首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An apparatus is described which collects the effluent from the center 0.7 cm of a single muscle fiber or bundle of muscle fibers. It was used to study the efflux of 45Ca from twitch muscle fibers. The efflux can be described by three time constants 18 ± 2 min, 300 ± 40 min, and 882 ± 172 min. These kinetics have been interpreted as those of a three-compartment system. The fastest is thought to be on the surface membrane of the muscle and of the T system. It contains 0.07 ± 0.03 mM Ca/liter of fiber and the Ca efflux is 0.11 ± 0.04 pM Ca/cm2. sec. The intermediate rate compartment is thought to represent the Ca in the longitudinal reticulum. It contains approximately 0.77 mM Ca/liter. Only the efflux from this compartment increases during stimulation. The most slowly exchanging compartment is poorly defined. Neither Ca-free nor Ni-Ringer solutions alter the rate of loss from the fastest exchanging compartment. Ni apparently alters the rate of loss from the slowest compartment.  相似文献   

2.
Choline permeability in cardiac muscle cells of the cat   总被引:2,自引:1,他引:1  
Permeability of the cardiac cell membrane to choline ions was estimated by measuring radioactive choline influx and efflux in cat ventricular muscle. Maximum values for choline influx in 3.5 and 137 mM choline were respectively 0.56 and 9 pmoles/cm2·sec. In 3.5 mM choline the intracellular choline concentration was raised more than five times above the extracellular concentration after 2 hr of incubation. In 137 mM choline, choline influx corresponded to the combined loss of intracellular Na and K ions. Paper chromatography of muscle extracts indicated that choline was not metabolized to any important degree. The accumulation of intracellular choline rules out the existence of an efficient active pumping mechanism. By measuring simultaneously choline and sucrose exchange, choline efflux was analyzed in an extracellular phase, followed by two intracellular phases: a rapid and a slow one. Efflux corresponding to the rapid phase was estimated at 16–45 pmoles/cm2·sec in 137 mM choline and at 1.3–3.5 pmoles/cm2·sec in 3.5 mM choline; efflux in 3.5 mM choline was proportional to the intracellular choline concentration. The absolute figures for unidirectional efflux were much larger than the net influx values. The data are compared to Na and Li exchange in heart cells. Possible mechanisms for explaining the choline behavior in heart muscle are discussed.  相似文献   

3.
According to theory, the action of acetylcholine (ACh) and ACh-esterase is essential for the permeability changes of excitable membranes during activity. It is, therefore, pertinent to know the activity of ACh-esterase per unit axonal surface area instead of per gram nerve, as it has been measured in the past. Such information has now been obtained with the newly developed microgasometric technique using a magnetic diver. (1) The cholinesterase (Ch-esterase) activity per mm2 surface of sensory axons of the walking leg of lobster is 1.2 x 10-3 µM/hr. (σ = ± 0.3 x 10-3; SE = 0.17 x 10-3); the corresponding value for the motor axons isslightly higher: 1.93 x 10-3 µM/hr. (σ = ± 0.41 x 10-3; SE = ± 0.14 x 10-3). Referred to gram nerve, the Ch-esterase activity of the sensory axons is much higher than that of the motor axons: 741 µM/hr. (σ = ± 73.5; SE = ± 32.6) versus 111.6 µM/hr. (σ = ± 28.3; SE = ± 10). (2) The enzyme activity in the small fibers of the stellar nerve of squid is 3.2 x 10-4 µM/mm2/hr. (σ = ± 0.96 x 10-4; SE = ± 0.4 x 10-4). (3) The Ch-esterase activity per mm2 surface of squid giant axon is 9.5 x 10-5 µM/hr. (σ = ± 1.55 x 10-5; SE = ± 0.38 x 10-5). The value was obtained with small pieces of carefully cleaned axons after removal of the axoplasm and exposure to sonic disintegration. Without the latter treatment the figurewas 3.85 x 10-5 µM/mm2/hr. (σ = ± 3.24 x 10-5; SE = ± 0.93 x 10-5). The experiments indicate the existence of permeability barriers in the cell wall surrounding part of the enzyme, since the substrate cannot reach all the enzyme even when small fragments of the cell wall are used without disintegration. (4) On the basis of the data obtained, some tentative approximations are made of the ratio of ACh released to Na ions entering the squid giant axon per cm2 per impulse.  相似文献   

