首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In platelets, and in several other cell systems, pre-treatment with protein kinase C activators such as phorbol 12-myristate 13-acetate (PMA) results in the inhibition of receptor-mediated responses, suggesting that protein kinase C may play an important role in the termination of signal transduction. In the present study, we have attempted to locate the site of action of phorbol ester by comparing thrombin-induced (i.e. receptor-mediated) platelet activation with that induced by guanosine 5'-[gamma-thio]triphosphate (GTP[S]) and NaF, two agents which by-pass the receptor and initiate platelet responses by directly modulating G-protein function. After a 10 s pre-treatment with PMA (16 nM), dense-granule secretion induced by thrombin (0.2 unit/ml), GTP[S] (40 microM) and NaF (30 mM) was potentiated, resulting in a greater than additive response to agent plus PMA. However, after a 5 min pre-treatment, thrombin-induced secretion alone was inhibited, whereas PMA plus GTP[S]/NaF-induced release remained greater than additive. [32P]Phosphatidate formation in response to all three agents, in contrast, was inhibited by 50-70% in PMA (5 min)-treated platelets. That secretion induced by these agents is a protein kinase C-dependent event was demonstrable by using staurosporine, a protein kinase C inhibitor which at concentrations of 1-10 nM inhibited (70-90%) PMA-induced as well as thrombin- and NaF-induced secretion and protein phosphorylation. In membranes from PMA-treated platelets, thrombin-stimulated GTPase activity was significantly enhanced compared with that in untreated membranes (59% versus 82% increase over basal activity). The results suggest that inhibition of receptor-mediated responses by PMA may be directed towards two sites relating to G-protein activation: (i) receptor-stimulated GTPase activity and (ii) G-protein-phospholipase C coupling. Furthermore, the lack of inhibition of NaF- and GTP[S]-induced secretion by PMA suggests that different mechanisms may be involved in thrombin-induced and G-protein-activator-induced secretion.  相似文献   

2.
Previous studies have demonstrated an inhibition of agonist-induced inositol phospholipid breakdown and intracellular Ca2+ ([Ca2+]i) mobilization by phorbol esters in platelets. In this study, we have examined the effect of phorbol 12-myristate 13-acetate (PMA) on agonist-induced granule secretion and correlated it with agonist-induced [Ca2+]i mobilization, arachidonate and thromboxane (Tx) release in human platelets. With increasing times of incubation with PMA (10 s-5 min), the rise in [Ca2+]i induced by thrombin and the TxA2 mimetic, U46619, was increasingly inhibited (90-100% with 5 min incubation) and, correlating with this, thrombin-induced [3H]arachidonate, TxB2 and beta-thromboglobulin (beta TG) release were also inhibited. In addition, the conversion of exogenously added arachidonate to TxB2 was inhibited (50-80%) by a 10 s-5 min pretreatment with PMA. However, secretion of 5-hydroxy[14C]tryptamine (5HT) induced by thrombin or U46619 was not inhibited by 10 s-2 min incubations with PMA and, on the contrary, with low agonist concentrations, was potentiated by PMA in the absence of a significant rise in [Ca2+]i or endogenous Tx formation, to levels significantly greater than or equal to the sum of that obtained when agonist and PMA were added separately. With longer times of incubation with PMA (5 min), these synergistic effects became less pronounced as inhibitory effects of PMA on agonist-induced [14C]5HT secretion became apparent. The results indicate that, while PMA may cause an inhibition of agonist-induced [Ca2+]i mobilization resulting in an inhibition of agonist-induced arachidonate, TxB2 and beta TG release, its effects on agonist-induced 5HT secretion may be complicated by [Ca2+]i-independent synergistic effects of agonist and PMA.  相似文献   

