the parent nitrogen heterocycles, N-Boc-1,2,4-trideoxy-2-amino-1,4-imino-D-arabinitol, and 1,2,4-trideoxy-2-acetamido-1,4-imino-D-arabinitol and its corresponding N-Boc protected compound. The 2-substituted analogues and the parent iminoalditol showed marginal activity (<33% at 250 microM) against human O-GlcNAcase and Vibrio cholerae NagZ enzymes.  相似文献   

13.
Myeloperoxidase is very susceptible to reducing radicals because the reduction potential of the ferric/ferrous redox couple is much higher compared with other peroxidases. Semiquinone radicals are known to reduce heme proteins. Therefore, the kinetics and spectra of the reactions of p-hydroquinone, 2,3-dimethylhydroquinone and 2,3,5-trimethylhydroquinone with compounds I and II were investigated using both sequential-mixing stopped-flow techniques and conventional spectrophotometric measurements. At pH 7 and 15 degrees C the rate constants for compound I reacting with p-hydroquinone, 2,3-dimethylhydroquinone and 2,3,5-trimethylhydroquinone were determined to be 5.6+/-0.4 x 10(7) M(-1)s(-1), 1.3+/-0.1 x 10(6) M(-1)s(-1) and 3.1+/-0.3 x 10(6) M(-1)s(-1), respectively. The corresponding reaction rates for compound II reduction were calculated to be 4.5+/-0.3 x 10(6) M(-1)s(-1), 1.9+/-0.1 x 10(5) M(-1)s(-1) and 4.5+/-0.2 x 10(4) M(-1)s(-1), respectively. Semiquinone radicals, produced by compounds I and II in the classical peroxidation cycle, promote compound III (oxymyeloperoxidase) formation. We could monitor formation of ferrous myeloperoxidase as well as its direct transition to compound II by addition of molecular oxygen. Formation of ferrous myeloperoxidase is shown to depend strongly on the reduction potential of the corresponding redox couple benzoquinone/semiquinone. With 2,3-dimethylhydroquinone and 2,3,5-trimethylhydroquinone as substrate, myeloperoxidase is extremely quickly trapped as compound III. These MPO-typical features could have potential in designing specific drugs which inhibit the production of hypochlorous acid and consequently attenuate inflammatory tissue damage.  相似文献   

14.
Sphingomonas xenophaga Bayram, isolated from the activated sludge of a municipal wastewater treatment plant, was able to utilize 4-(1-ethyl-1,4-dimethylpentyl)phenol, one of the main isomers of technical nonylphenol mixtures, as a sole carbon and energy source. The isolate degraded 1 mg of 4-(1-ethyl-1,4-dimethylpentyl)phenol/ml in minimal medium within 1 week. Growth experiments with five nonylphenol isomers showed that the three isomers with quaternary benzylic carbon atoms [(1,1,2,4-tetramethylpentyl)phenol, 4-(1-ethyl-1,4-dimethylpentyl)phenol, and 4-(1,1-dimethylheptyl)phenol] served as growth substrates, whereas the isomers containing one or two hydrogen atoms in the benzylic position [4-(1-methyloctyl)phenol and 4-n-nonylphenol] did not. However, when the isomers were incubated as a mixture, all were degraded to a certain degree. Differential degradation was clearly evident, as isomers with more highly branched alkyl side chains were degraded much faster than the others. Furthermore, the C9 alcohols 2,3,5-trimethylhexan-2-ol, 3,6-dimethylheptan-3-ol, and 2-methyloctan-2-ol, derived from the three nonylphenol isomers with quaternary benzylic carbon atoms, were detected in the culture fluid by gas chromatography-mass spectrometry, but no analogous metabolites could be found originating from 4-(1-methyloctyl)phenol and 4-n-nonylphenol. We propose that 4-(1-methyloctyl)phenol and 4-n-nonylphenol were cometabolically transformed in the growth experiments with the mixture but that, unlike the other isomers, they did not participate in the reactions leading to the detachment of the alkyl moiety. This hypothesis was corroborated by the observed accumulation in the culture fluid of an as yet unidentified metabolite derived from 4-(1-methyloctyl)phenol.  相似文献   