4.
Cation composition of frog smooth muscle cells was investigated. Fresh stomach muscle rings resembled skeletal muscle, but marked Na gain and K loss followed immersion. Mean Na (49.8–79.7 mM/kg tissue) and K (61.8–80.1 mM/kg tissue) varied between batches, but were stable for long periods in vitro. Exchange of 6–30 mM Na/kg tissue with 22Na was extremely slow and distinct. Extracellular water was estimated from sucrose-14C uptake. Calculated exchangeable intracellular Na was 9 mM/kg cell water, and varied little. Thus steady-state transmembrane cation gradients appeared to be steep. K-free solution had only slight effects. Ouabain (10-4 M) caused marked Na gain and reciprocal K loss; at 30°C, Na and K varied linearly with time over a wide range of contents, indicating constant net fluxes. Net fluxes decreased with temperature decrease. 22Na exchange in ouabain-treated tissue at 20–30°C was rapid and difficult to analyze. The best minimum estimates of unidirectional Na fluxes at 30°C were 10–12 times the constant net flux; constant pump efflux may explain these findings. The rapidity of Na exchange may not reflect very high permeability, but it does require a high rate of transport work.  相似文献   

5.
Ca 2+ -specific removal of Z lines from rabbit skeletal muscle   总被引:15,自引:6,他引:9  
Removal of rabbit psoas strips immediately after death and incubation in a saline solution containing 1 mM Ca2+ and 5 nM Mg2+ for 9 hr at 37°C and pH 7.1 causes complete Z-line removal but has no ultrastructurally detectable effect on other parts of the myofibril. Z lines remain ultrastructurally intact if 1 mM 1,2-bis-(2-dicarboxymethylaminoethoxy)-ethane (EGTA) is substituted for 1 mM Ca2+ and the other conditions remain unchanged. Z lines are broadened and amorphous but are still present after incubation for 9 hr at 37°C if 1 mM ethylenediaminetetraacetate (EDTA) is substituted for 1 mM Ca2+ and 5 mM Mg2+ in the saline solution. A protein fraction that causes Z-line removal from myofibrils in the presence of Ca2+ at pH 7.0 can be isolated by extraction of ground muscle with 4 mM EDTA at pH 7.0–7.6 followed by isoelectric precipitation and fractionation between 0 and 40% ammonium sulfate saturation. Z-line removal by this protein fraction requires Ca2+ levels higher than 0.1 mM, but Z lines are removed without causing any other ultrastructurally detectable degradation of the myofibril. This is the first report of a protein endogenous to muscle that is able to catalyze degradation of the myofibril. The very low level of unbound Ca2+ in muscle cells in vivo may regulate activity of this protein fraction, or alternatively, this protein fraction may be localized in lysosomes.  相似文献   

6.
Quantitative light microscope radioautographs of galactose-3H and phlorizin-3H were prepared from freeze-dried plastic-embedded hamster small intestine incubated in vitro. The usual uphill epithelial cell accumulation of galactose accompanied by a somewhat smaller lamina propria accumulation was observed in control tissue incubated 3 min in 1 mM galactose-3H. The addition of 5 x 10-4 M phlorizin to the medium blocked uphill accumulation, but did not prevent galactose equilibration with the epithelial cells. The galactose content of the lamina propria was considerably less than the galactose content of the epithelial cell. Varying the phlorizin-3H content of the medium from 0.6 to 60 µM revealed a brush border binding of phlorizin which followed a Langmuir adsorption isotherm with a half-saturation constant of 13 µM and a maximum binding of 84 µmoles of phlorizin/liter of microvilli or 2.6 x 106 sites/epithelial cell. The phlorizin content of the epithelial cell compartment, excluding microvilli, never exceeded 10% that of the medium after 20 min of incubation. These findings directly support the view that phlorizin is a nontransported inhibitor which binds glucose-galactose carriers at the surface of epithelial cell microvilli.  相似文献   