3.
Electropermeabilized human platelets containing 5-hydroxy[14C]tryptamine ([14C]5-HT) were suspended in a glutamate medium containing ATP and incubated for 10 min with (in various combinations) Ca2+ buffers, phorbol 12-myristate 13-acetate (PMA), guanine nucleotides, and thrombin. Release of [14C]5-HT and beta-thromboglobulin (beta TG) were used to measure secretion from dense and alpha-granules, respectively. Ca2+ alone induced secretion from both granule types; half-maximal effects were seen at a -log [Ca2+ free] (pCa) of 5.5 and maximal secretion at a pCa of 4.5, when approximately 80% of 5-HT and approximately 50% of beta TG were released. Addition of PMA, guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S), GTP, or thrombin shifted the Ca2+ dose-response curves for secretion of both 5-HT and beta TG to the left and caused small increases in the maximum secretion observed. These results suggested that secretion from alpha-granules, like that from dense granules, is a Ca(2+)-dependent process stimulated by the sequential activation of a G-protein, phospholipase C, and protein kinase C (PKC). However, high concentrations of PMA and GTP gamma S had distinct effects in the absence of Ca2+ (pCa greater than 9); 100 nM PMA released approximately 20% of platelet 5-HT but little beta TG, whereas 100 microM GTP gamma S stimulated secretion of approximately 25% of each. Simultaneous addition of PMA greatly enhanced these effects of GTP gamma S. Phosphorylation of pleckstrin in permeabilized platelets incubated with [gamma-32P]ATP was used as an index of the activation of PKC during secretion. In the absence of Ca2+, 100 nM PMA caused maximal phosphorylation of pleckstrin and 100 microM GTP gamma S was approximately 50% as effective as PMA; neither GTP gamma S nor Ca2+ enhanced the phosphorylation of pleckstrin caused by 100 nM PMA. These results indicate that, although activation of PKC promoted secretion, GTP gamma S exerted additional stimulatory effects on secretion from both dense and alpha-granules that were not mediated by PKC. Measurement of [3H]inositol phosphate formation in permeabilized platelets containing [3H]phosphoinositides showed that GTP gamma S did not stimulate phosphoinositide-specific phospholipase C in the absence of Ca2+. It follows that in permeabilized platelets, GTP gamma S can both stimulate PKC and enhance secretion via G-protein-linked effectors other than this phospholipase.  相似文献   

4.
The tumor-promoting phorbol ester 4 beta-phorbol 12-myristate 13-acetate (PMA) inhibited thrombin-stimulated arachidonic acid (AA) release in rabbit and human platelets. PMA was effective over the same concentration range that activates protein kinase C in intact rabbit platelets: IC50 vs thrombin = 0.5 nM, greater than 90% inhibition at 10 nM. Suppression of thrombin-stimulated AA release was evident within 5 min of pretreatment with 1 nM PMA. A non-tumor-promoting phorbol ester, 4-O-methyl PMA, showed a very weak ability to inhibit AA release. Thrombin-stimulated serotonin secretion was progressively inhibited by PMA pretreatment in platelets, while PMA was a stimulus for secretion at higher concentrations. 1-(5-Isoquinolinylsulfonyl)-2-methyl-piperazine (H-7), a selective inhibitor of protein kinase C, blocked PMA-induced inhibition of AA release. Furthermore, H-7 enhanced the effect of thrombin on AA release. PMA pretreatment reduced the inhibitory effect of thrombin on forskolin-stimulated cAMP accumulation, but had no effect on nonstimulated cAMP metabolism in the presence of thrombin. PMA did not inhibit AA release caused by A23187 or melittin. In digitonin-permeabilized platelets, thrombin plus guanosine 5'-(3-O-thio)triphosphate (GTP gamma S)-stimulated AA release, but not GTP gamma S- and AIF4(-)-stimulated AA release, was abolished by PMA pretreatment. These results suggest that activation of protein kinase C may exert negative feedback on the receptor-mediated activation of phospholipase A2. A possible uncoupling of thrombin receptor to GTP-binding protein leading to activation of phospholipase A2 by PMA pretreatment is discussed.  相似文献   

