首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mode of action of hepatic nerves on the metabolism of carbohydrates was studied in the rat liver perfused in situ. 1. Electrical stimulation of the nerve bundles around the hepatic artery and the portal vein resulted in an increase of glucose and lactate output, an enhancement of phosphorylase a activity and a decrease of portal flow. 2. Sodium nitroprusside prevented the hemodynamic changes after nerve stimulation without affecting the metabolic alterations. 3. Phentolamine or an extracellular calcium level below 300 mumol x 1(-1) abolished both hemodynamic and metabolic changes after nerve stimulation, while propranolol or atropine were without effect. 4. Norepinephrine infusion mimicked nerve stimulation only at the highly unphysiological concentration of 0.1 microM; it was not effective at a concentration of 0.01 microM, which might be reached in the sinusoidal blood due to an overflow from intrahepatic synapses. The present results suggest that, in rat liver, glycogen breakdown is regulated by alpha-sympathetic nerves directly rather than indirectly via hemodynamic changes or via norepinephrine overflow.  相似文献   

2.
A single injection of estradiol valerate (EV) to 14-day-old rats (when the ovarian follicle population has been already established) disrupts cyclicity, increases the activity of key enzymes of androgen biosynthesis, and develops polycystic ovary by a causally related increase in ovarian noradrenaline (NA). The current study examined an early window of ovarian development to look for a specific stage of development at which estradiol can induce such changes in sympathetic activity and follicular development. A single dose of EV applied to rats before the first 12 h of life rapidly increases (after 24 h) the ovarian expression of nerve growth factor (Ngfb) and p75 low-affinity neurotrophic receptor (Ngfr) mRNAs. When adults, rats presented early vaginal opening, disrupted cyclicity, appearance of follicular cyst, absence of corpus luteum, and infertility. Total follicles decreased, mainly due to a reduced number of primordial follicles, suggesting that estradiol acts in the first stages of folliculogenesis, when primordial follicles are organizing. These changes paralleled a 6-fold increase in NA concentration. No changes in NA content were found in the celiac ganglia, suggesting a local, non-centrally mediated effect of estradiol. Surgical section of the superior ovarian nerve (the main source of sympathetic nerves to the ovary) to rats neonatally treated with EV decreased intraovarian NA, delayed vaginal opening, and blocked the development of follicular cyst and that of preovulatory follicles. Therefore, we can conclude that early exposure to estradiol permanently modifies ovarian sympathetic activity and causes profound changes in follicular development, leading to the polycystic ovary condition.  相似文献   

3.

Background  

Pancreatic islets are not fully developed at birth and it is not clear how they are vascularised and innervated. Nerve Growth Factor (NGF) is required to guide sympathetic neurons that innervate peripheral organs and also in cardiovascular system and ovary angiogenesis. Pancreatic beta cells of a transgenic mouse that over-expressed NGF in attracts sympathetic hyper-innervation towards them. Moreover, we have previously demonstrated that adult beta cells synthesize and secrete NGF; however, we do not know how is NGF secreted during development, nor if it might be trophic for sympathetic innervation and survival in the pancreas.  相似文献   

4.
5.
The regulation of ketogenesis by the hepatic nerves was investigated in the rat liver perfused in situ. Electrical stimulation of the hepatic nerves around the portal vein and the hepatic artery caused a reduction of basal ketogenesis owing to a decrease in acetoacetate release to 30% with essentially no change in 3-hydroxybutyrate release. At the same time, as observed before [Hartmann et al. (1982) Eur. J. Biochem. 123, 521-526], nerve stimulation increased glucose output, shifted lactate uptake to output and decreased perfusion flow. Ketogenesis from oleate, which enters the mitochondria via the carnitine system, was also lowered after nerve stimulation owing to a decrease of acetoacetate release to 30% with no alteration in 3-hydroxybutyrate release. Ketogenesis from octanoate, which enters the mitochondria independently of the carnitine system, was decreased after nerve stimulation as a result of a drastic decrease of acetoacetate output to 15% and a less pronounced decrease of 3-hydroxybutyrate release to 65%. Noradrenaline mimicked the metabolic nerve effects on ketogenesis only at the highly unphysiological concentration of 0.1 microM under basal conditions and in the presence of oleate as well as partly in the presence of octanoate. It was essentially not effective at a concentration of 0.01 microM, which might be reached in the sinusoids owing to overflow from the hepatic vasculature. Sodium nitroprusside prevented the hemodynamic changes after nerve stimulation; it did not affect the nerve-dependent reduction of ketogenesis under basal conditions and in the presence of oleate, yet it diminished the nerve effect on octanoate-dependent ketogenesis. Phentolamine clearly reduced the metabolic and hemodynamic nerve effects, while propranolol was without effect. The present data suggest that hepatic ketogenesis was inhibited by stimulation of alpha-sympathetic liver nerves directly rather than indirectly via hemodynamic changes or noradrenaline overflow from the vessels and that the site of regulation should be mainly intramitochondrial.  相似文献   