7.
Sodium fluxes in internally dialyzed squid axons   总被引:17,自引:10,他引:7       下载免费PDF全文
The effects which alterations in the concentrations of internal sodium and high energy phosphate compounds had on the sodium influx and efflux of internally dialyzed squid axons were examined. Nine naturally occurring high energy phosphate compounds were ineffective in supporting significant sodium extrusion. These compounds were: AcP, PEP, G-3-P, ADP, AMP, GTP, CTP, PA, and UTP.1 the compound d-ATP supported 25–50% of the normal sodium extrusion, while ATP supported 80–100%. The relation between internal ATP and sodium efflux was nonlinear, rising most steeply in the range 1 to 10 µM and more gradually in the range 10 to 10,000 µM. There was no evidence of saturation of efflux even at internal ATP concentrations of 10,000 µM. The relation between internal sodium and sodium efflux was linear in the range 2 to 240 mM. The presence of external strophanthidin (10 µM) changed the sodium efflux to about 8–12 pmoles/cm2 sec regardless of the initial level of efflux; this changed level was not altered by subsequent dialysis with large concentrations of ATP. Sodium influx was reduced about 50 % by removal of either ATP or Na and about 70 % by removing both ATP and Na from inside the axon.  相似文献   

8.

Background and Aims

Nitric oxide (NO) has been demonstrated to stimulate the activity of nitrate reductase (NR) in plant roots supplied with a low level of nitrate, and to affect proteins differently, depending on the ratio of NO to the level of protein. Nitrate has been suggested to regulate the level of NO in plants. This present study examined interactive effects of NO and nitrate level on NR activity in roots of tomato (Solanum lycocarpum).

Methods

NR activity, mRNA level of NR gene and concentration of NR protein in roots fed with 0·5 mm or 5 mm nitrate and treated with the NO donors, sodium nitroprusside (SNP) and diethylamine NONOate sodium (NONOate), and the NO scavenger, 2-(4-carboxyphenyl)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide (cPTIO), were measured in 25-d-old seedlings.

Key Results

Addition of SNP and NONOate enhanced but cPTIO decreased NR activity in the roots fed with 0·5 mm nitrate. The opposite was true for the roots fed with 5 mm nitrate. However, the mRNA level of the NR gene and the protein concentration of NR enzyme in the roots were not affected by SNP treatment, irrespective of nitrate pre-treatment. Nevertheless, a low rate of NO gas increased while cPTIO decreased the NR activities of the enzyme extracts from the roots at both nitrate levels. Increasing the rate of NO gas further increased NR activity in the enzyme extracts of the roots fed with 0·5 mm nitrate but decreased it when 5 mm nitrate was supplied. Interestingly, the stimulative effect of NO gas on NR activity could be reversed by NO removal through N2 flushing in the enzyme extracts from the roots fed with 0·5 mm nitrate but not from those with 5 mm nitrate.

Conclusions

The effects of NO on NR activity in tomato roots depend on levels of nitrate supply, and probably result from direct interactions between NO and NR protein.Key words: Nitric oxide, nitrate, nitrate reductase, post-translational regulation, tomato, Solanum lycocarpum  相似文献   