5.
The effects of the fibrinogen-derived tetrapeptide, Arg-Gly-Asp-Ser (RGDS), on platelet activation processes was studied. At concentrations of 100-300 microM, RGDS completely prevented platelet aggregation induced by all the common platelet agonists, 'weak' and 'strong'. In agreement with earlier views on the aggregation-dependency of weak agonist-induced thromboxane synthesis and 5-hydroxytryptamine (5HT) secretion, RGDS (100-300 microM) inhibited these events induced by ADP, adrenaline and low concentrations of thrombin and collagen but not that induced by high concentrations of thrombin and collagen. 5HT secretion induced by the protein kinase C (PKC) activator, phorbol 12-myristate 13-acetate (PMA), was also not affected by RGDS, but proteolytic degradation of the translocated membrane-bound enzyme in PMA-treated platelets, due to the actions of the Ca2+-dependent protease (Ca-DP), was completely prevented such that in the presence of RGDS, sustained increases in membrane-bound PKC activity were observed. PMA alone caused only transient increases in membrane-bound PKC. This effect of RGDS was similar to the effect of E64-d, a recently described inhibitor of Ca-DP in platelets, or the effects seen with PMA in unstirred non-aggregating platelets. It is concluded that RGDS inhibits the actions of Ca-DP in platelets via inhibition of aggregation.  相似文献   

6.
We have previously demonstrated synergistic potentiation of secretion by phorbol 12-myristate 13-acetate (PMA) and platelet agonists such as thrombin and the thromboxane mimetic, U46619, with short (less than 2 min) pre-incubations of PMA, despite inhibition of agonist-induced [Ca2+]i mobilization and arachidonate/thromboxane release. In this study, the effect of PMA on 5-hydroxytryptamine secretion in relation to arachidonate/thromboxane B2 release induced by collagen as well as the 'weak agonists', ADP, adrenaline and platelet-activating factor (PAF), was investigated using human platelet-rich plasma. Short incubations (10-30 s) with PMA (400 nM) before agonist addition caused an inhibition (60-100%) of 5-hydroxy[14C]tryptamine secretion and thromboxane B2 formation in response to maximally effective doses of ADP (10 microM), adrenaline (10 microM) and PAF (0.5 microM) but potentiated collagen-induced 5-hydroxy[14C]tryptamine secretion and [3H]arachidonate/thromboxane release. However, a longer pre-incubation with PMA (5 min) caused a significant reduction (20-50%) in the extent of collagen-induced 5-hydroxy[14C]tryptamine secretion and thromboxane B2 formation as seen earlier with thrombin, although collagen-induced [3]arachidonate release was still unaffected. Pretreatment of platelets with the cyclo-oxygenase inhibitor, indomethacin (10 microM), abolished 5-hydroxy[14C]tryptamine secretion in response to the weak agonists and reduced collagen (2.5-10 micrograms/ml) -induced secretion by 50-90%, depending on the collagen concentration. Addition of PMA (400 nM) 10 s before these agonists in indomethacin-treated platelets resulted in synergistic interactions between agonist and PMA leading to enhanced 5-hydroxy[14C]tryptamine secretion, although this was notably less than the synergism observed previously between thrombin and PMA or U46619 and PMA. The results suggest that the effect of short incubations with PMA on 5-hydroxytryptamine secretion induced by 'thromboxane-dependent' agonists, such as those examined in this study, is determined by the effect on agonist-induced thromboxane synthesis. However, when endogenous thromboxane synthesis is blocked, weak agonists as well as collagen can synergize with PMA at potentiating 5-hydroxytryptamine secretion, albeit to a weaker extent than thrombin or U46619. The results also suggest that PMA has differential effects on arachidonate release induced by collagen and thrombin.  相似文献   