6.
7.
8.
The possible role of PGs in hyoscine-resistant nerve mediated responses of the rat urinary bladder was investigated. Responses to electrical stimulation were inhibited by cinchocaine (30 μmol/l) but were only partially inhibited by a high concentration of hyoscine (25 μmol/l) or by the choline uptake inhibitors, hemicholinium-3 (500 μmol/l) and troxypyrrolidinium (500 μmol/l). Indomethacin (50 μmol/l) produced partial blockade (30%) of responses to electrical stimulation without markedly affecting responses to acetylcholine and the degree of blockade was of a similar order in the presence of hyoscine or troxypyrrolidinium. PGE2 (0.028 – 2.8 μmol/l) or F2α (0.029 – 2.9 μmol/l) produced a slowly developing increase in tone and spontaneous activity. Responses to electrical stimulation were at most only slightly increased in the presence of either PG. However, the PGs always increased the responses to electrical stimulation after indomethacin, indomethacin plus hyoscine or indomethacin plus troxypyrrolidinium. Responses to acetylcholine in the presence of indomethacin were not increased by PGE2. It is concluded that PGE2 and F do not function as transmitters responsible for resistance to anti-muscarinic drugs in the bladder but may exert a modulating effect on nervous transmission.  相似文献   

9.
We investigated the effect of the pineal on sympathetic neurons that normally innervate the sublingual gland of the rat. When the pineal gland was transplanted into the sublingual gland, it remained as a distinct mass that was innervated by sympathetic axons. Injection of the retrograde tracer, Fast Blue, into the sublingual gland labelled sympathetic neurons in the ipsilateral superior cervical ganglion (SCG). Thirty per cent of all neurons labelled retrogradely by Fast Blue injection into transplanted pineal glands were immunoreactive for both neuropeptide Y (NPY) and calbindin. This combination is characteristic of sympathetic neurons innervating the pineal gland in its normal location, but not the sympathetic vasoconstrictor neurons normally innervating the sublingual gland. This, and our previous study in which the pineal gland was shown to similarly influence the phenotype of salivary secretomotor neurons, suggests that a range of different functional classes of sympathetic neuron are able to change their phenotype in response to signals released by the pineal gland.This work was supported by Project Grant No. 145634 from the National Health and Medical Research Council of Australia  相似文献   

10.
11.
Summary The pineal gland of the rat is located near the brain surface and is via a slender stalk connected to lamina intercalaris which constitutes a cell formation between the habenular and posterior commissures, continuing to the subcommissural organ. The stalk and lamina intercalaris, like the pineal proper, exhibited a yellow, formaldehyde-induced fluorescence which showed the histochemical and pharmacological properties of 5-HT. All these structures were richly supplied with catecholamine-fluorescent nerves which could be further followed rostrally from lamina intercalaris, mixing with the non-fluorescent commissural fibres and stria terminalis, into the medial habenular nucleus in which they extensively supplied both blood vessels and non-fluorescent nerve cells. Cytospectrofluorometric and chemical analysis suggested that the fluorescent nerves stored noradrenaline. This was supported by the finding that they disappeared after bilateral cervical sympathectomy (as did the fluorescent nerves in the pineal complex). In the medial habenular nucleus also catecholamine-containing and 5-HT-containing nerves of central origin were present.The occurrence of a rich, peripheral sympathetic innervation in the medial habenular nucleus of the brain offers possibilities for a previously not observed sympathetic influence on this nucleus. Also the arrangement, and the apparent continuity of the sympathetic innervation in the pineal gland, the lamina intercalaris, and the medial habenular nucleus, suggests some functional interconnection or coordination between these structures.  相似文献   