9.
Potassium fluxes in dialyzed squid axons   总被引:11,自引:6,他引:5       下载免费PDF全文
Measurements have been made of K influx in squid giant axons under internal solute control by dialysis. With [ATP]i = 1 µM, [Na]i = 0, K influx was 6 ± 0.6 pmole/cm2 sec; an increase to [ATP]i = 4 mM gave an influx of 8 ± 0.5 pmole/cm2 sec, while [ATP]i 4, [Na]i 80 gave a K influx of 19 ± 0.7 pmole/cm2 sec (all measurements at ∼16°C). Strophanthidin (10 µM) in seawater quantitatively abolished the ATP-dependent increase in K influx. The concentration dependence of ATP-dependent K influx on [ATP]i, [Na]i, and [K]o was measured; an [ATP]i of 30 µM gave a K influx about half that at physiological concentrations (2–3 mM). About 7 mM [Na]i yielded half the K influx found at 80 mM [Na]i. The ATP-dependent K influx responded linearly to [K]o from 1–20 mM and was independent of whether Na, Li, or choline was the principal cation of seawater. Substances tested as possible energy sources for the K pump were acetyl phosphate, phosphoarginine, PEP, and d-ATP. None was effective except d-ATP and this substance gave 70% of the maximal flux only when phosphoarginine or PEP was also present.  相似文献   

10.
Concentrative accumulation of choline by human erythrocytes   总被引:13,自引:2,他引:11  
Influx and efflux of choline in human erythrocytes were studied using 14C-choline. When incubated at 37°C with physiological concentrations of choline erythrocytes concentrate choline; the steady-state ratio is 2.08 ± 0.23 when the external choline is 2.5 µM and falls to 0.94 ± 0.13 as the external concentration is raised to 50 µM. During the steady state the influx of choline is consistent with a carrier system with an apparent Michaelis constant of 30 x 10-6 and a maximum flux of 1.1 µmoles per liter cells per min. For the influx into cells preequilibrated with a choline-free buffer the apparent Michaelis constant is about 6.5 x 10-6 M and the maximum flux is 0.22 µmole per liter cells per min. At intracellular concentrations below 50 µmole per liter cells the efflux in the steady state approximates first order kinetics; however, it is not flux through a leak because it is inhibited by hemicholinium. Influx and efflux show a pronounced exchange flux phenomenon. The ability to concentrate choline is lost when external sodium is replaced by lithium or potassium. However, the uphill movement of choline is probably not coupled directly to the Na+ electrochemical gradient.  相似文献   

11.
The distribution of the Mg-dependent ATPase associated with a microsomal fraction of rabbit psoas muscle was studied histochemically and its localization in relation to the vesicles of the fraction and to the structure of intact fixed muscle was determined. Although enzyme activity was retained after fixation in hydroxyadipaldehyde and in glyoxal, it was lost after fixation in glutaraldehyde or after 4 hr fixation in formaldehyde. Activity was optimally demonstrated when incubations were conducted at 17°C, in media containing 125 mM Trismaleate buffer, pH 7.5, 5 mM ATP, 4 mM MgCl2, and 1 mM Pb(NO3)2. After such incubations, activity was present throughout the sarcoplasmic reticulum, but was absent from the T system. Activation by Na or K could not be demonstrated histochemically. However, the other biochemical properties of the enzyme in the isolated vesicles and in intact muscle were similar with respect to Mg dependence, substrate specificity, inhibition by Ca, N-ethyl maleimide, p-hydroxymercuribenzoate, and lack of inhibition by ouabain.  相似文献   