7.
Guanosine 5'-[gamma-thio]triphosphate and guanosine 5'-[beta,gamma-imido]triphosphate enhance Ca2+-dependent 5-hydroxytryptamine secretion from electropermeabilised human platelets. GTP has little such effect except when the platelets are permeabilised, and incubated with this nucleotide, at 2 degrees C and pH 7.4. The lag phase observed in the time course of 5-hydroxytryptamine secretion induced by addition of guanosine 5'-[gamma-thio]triphosphate is markedly longer than that characterising secretion induced by Ca2+ alone, by thrombin +/- GTP or by guanosine 5'-[gamma-thio]triphosphate in the presence of thrombin. GTP causes competitive inhibition of the enhancement of the Ca2+-dependent secretory response induced by guanosine 5'-[gamma-thio]triphosphate when both nucleotides are added simultaneously. The extent of inhibition is decreased if guanosine 5'-[gamma-thio]triphosphate is added prior to GTP. GTP markedly enhances the effect of thrombin on Ca2+-dependent 5-hydroxytryptamine secretion by increasing the maximal extent of the response and decreasing the thrombin concentration required to give half-maximal response. A similar effect is observed on addition of guanosine 5'-[gamma-thio]triphosphate in the presence of thrombin at short incubation times. On more prolonged incubation the effects of thrombin and guanosine 5'-[gamma-thio]triphosphate are additive. Guanosine 5'-[beta-thio]diphosphate completely inhibits the response induced by guanosine 5'-[gamma-thio]triphosphate or guanosine 5'-[beta,gamma-imido]triphosphate but has little effect on the response induced by Ca2+ when added alone or in the presence of thrombin. Partial inhibition is observed for the response induced by thrombin + GTP. Cyclic-AMP effectively inhibits the response induced by thrombin + GTP but has little effect on that induced by guanosine 5'-[gamma-thio]triphosphate or guanosine 5'-[beta,gamma]imidotriphosphate. The results provide further support for the proposal [Haslam, R.J. & Davidson, M.M.L. (1984) FEBS Lett. 170, 90-95], that receptor--phospholipase-C coupling in platelets is mediated in part by a guanine-nucleotide-binding (Np) protein but that a coupling mechanism may also exist which is independent of such a protein. The properties of guanine-nucleotide-dependent coupling resemble those previously described for receptor--adenylate-cyclase coupling.  相似文献   

8.
Ethanol is known to inhibit the activation of platelets in response to several physiological agonists, but the mechanism of this action is unclear. The addition of physiologically relevant concentrations of ethanol (25-150 mM) to suspensions of washed human platelets resulted in the inhibition of thrombin-induced secretion of 5-hydroxy[14C]tryptamine. Indomethacin was included in the incubation buffer to prevent feedback amplification by arachidonic acid metabolites. Ethanol had no effect on the activation of phospholipase C by thrombin, as determined by the formation of inositol phosphates and the mobilization of intracellular Ca2+. Moreover, ethanol did not interfere with the thrombin-induced formation of diacylglycerol or phosphatidic acid. Stimulation of platelets with phorbol ester (5-50 nM) resulted in 5-hydroxy[14C]tryptamine release comparable with those with threshold doses of thrombin. However, ethanol did not inhibit phorbol-ester-induced secretion. Ethanol also did not interfere with thrombin- or phorbol-ester-induced phosphorylation of myosin light chain (20 kDa) or a 47 kDa protein, a known substrate for protein kinase C. By electron microscopy, ethanol had no effect on thrombin-induced shape change and pseudopod formation, but prevented granule centralization and fusion. The results indicate that ethanol does not inhibit platelet secretion by interfering with the activation of phosphoinositide-specific phospholipase C or protein kinase C by thrombin. Rather, the data demonstrate an inhibition of a Ca2(+)-mediated event such as granule centralization.  相似文献   

9.
Addition of GTP markedly enhances the ability of thrombin to cause a leftward shift in the Ca2+ dose/response curve for 5-hydroxytryptamine secretion from permeabilised human platelets. Little effect is observed on addition of GTP in the absence of thrombin. Neither ADP nor adrenaline, in the presence or absence of GTP, causes such a shift, whereas 5-hydroxytryptamine does so to a small extent but only in the presence of GTP. The leftward shift in the Ca2+ dose/response curve induced by 12-O-tetradecanoyl-phorbol-13-acetate or 1-oleyl-2-acetylglycerol is not enhanced by addition of GTP. The thrombin concentration required for half-maximal enhancement of the response to Ca2+ is markedly reduced by addition of GTP. The results support the postulate that the effects of excitatory agonists in this system correlate with their ability to activate phospholipase C and provide further evidence for a role for GTP in signal transduction between the receptor and phospholipase C.  相似文献   