15.
Syntheses of 4-nitrophenyl beta-D-fucofuranoside (6) and beta-D-fucofuranosyl-(1-->3)-D-mannopyranose (10) are reported. These compounds, as analogues of galactofuranosides, were used for studying the influence of the hydroxyl group at C-6 in the interaction of the substrate with beta-D-galactofuranosidase. For the synthesis of the fucofuranosides, 2,3,5-tri-O-benzoyl-6-bromo-6-deoxy-D-galactono-1,4-lactone (1) was the key intermediate, which upon reduction of the lactone group with diisoamylborane, acetylation of the anomeric hydroxyl group, and catalytic hydrogenolysis of the bromine at C-6, led to 1-O-acetyl-2,3,5-tri-O-benzoyl-alpha,beta-D-fucofuranose (4), a convenient derivative for the preparation of fucofuranosides. Compound 4 was glycosylated in the presence of SnCl4, either with 4-nitrophenol for the preparation of 6, or with 2,5,6-tri-O-benzoyl-D-mannono-1,4-lactone (7), for the synthesis of disaccharide 10, via the glycosyl-aldonolactone approach. The synthetic route developed for the beta-D-fucofuranosides is simple and efficient. Compound 6 was not hydrolyzed by incubation with the exo beta-D-galactofuranosidase from Penicillium fellutanum, showing that HO-6 is essential for interaction of the substrate with the enzyme.  相似文献   

16.
Nasi R  Pinto BM 《Carbohydrate research》2006,341(14):2305-2311
The synthesis of new analogues of the naturally occurring glycosidase inhibitor, salacinol, and its ammonium analogue, ghavamiol is described. These analogues contain an additional hydroxymethyl group at C-1, which was intended to form additional polar contacts within the active site of glycosidase enzymes. The target zwitterionic compounds were synthesized by means of nucleophilic attack at the least hindered carbon atom of 2,4-O-benzylidene-l (or d)-erythritol 1,3-cyclic sulfate by 2,5-anhydro-1,3:4,6-di-O-benzylidene-2,5-dideoxy-5-thio (or 1,5-imino)-l-iditol.  相似文献   

17.
The arylazide 1,4-dihydropyridine (-)-[3H]azidopine binds to a saturable population of sites in guinea-pig heart membranes with a dissociation constant (KD) of 30 +/- 7 pM and a density (Bmax.) of 670 +/- 97 fmol/mg of protein. This high-affinity binding site is assumed to reside on voltage-operated calcium channels because reversible binding is blocked stereoselectively by 1,4-dihydropyridine channel blockers and by the enantiomers of Bay K 8644. A low-affinity (KD 25 +/- 7 nM) high-capacity (Bmax. 21.6 +/- 9 pmol/mg of protein) site does not bind (-)- or (+)-Bay K 8644, but is blocked by high concentrations (greater than 500 nM) of dihydro-2,6-dimethyl-4-(2-isothiocyanatophenyl)-3,5-pyridinedicarboxy lic acid dimethyl ester (1,4-DHP-isothiocyanate) or, e.g., (+/-)-nicardipine. (-)-[3H]Azidopine was photoincorporated covalently into bands of 165 +/- 8, 39 +/- 2 and 35 +/- 3 kDa, as determined by SDS/polyacrylamide-gel electrophoresis. Labelling of the 165 kDa band is protected stereoselectively by 1,4-dihydropyridine enantiomers at low (nM) concentrations and by (-)- and (+)-Bay K 8644, whereas the lower-Mr bands are not. Thus, only the 165 kDa band is the calcium-channel-linked 1,4-dihydropyridine receptor. Photolabelling of the 39 or 35 kDa bands was only blocked by 10 microM-1,4-DHP-isothiocyanate or 50 microM-(+/-)-nicardipine but not by 10 microM-(-)-Bay K 8644. [3H]-1,4-DHP-isothiocyanate binds to guinea-pig heart membranes with a KD of 0.35 nM and dissociates with a k-1 of 0.2 min-1 at 30 degrees C. [3H]-1,4 DHP-isothiocyanate irreversibly labels bands of 39 and 35 kDa which are protected by greater than 10 microM-(+/-)-nicardipine or unlabelled ligand but not by 10 microM-(-)-Bay K 8644. Thus, [3H]-1,4-DHP-isothiocyanate is not an affinity probe for the calcium channel.  相似文献   