12.
Sartorius muscle cells from the frog were stored in a K-free Ringer solution at 3°C until their average sodium contents rose to around 23 mM/kg fiber (about 40 mM/liter fiber water). Such muscles, when placed in Ringer''s solution containing 60 mM LiCl and 50 mM NaCl at 20°C, extruded 9.8 mM/kg of sodium and gained an equivalent quantity of lithium in a 2 hr period. The presence of 10-5 M strophanthidin in the 60 mM LiCl/50 mM NaCl Ringer solution prevented the net extrusion of sodium from the muscles. Lithium ions were found to enter muscles with a lowered internal sodium concentration at a rate about half that for entry into sodium-enriched muscles. When sodium-enriched muscles labeled with radioactive sodium ions were transferred from Ringer''s solution to a sodium-free lithium-substituted Ringer solution, an increase in the rate of tracer sodium output was observed. When the lithium-substituted Ringer solution contained 10-5 M strophanthidin, a large decrease in the rate of tracer sodium output was observed upon transferring labeled sodium-enriched muscles from Ringer''s solution to the sodium-free medium. It is concluded that lithium ions have a direct stimulating action on the sodium pump in skeletal muscle cells and that a significantly large external sodium-dependent component of sodium efflux is present in muscles with an elevated sodium content. In the sodium-rich muscles, about 23% of the total sodium efflux was due to strophanthidin-insensitive Na-for-Na interchange, about 67% being due to strophanthidin-sensitive sodium pumping.  相似文献   

13.
The initial rate of thymidine-3H incorporation into the acid-soluble pool by cultured Novikoff rat hepatoma cells was investigated as a function of the thymidine concentration in the medium. Below, but not above 2 µM, thymidine incorporation followed normal Michaelis-Menten kinetics at 22°, 27°, 32°, and 37°C with an apparent Km of 0.5 µM, and the Vmax values increased with an average Q10 of 1.8 with an increase in temperature. The intracellular acid-soluble 3H was associated solely with thymine nucleotides (mainly deoxythymidine triphosphate [dTTP]). Between 2 and 200 µM, on the other hand, the initial rate of thymidine incorporation increased linearly with an increase in thymidine concentration in the medium and was about the same at all four temperatures. Pretreatment of the cells with 40 or 100 µM p-chloromercuribenzoate for 15 min or heat-shock (49.5°C, 5 min) markedly reduced the saturable component of uptake without affecting the unsaturable component or the phosphorylation of thymidine. The effect of p-chloromercuribenzoate was readily reversed by incubating the cells in the presence of dithiothreitol. Persantin and uridine competitively inhibited thymidine incorporation into the acid-soluble pool without inhibiting thymidine phosphorylation. At concentrations below 2 µM, thymidine incorporation into DNA also followed normal Michaelis-Menten kinetics and was inhibited in an apparently competitive manner by Persantin and uridine. The apparent Km and Ki values were about the same as those for thymidine incorporation into the nucleotide pool. The over-all results indicate that uptake is the rate-limiting step in the incorporation of thymidine into the nucleotide pool as well as into DNA. The cells possess an excess of thymidine kinase, and thymidine is phosphorylated as rapidly as it enters the cells and is thereby trapped. At low concentrations, thymidine is taken up mainly by a transport reaction, whereas at concentrations above 2 µM simple diffusion becomes the principal mode of uptake. Evidence is presented that indicates that uridine and thymidine are transported by different systems. Upon inhibition of DNA synthesis, net thymidine incorporation into the acid-soluble pool ceased rapidly. Results from pulse-chase experiments indicate that a rapid turnover of dTTP to thymidine may be involved in limiting the level of thymine nucleotides in the cell.  相似文献   

14.
Calcium compartments and fluxes were measured by kinetic analyses in kidney cell suspensions in a three-compartment closed system. The fast phase influx and compartment size increase linearly with the medium calcium and the half-time of exchange is only 1.3 min which suggests that the fast component is extracellular. The slow phase compartment rises linearly from 0.1 to 0.5 mmole calcium/kg cell water when the medium calcium is raised from 0.02 to 2.5 mM. The slow phase calcium influx exhibits the pattern of saturation kinetics with a V max of 0.065 µµmole cm-2 sec-1 and a Km of 0.3 mM indicating that it is a carrier-mediated transport process. PTH has no effect on the fast phase of calcium influx, but increases both calcium influx and the calcium pool size of the slow component. The maximum effect is obtained at medium calcium concentration of 1.3 mM. Below 0.3 mM extracellular calcium, the effects of the hormone cannot be demonstrated. PTH increases the V max of calcium influx from 0.065 to 0.128 µµmole cm-2 sec-1 while the Km rises from 0.3 to 1.15 mM. These findings suggest that PTH increases the translocation of the calcium-carrier complex across the membrane and not the carrier concentration or its binding affinity for calcium.  相似文献   