10.
R59022 is an inhibitor of the enzyme 1,2-diacylglycerol (DAG) kinase, which, by inhibiting the conversion of DAG to phosphatidic acid, causes an increase in endogenous DAG levels and the activity of the DAG-dependent enzyme protein kinase C. This property of the drug was utilized in the present study to assess the role of DAG, i.e., its relative importance as a potentiatory versus inhibitory mediator, in agonist-induced platelet activation. The phosphorylation of the 40-47-kDa protein by protein kinase C was monitored as an indicator of endogenous DAG levels and correlated with other agonist-induced platelet responses such as platelet aggregation, 5-hydroxytryptamine (5HT) secretion and arachidonate release, the agonists used being those that induce DAG formation, e.g., thrombin and collagen. Pretreatment of platelets with R59022 before agonist addition resulted in the potentiation of 5HT secretion as well as 45 kDa protein phosphorylation induced by thrombin and the DAG analogue, 1,2-dioctanoylglycerol (DiC8). However, collagen-induced 5HT secretion was significantly inhibited (70%) in the presence of R59022, which also had strong inhibitory effects on aggregation induced by collagen, as well as by thrombin and DiC8. The inhibition of collagen-induced secretion by R59022 was in contrast to the potentiatory effects of DiC8 on the same, suggesting that even although DAG acts as a potentiatory signal in this system, the inhibitory effects of R59022 on collagen-induced aggregation can mask any effects of endogenous DAG. This inhibitory effect of R59022 on agonist-induced platelet aggregation makes it unsuitable as a tool in studying the role of DAG in platelet activation induced by agonists such as collagen as well as the 'weak' agonists (ADP, adrenaline and platelet-activating factor), where aggregation mediates other responses such as arachidonate release and secretion. Furthermore, potentiatory effects of R59022 on 5HT secretion induced by phorbol 12-myristate 13-acetate and ionomycin, which are effects unlikely to be related to inhibition of DAG kinase was observed, and these effects further underline the non-specificity in the actions of R59022 and its limitations as a tool in studying platelet stimulus-response coupling.  相似文献   

11.
Enhancement by thrombin of Ca2+-dependent 5HT secretion in the absence of added GTP decreases as the time between electropermeabilisation and addition of thrombin is increased. No decrease occurs if thrombin is added with GTP. Observation of apparent GTP-independent receptor/phospholipase C coupling may result from the presence of bound GTP in the preparation. Enhancement by GTP of Ca2+-dependent 5HT secretion occurs with a significant lag indicating an agonist-independent effect. Cyclic 3'5'-AMP inhibits enhancement by GTP of Ca2+-dependent 5HT secretion while having no effect on enhancement induced by GTP gamma S. Hence cyclic AMP may impair receptor/phospholipase C coupling by enhancing Np GTPase activity.  相似文献   

12.
In platelets activated by thrombin, the hydrolysis of phosphatidylinositol 4,5-bisphosphate by phospholipase C produces inositol 1,4,5-triphosphate (IP3) and diacylglycerol, metabolites which are known to cause Ca2+ release from the platelet dense tubular system and granule secretion. Previous studies suggest that phospholipase C activation is coupled to platelet thrombin receptors by a guanine nucleotide-binding protein or G protein. The present studies examine the contribution of this protein to thrombin-induced platelet activation and compare its properties with those of Gi, the G protein which mediates inhibition of adenylate cyclase by thrombin. In platelets permeabilized with saponin, nonhydrolyzable GTP analogs reproduced the effects of thrombin by causing diacylglycerol formation, Ca2+ release from the dense tubular system and serotonin secretion. In intact platelets, fluoride, which by-passes the thrombin receptor and directly activates G proteins, caused phosphoinositide hydrolysis and secretion. Fluoride also caused an increase in the platelet cytosolic free Ca2+ concentration that appeared to be due to a combination of Ca2+ release from the dense tubular system and increased Ca2+ influx across the platelet plasma membrane. Guanosine 5'-O-(2-thiodiphosphate) (GDP beta S), which inhibits G protein function, inhibited the ability of thrombin to cause IP3 and diacylglycerol formation, granule secretion, and Ca2+ release from the dense tubular system in saponin-treated platelets. Increasing the thrombin concentration overcame the effects of GDP beta S on secretion without restoring diacylglycerol formation. The effects of GDP beta S on platelet responses to thrombin which had been subjected to partial proteolysis (gamma-thrombin) were similar to those obtained with native alpha-thrombin despite the fact that gamma-thrombin is a less potent inhibitor of adenylate cyclase than is alpha-thrombin. Thrombin-induced diacylglycerol formation and 45Ca release were also inhibited when the saponin-treated platelets were preincubated with pertussis toxin, an event that was associated with the ADP-ribosylation of a protein with Mr = 41.7 kDa. At each concentration tested, the inhibition of thrombin-induced diacylglycerol formation by pertussis toxin paralleled the inhibition of thrombin's ability to suppress PGI2-stimulated cAMP formation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Histamine is known to be a mediator of inflammation. In order to understand the role of histamine in platelets, we have examined the effects of histamine on arachidonic acid (AA) release, cAMP accumulation, inositol trisphosphate production, and serotonin secretion. Incubation of rabbit (and human) platelets with histamine resulted in rapid increase of [3H]AA release from the platelets prelabeled with [3H]AA. The effect of histamine was blocked by the addition of H1 receptor antagonist mepyramine. Histamine did not substantially affect the cAMP content and inositol trisphosphate production. Histamine-stimulated AA release was not observed in digitonin-permeabilized platelets, whereas histamine acted synergistically with GTP or GTP analog, guanosine 5'-(3-O-thio)triphosphate. Histamine-stimulated, and GTP analog-dependent AA release was inhibited by guanosine 5'-(2-O-thio) diphosphate. The effects of three receptor stimulants, thrombin, norepinephrine, and histamine were both diminished by 1 microgram/ml of pertussis toxin treatment and by the antiserum against GTP-binding proteins (G proteins) treatment. However, the antiserum against beta gamma subunits of G proteins inhibited the histamine effect, not thrombin effect. 4 beta-Phorbol 12-myristate 13-acetate (PMA) treatment enhanced histamine-stimulated AA release and serotonin secretion but inhibited thrombin-stimulated reactions. The effect of PMA was dose dependent and was due to enhance the coupling of histamine receptors and G proteins. The results show the existence of H1 histamine receptors which couple phospholipase A2 activation via pertussis toxin-sensitive G proteins. Histamine actions differ in sensitivities to anti-beta gamma antiserum treatment and PMA treatment from thrombin actions.  相似文献   