12.
13.
Despite a longstanding research interest ever since the early work by Claude Bernard, the functional significance of autonomic liver innervation, either sympathetic or parasympathetic, is still ill defined. This scarcity of information not only holds for the brain control of hepatic metabolism, but also for the metabolic sensing function of the liver and the way in which this metabolic information from the liver affects the brain. Clinical information from the bedside suggests that successful human liver transplantation (implying a complete autonomic liver denervation) causes no life threatening metabolic derangements, at least in the absence of severe metabolic challenges such as hypoglycemia. However, from the benchside, data are accumulating that interference with the neuronal brain–liver connection does cause pronounced changes in liver metabolism. This review provides an extensive overview on how metabolic information is sensed by the liver, and how this information is processed via neuronal pathways to the brain. With this information the brain controls liver metabolism and that of other organs and tissues. We will pay special attention to the hypothalamic pathways involved in these liver–brain–liver circuits. At this stage, we still do not know the final destination and processing of the metabolic information that is transferred from the liver to the brain. On the other hand, in recent years, there has been a considerable increase in the understanding which brain areas are involved in the control of liver metabolism via its autonomic innervation. However, in view of the ever rising prevalence of type 2 diabetes, this potentially highly relevant knowledge is still by far too limited. Thus the autonomic innervation of the liver and its role in the control of metabolism needs our continued and devoted attention.  相似文献   

14.
Histamine may play a role in many of the events occurring in the ovarian tissue and leading to ovulation. To elucidate the histaminergic influence on the ovarian vasculature, the mechanical response of the isolated rat ovarian artery to histamine and histamine agonists was investigated. Histamine relaxed the precontracted vessel segments in a concentration-dependent way, amounting to 82.7 +/- 4.3% of the papaverine-induced relaxation. This relaxant effect was counteracted by both the H1 antagonist, pyrilamine, and the H2 antagonist, cimetidine. That the effect of histamine was mediated by both histamine receptor subtypes was further confirmed by the relaxant effect produced in the presence of either of the H1-specific agonists, 2-pyridylethylamine and 2-methylhistamine on the one hand, and the H2-specific agonists, impromidine and 4-methylhistamine on the other. The H1 receptor-induced relaxation was mediated via an effect on the endothelium, whereas the H2 receptor-mediated relaxation was mostly a direct effect on the smooth musculature in the vessel wall. No major differences in the mechanical response of the rat ovarian artery were seen during the different stages of the estrous cycle, although at late proestrus, just before ovulation, the maximum relaxation induced by histamine was particularly high, in spite of a low sensitivity of the receptors for the amine.  相似文献   

15.
16.
17.
18.
Co-cultures of rat ventricular myocytes and sympathetic neurons were established. Superior cervical ganglia and ventricles from newborn rats were enzymatically dissociated and plated in a culture dish. Experiments were done between the 3rd (when evidence of neuron-myocyte proximity arises) and the 5th day in culture (before the myocytes become confluent). Simultaneous intracellular recording from a cardiomyocyte and an attached neuron was done using conventional microelectrode techniques (resistance of 60-100 Mohm). The myocytes in co-culture were either quiescent or spontaneously contracting. The contracting cells were either latent pacemaker or ventricular-like myocytes. The action potential (AP) characteristics of cardiomyocytes in co-cultures were comparable to those recorded in cardiomyocytes in pure cultures. Sympathetic innervation of the cardiomyocytes in co-cultures was evidenced by stimulating the neuron and observing an increase in rate of beating in latent pacemaker myocytes (average increase of 19.4 +/- 4.6%). In quiescent cardiomyocytes, neural stimulation evoked a slow depolarization that can reach threshold and initiate APs in the cell. This response is similar to slow excitatory postsynaptic potentials (EPSPs) observed in other synapses. Slow ESPSs could also be recorded in spontaneous beating cells, made quiescent by nifedipine (1x10(-6)-1x10(-7) M). These results indicate that functional synaptic contacts are developed in co-culture of sympathetic neurons and cardiac myocytes, and slow EPSPs can be evoked in cardiomyocytes as well as in other excitable cells. The sympathetic innervation occurring in culture did not significantly modify the spontaneous AP characteristics of the cardiomyocytes.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号