18.
The synthesis of two novel amino acids, nitrogen analogues of the naturally occurring glycosidase inhibitor, salacinol, containing a carboxylate inner salt are described, along with the crystal structure of one of these analogues in the active site of Drosophila melanogaster Golgi mannosidase II (dGMII). Salacinol, a naturally occurring sulfonium ion, is one of the active principals in the aqueous extracts of Salacia reticulata that are traditionally used in Sri Lanka and India for the treatment of diabetes. The synthetic strategy relies on the nucleophilic attack of 2,3,5-tri-O-benzyl-1,4-dideoxy-1,4-imino l- or d-arabinitol at the least hindered carbon of 5,6-anhydro-2,3-di-O-benzyl-l-ascorbic acid to yield coupled adducts. Deprotection, stereoselective catalytic reduction, and hydrolysis of the coupled products give the target compounds. The compound derived from d-arabinitol inhibits dGMII, one of the critical enzymes in the glycoprotein processing pathway, with an IC(50) of 0.3mM. Inhibition of GMII has been identified as a target for control of metastatic cancer. An X-ray crystal structure of the complex of this compound with dGMII provides insight into the requirements for an effective inhibitor. The same compound inhibits recombinant human maltase glucoamylase, one of the key intestinal enzymes involved in the breakdown of glucose oligosaccharides in the small intestine, with a K(i) value of 21microM.  相似文献   

19.
The present article describes the synthesis of new 4H-1,4-benzothiazines via condensation and oxidative cyclization of substituted 2-aminobenzenethiols with β-diketones/β-ketoesters in dimethyl sulfoxide. The oxidation of these synthesized 4H-1,4-benzothiazines with 30% hydrogen peroxide in glacial acetic acid yielded 4H-1,4-benzothiazine sulfones and the reaction of these synthesized benzothiazines with sugar (β-D-ribofuranose-1-acetate-2,3,5-tribenzoate) afforded the new ribofuranosides. These compounds were evaluated for their antioxidant and antimicrobial activities (using broth microdilution method). The structural assignments of the synthesized compounds were made on the basis of elemental analyses and spectroscopic data.  相似文献   

20.
An efficient and practical strategy for the synthesis of N-hydroxyethyl-1-deoxy-homonojirimycins 4 and 5 and N-hydroxyethyl-pyrrolidine homoazasugars 6 and 7 with full stereocontrol is being reported. The key step involved is the intermolecular Michael addition of benzylamine to D-glucose derived alpha,beta-unsaturated ester 8 followed by N-alkylation with ethyl bromoacetate. Reduction with LAH, acetylation, hydrogenation and protection with -Cbz group afforded compounds 14a and 14b. Removal of 1,2-acetonide functionality, hydrogenation and deacetylation afforded N-hydroxyethyl-D-gluco-1-deoxyhomonojirimycin (4) and N-hydroxyethyl-L-ido-1-deoxyhomonojirimycin (5), respectively. Compounds 14a and 14b on acetylation followed by removal of 1,2-acetonide functionality, sodium metaperiodate oxidation, hydrogenation and deacetylation gave 1,4,5-trideoxy-1,4-imino-N-hydroxyethyl-D-arabino-hexitol (6) and 1,4,5-trideoxy-1,4-imino-N-hydroxyethyl-L-xylo-hexitol (7), respectively. The glycosidase inhibition activity of compounds 4, 5, 6, 7, 16a and 16b was evaluated using sweet almond seed as a rich source of different glycosidases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号