14.
We compared the mechanisms by which thrombin and platelet-derived growth factor (PDGF) activate phospholipase C in cultured vascular smooth muscle cells. Thrombin caused a transient (less than 5 min) increase in inositol trisphosphate (IP3) while PDGF caused a sustained (greater than 10 min) increase. Both pertussis toxin and phorbol 12-myristate 13-acetate (PMA) inhibited the thrombin-induced increase in IP3 but neither agent affected the PDGF-induced increase in IP3. To examine the role of GTP binding (G) proteins in the activation of phospholipase C by these two hormones, GTP analogues were introduced into saponin-permeabilized cells. In the absence of hormones, guanosine 5'-O-(3-thiotrisphosphate) (GTP gamma S) caused a progressive increase in IP3 release which was inhibited 55% by PMA (200 ng/ml). In the presence of thrombin, GTP gamma S caused synergistic increase in IP3 release. The synergism between GTP gamma S and thrombin was virtually eliminated by 10 min prior exposure to PMA (200 ng/ml). When PDGF was the hormonal agonist, GTP gamma S also caused synergistic increase in IP3 release and guanosine 5'-O-(2-thiodiphosphate) blunted PDGF-induced IP3 release. However, in contrast to thrombin, the synergism between GTP gamma S and PDGF was unaffected by PMA. Thus, thrombin and PDGF activate phospholipase C by signal transduction systems which differ in kinetic properties and in sensitivity to PMA and pertussis toxin. Despite these differences, both systems appear to involve GTP binding proteins at some step.  相似文献   

15.
H Y Wang  E Friedman 《Life sciences》1990,47(16):1419-1425
Protein kinase C (PKC) activity and translocation in response to the phorbol ester, phorbol 12-myristate, 13-acetate (PMA), serotonin (5-HT) and thrombin was assessed in human platelets. Stimulation with PMA and 5-HT for 10 minutes or thrombin for 1 minute elicited platelet PKC translocation from cytosol to membrane. The catecholamines, norepinephrine or epinephrine at 10 microM concentrations did not induce redistribution of platelet PKC. Serotonin (0.5-100 microM) and the specific 5-HT2 receptor agonist, 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) (10-100 microM) but not the 5-HT1A or 5-HT1B agonists, (+/-) 8-hydroxy-dipropylamino-tetralin (8-OH-DPAT) or 5-methoxy-3-3-(1,2,3,6-tetrahydro-4-pyridin) 1H-indole succinate (RU 24969) induced dose-dependent PKC translocations. Serotonin-evoked PKC translocation was blocked by selective 5-HT2 receptor antagonists, ketanserin and spiroperidol. These results suggest that, in human platelets, PMA, thrombin and 5-HT can elicit PKC translocation from cytosol to membrane. Serotonin-induced PKC translocation in platelets is mediated via 5-HT2 receptors.  相似文献   