15.
Biphasic potassium contractures in frog muscle fibers   总被引:2,自引:1,他引:1  
Potassium-induced contractures were studied in single fibers from the semitendinosus muscle of Rana pipiens. Contractures elicited by solutions containing 60–117 mM potassium and 120 mM chloride were biphasic, consisting of a rapid initial contraction with a duration at 23°C of less than 1 sec followed by a slow response with a duration of many seconds. At 13°C, the initial response was greatly prolonged so that the two responses virtually fused into a single smooth contracture. Membrane potential in high potassium, high chloride solutions underwent a transient peak depolarization, probably as a result of time-dependent changes in membrane conductance during depolarization. It is proposed that this complex time course of depolarization gives rise to the biphasic contracture response.  相似文献   

16.
The transport of some sugars at the antiluminal face of renal cells was studied using teased tubules of flounder (Pseudopleuronectes americanus). The analytical procedure allowed the determination of both free and total (free plus phosphorylated) tissue sugars. The inulin space of the preparation was 0.333 ± 0.017 kg/kg wet wt (7 animals, 33 analyses). The nonmetabolizable α-methyl-D-glucoside entered the cells by a carrier-mediated (phloridzin-sensitive), ouabain-insensitive process. The steady-state tissue/medium ratio was systematically below that for diffusion equilibrium. D-Glucose was a poor inhibitor of α-methyl-glucoside transport, D-galactose was ineffective. The phloridzin-sensitive transport processes of 2-deoxy-D-glucose,D-galactose,and 2-deoxy-D-galactose were associated with considerable phosphorylation. Kinetic evidence suggested that these sugars were transported in free form and subsequently were phosphorylated. 2-Deoxy-D-glucose accumulated in the cells against a slight concentration gradient. This transport was greatly inhibited by D-glucose, whereas α-methyl-glucoside and also D-galactose and its 2-deoxy-derivative were ineffective. D-Galactose and 2-deoxy-D-galactose mutually competed for transport; D-glucose, 2-deoxy-D-glucose, and α-methyl-D-glucoside were ineffective. Studies using various sugars as inhibitors suggest the presence of three carrier-mediated pathways of sugar transport at the antiluminal cell face of the flounder renal tubule: the pathway of α-methyl-D-glucoside (not shared by D-glucose); the pathway commonly shared by 2-deoxy-D-glucose and D-glucose; the pathway shared by D-galactose and 2-deoxy-D-galactose.  相似文献   

17.
45Ca efflux was studied in resting anterior byssal retractor muscle. The data are described by a three-compartment system. The most rapidly exchanging compartment, with an average time constant of 7 min, contains about 0.9 mM Ca/liter muscle, and probably represents extracellular space. A second compartment, with a time constant of 83 ± 5 min, contains 1.2 mM Ca/liter, and may represent a membrane calcium store. The presence of a third, or more, compartments, probably representing sarcoplasmic reticulum and contractile proteins, is indicated by the fact that the final time constant is 10 times the 83 min time constant of the second compartment. Serotonin (5HT), on initial application, increases 45Ca efflux from this third compartment(s). This effect has a typical dose-response relationship with a maximum response appearing at 10-7 M5HT. In addition, removal of 5HT causes a secondary increase in 45Ca efflux which has a maximum at a 5HT concentration of 10-7 M and declines at both higher and lower doses.  相似文献   