16.
Pleckstrin is the major substrate of protein kinase C (PKC) in platelets. We sought to determine whether pleckstrin phosphorylation is sufficient to target the soluble protein to binding sites. Permeabilization of platelets by streptolysin O (SLO) was used to separate bound and soluble pleckstrin. Platelets were incubated with phorbol 12-myristate 13-acetate (PMA) and/or guanosine 5'-[gamma-thio]triphosphate (GTP[S]) in the presence of [gamma-(32)P]ATP and SLO. PMA stimulated pleckstrin phosphorylation, but this pleckstrin diffused from permeabilized platelets. Addition of GTP[S] with PMA caused up to 40-50% of pleckstrin to be retained within platelets and enhanced secretion of platelet 5-hydroxytryptamine. PKC alpha pseudosubstrate peptide inhibited pleckstrin phosphorylation, the binding of pleckstrin and secretion. After extraction of permeabilized platelets containing bound pleckstrin with Triton X-100, the protein was solubilized. Thus, phosphorylated pleckstrin was retained in platelets only after activation of GTP-binding proteins that stimulate the formation of membrane-bound pleckstrin ligands. Translocation of pleckstrin may facilitate the associated secretion.  相似文献   

17.
The effect of 1-oleoyl-2-acetylglycerol (OAG) on the thrombin-induced rise in intracellular Ca2+ levels ([Ca2+]i) and 5-hydroxy[14C]tryptamine ([14C]5HT) secretion was studied. In washed human platelets prelabelled with [14C]5HT and quin 2, OAG (10-50 micrograms/ml) induced no significant aggregation, [14C]5HT secretion or rise in [Ca2+]i in the presence or absence of fibrinogen. However, addition of OAG (10-50 micrograms/ml) 10 s to 5 min before or 10-60 s after addition of threshold concentrations of thrombin (less than 0.03 U/ml) resulted in a significant potentiation of aggregation and [14C]5HT secretion without any effect on the thrombin-induced rise in [Ca2+]i. Both EGTA, which abolished the latter and creatine phosphate/creatine phosphokinase, the ADP scavenger, totally inhibited the aggregation but only partially reduced [14C]5HT secretion in response to thrombin plus OAG. At higher concentrations of thrombin, neither the rise in [Ca2+]i nor the extent of [14C]5HT secretion was significantly altered by OAG addition. The results demonstrate that, unlike phorbol esters, OAG has no inhibitory effect on thrombin-induced [Ca2+]i mobilisation but can synergize with low concentrations of thrombin in potentiating [14C]5HT secretion even at basal [Ca2+]i.  相似文献   

18.
Polymorphonuclear leukocytes (PMNs) activate phospholipase C via a guanine nucleotide regulatory (G) protein. Pretreatment of the PMNs with pertussis toxin (PT) or 4-beta-phorbol 12-myristate 13-acetate (PMA) inhibited chemoattractant-induced inositol trisphosphate generation. To determine the loci of inhibition by PT and PMA, G protein-mediated reactions in PMN plasma membranes were examined. Plasma membranes prepared from untreated and PMA-treated PMNs demonstrated equivalent ability of a GTP analogue to suppress high affinity binding of the chemoattractant-N-formyl-methionyl-leucyl-phenylalanine (fMet-Leu-Phe) to its receptor. The rate, but not the extent, of high affinity binding of GTP gamma[35S] to untreated PMN membranes was stimulated up to 2-fold by preincubation with 1 microM fMet-Leu-Phe. The ability of fMet-Leu-Phe to stimulate the rate of GTP gamma S binding was absent in membranes prepared from PT-treated PMNs, but remained intact in membranes from PMA-treated cells. Hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) via phospholipase C could be activated in untreated PMN membranes by either fMet-Leu-Phe plus GTP or GTP gamma S alone at low concentrations of Ca2+ (0.1-1 microM). Membranes prepared from PT-treated PMNs degraded PIP2 upon exposure to GTP gamma S, but not fMet-Leu-Phe plus GTP. In contrast, membranes prepared from phorbol ester-treated PMNs did not hydrolyze PIP2 when incubated with GTP gamma S. Treatment with PT or PMA did not affect the ability of 1 mM Ca2+ to activate PIP2 hydrolysis in PMN membranes, indicating that neither treatment directly inactivated phospholipase C. Therefore, PT appears to block coupling of the chemoattractant receptors to G protein activation, while phorbol esters disrupt coupling of the activated G protein to phospholipase C. The phorbol ester-mediated effect may mimic a negative feedback signal induced by protein kinase C activation by diacylglycerol generated upon activation of phospholipase C.  相似文献   

19.
The effect of extracellular Na+ ([Na+]e) removal on agonist-induced granule secretion in platelets in relation to [ph]i and [Ca2+]i changes was investigated. Substitution of [Na+]e with choline+ of K+ resulted in a significant enhancement of 5HT secretion induced by thrombin, collagen, U46619 and the protein kinase C activators, PMA and diC8. Increases in [Ca2+]i induced by thrombin and U46619 were slightly inhibited or unaffected in these buffers, but [pH]i increases induced by thrombin, U46619, PMA and diC8 were abolished and a drop in [pH]i (0.05–0.1 units below resting) was observed. Although preincubation with potassium acetate produced a big drop in [pH]i and greatly increased secretion with all the agonists, particularly in the absence of [Na+]e, clear evidence that [pH]i rises due to Na+/H+ exchange are inhibitory to secretion was obtained only with thrombin. Thus, (i) NH4Cl, which restored the increase in [pH]i in the absence of [Na+]e reduced the potentiated secretory response to thrombin, (ii) no increase in thrombin-induced secretion was observed when Na+ was replaced with Li+, which allowed a normal increase in [pH]i and (iii) ethyl isopropyl amiloride (EIPA) abolished the [pH]i rise and potentiated thrombin-induced secretion. With collagen and U46619, the results suggest that removal of [Na+]e per se rather than inhibition of Na+/H+ exchange results in enhanced secretion. It is concluded that [Na+]e per se and [pH]i elevations via Na+/H+ exchange both have important inhibitory roles in the control of platelet granule secretion.  相似文献   

20.
We have examined the effect of tumor-promoting phorbol esters such as phorbol myristate acetate (PMA) on the murine B cell leukemia BCL-1 and its in vitro adapted derivative CW.13.20. Phorbol esters, including PMA and phorbol dibutyrate (PDBu), were potent inhibitors of BCL-1 IgM secretion induced by either LPS or lymphokines; half-maximal inhibition was obtained with 0.1 nM PMA and 0.8 nm PDBu. The inhibitory action of PDBu on BCL-1 cells was reversible for over 1 hr, but after 5 hr 70% of the inhibition was irreversible. Irreversible inhibition could be blocked by cycloheximide, suggesting a requirement for protein synthesis. The specificity of PDBu inhibition was examined by comparing the patterns of protein synthesis in PDBu-treated and control BCL-1 cells. Total incorporation of [35S]methionine into protein by BCL-1 cells cultured in the presence of PDBu was similar to that of untreated cells. Analysis of radiolabeled proteins by SDS-PAGE and autoradiography revealed no consistent changes in the pattern of protein synthesis except at those positions corresponding to the heavy and light chains of IgM. Immunoprecipitation with an affinity-purified anti-IgM indicated that PDBu inhibited the increased synthesis of heavy and light chain that follows stimulation by lymphokine but did not diminish control IgM synthesis. Induced IgM secretion from CW.13.20 cells was also inhibited by phorbol esters, indicating a direct action on B cells. Delaying the addition of phorbol ester relative to lymphokine or LPS by 24 hr significantly reduced inhibition of induced IgM secretion from both BCL-1 and CW.13.20 cells. This suggests that phorbol esters specifically interfere with the signal for induction of IgM secretion by both lymphokine and LPS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号