18.
Enzymatic processes are useful for industrially important sugar production, and in vitro two-step isomerization has proven to be an efficient process in utilizing readily available sugar sources. A hypothetical uncharacterized protein encoded by ydaE of Bacillus licheniformis was found to have broad substrate specificities and has shown high catalytic efficiency on d-lyxose, suggesting that the enzyme is d-lyxose isomerase. Escherichia coli BL21 expressing the recombinant protein, of 19.5 kDa, showed higher activity at 40 to 45°C and pH 7.5 to 8.0 in the presence of 1.0 mM Mn2+. The apparent Km values for d-lyxose and d-mannose were 30.4 ± 0.7 mM and 26 ± 0.8 mM, respectively. The catalytic efficiency (kcat/Km) for lyxose (3.2 ± 0.1 mM−1 s−1) was higher than that for d-mannose (1.6 mM−1 s−1). The purified protein was applied to the bioproduction of d-lyxose and d-glucose from d-xylose and d-mannose, respectively, along with the thermostable xylose isomerase of Thermus thermophilus HB08. From an initial concentration of 10 mM d-lyxose and d-mannose, 3.7 mM and 3.8 mM d-lyxose and d-glucose, respectively, were produced by two-step isomerization. This two-step isomerization is an easy method for in vitro catalysis and can be applied to industrial production.  相似文献   

19.
Action potential parameters affecting excitation-contraction coupling   总被引:3,自引:0,他引:3  
In quantifying type B potentiation effects, given earlier merely qualitatively, it is found that Zn2+, 1—50 µM, causes increases in action potential duration, twitch tension, and twitch contraction period time, which are all directly proportional to the log of the concentration. Hence, the duration of the action potential, i.e. the magnitude of its mechanically effective period, is a causal factor quantitatively determining the degree of mechanical activation in the isometric twitch. In higher concentrations of Zn2+ up to 1000 µM, the spike duration and the contraction time continue to increase but the twitch tension is disproportionately smaller, evidently because the high zinc (500—1000 µM) raises the mechanical threshold of excitation-contraction (E—C) coupling and reduces the intrinsic strength of the contractile system. Eserine (1.5 mM) and also high Zn2+ not only cause type B potentiation effects, but also slow the rise of the spike, thus causing retardation of the very onset of tension production, which is even greater for high Zn2+ because of the raised mechanical threshold. This retardation is then succeeded by the faster tension output characteristic of type B potentiation resulting from spike prolongation. Thus, the changes in the consecutive, rising and falling phases of the action potential explicitly register their separate effects in the respective very earliest and directly following periods of twitch output; i.e., each phase of the action potential produces its own mechanical "transform." These transforms, and other effects, suggest that the release of activator Ca2+ from the sarcoplasmic reticulum during E—C coupling can be graded in both the rate and the total amount of the release.  相似文献   

20.
Lipoprotein lipase activity was studied in rat parametrial adipose tissue perfused with chylomicrons and in gelatin blocks containing postheparin plasma and chylomicrons. The tissues and blocks were fixed in glutaraldehyde and incubated in 0.035 M CaCl2-0.1 M Tris medium (pH 8.3) at 38°C. The doubly labeled chylomicron triglycerides (glycerol-3H and palmitate-14C) in the tissues and blocks were hydrolyzed during incubation to free fatty acids (FFA) and the FFA remained in the specimens; hydrolysis was inhibited by 0.004 M diethyl paranitrophenyl phosphate (E-600). Incubated blocks and tissue were treated with 0.05 M Pb(NO3)2, postfixed in OsO4, dehydrated with acetone, embedded in Epon, and examined by electron microscopy. The incubated blocks contained electronlucent areas and granular and laminar precipitates at sites of hydrolysis. Similar precipitates were found in incubated tissue, within vacuoles and microvesicles of capillary endothelium, and in the subendothelial space (between the endothelium and pericytes), but not in the capillary lumen or in or near fat cells. The cytochemical reaction was greatly reduced, in blocks and tissues incubated with E-600. It is concluded that plasma glycerides are hydrolyzed by lipoprotein lipase in capillary endothelial cells and in the subendothelial space of adipose tissue and that glycerides across the endothelial cells within a membrane-bounded system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号