首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The vacuum ultraviolet circular dichroism (VUVCD) spectra of 15 globular proteins (myoglobin, hemoglobin, human serum albumin, cytochrome c, peroxidase, alpha-lactalbumin, lysozyme, ovalbumin, ribonuclease A, beta-lactoglobulin, pepsin, trypsinogen, alpha-chymotrypsinogen, soybean trypsin inhibitor, and concanavalin A) were measured in aqueous solutions at 25 degrees C in the wavelength region from 260 to 160 nm under a high vacuum, using a synchrotron-radiation VUVCD spectrophotometer. The VUVCD spectra below 190 nm revealed some characteristic bands corresponding to different secondary structures. The contents of alpha-helices, beta-strands, turns, and unordered structures were estimated using the SELCON3 program with VUVCD spectra data on the 15 proteins. Prediction of the secondary-structure contents was greatly improved by extending the circular dichroism spectra to 165 nm. The numbers of alpha-helix and beta-strand segments calculated from the distorted alpha-helix and beta-strand contents did not differ greatly from those obtained from X-ray crystal structures. These results demonstrate that synchrotron-radiation VUVCD spectroscopy is a powerful tool for analyzing the secondary structures of proteins.  相似文献   

2.
To elucidate the structure of denatured proteins, we measured the vacuum-ultraviolet circular dichroism (VUVCD) spectra from 260 to 172 nm of three proteins (metmyoglobin, staphylococcal nuclease, and thioredoxin) in the native and the acid-, cold-, and heat-denatured states, using a synchrotron-radiation VUVCD spectrophotometer. The circular dichroism spectra of proteins fully unfolded by guanidine hydrochloride (GdnHCl) were also measured down to 197 nm for comparison. These denatured proteins exhibited characteristic VUVCD spectra that reflected a considerable amount of residual secondary structures. The contents of alpha-helices, beta-strands, turns, poly-L-proline type II (PPII), and unordered structures were estimated for each denatured state of the three proteins using the SELCON3 program with Protein Data Bank data and the VUVCD spectra of 31 reference proteins reported in our previous study. Based on these contents, the characteristics of the four types of denaturation were discussed for each protein. In all types of denaturation, a decrease in alpha-helices was accompanied by increases in beta-strands, PPII, and unordered structures. About 20% beta-strands were present even in the proteins fully unfolded by GdnHCl in which beta-sheets should be broken. From these results, we propose that denatured proteins constitute an ensemble of residual alpha-helices and beta-sheets, partly unfolded (or distorted) alpha-helices and beta-strands, PPII, and unordered structures.  相似文献   

3.
Gekko K  Matsuo K 《Chirality》2006,18(5):329-334
The vacuum-ultraviolet circular dichroism (VUVCD) spectra of various amino acids, saccharides, and proteins were measured using a synchrotron-radiation CD spectrophotometer at HiSOR/HSRC that is capable of measuring the CD spectra down to 140 nm in aqueous solution. L-Isomers of amino acids show two successive positive peaks at around 200 and 180 nm depending on the side chain. The ab initio assignment by time-dependent density functional theory predicts that these peaks are attributed to n-pi* and pi-pi* transitions of the carboxyl group, respectively. Most mono- and disaccharides exhibit characteristic peaks at around 170 nm, sensitively depending on the anomeric and axial/equatorial configurations of hydroxyl groups, trans-gauche conformations of the hydroxymethyl group, and the type of glycosidic linkage. The VUVCD spectra of 31 globular proteins allow us to estimate more accurately the content and number of alpha-helix and beta-strand segments by extending the short-wavelength limit of the analytical program SELCON3 down to 160 nm. These results demonstrate that synchrotron-radiation VUVCD spectroscopy is a useful tool for structure analyses of biomolecules in solution based on the higher energy transitions of chromophores.  相似文献   

4.
Matsuo K  Watanabe H  Gekko K 《Proteins》2008,73(1):104-112
Synchrotron-radiation vacuum-ultraviolet circular dichroism (VUVCD) spectroscopy can significantly improve the predictive accuracy of the contents and segment numbers of protein secondary structures by extending the short-wavelength limit of the spectra. In the present study, we combined VUVCD spectra down to 160 nm with neural-network (NN) method to improve the sequence-based prediction of protein secondary structures. The secondary structures of 30 target proteins (test set) were assigned into alpha-helices, beta-strands, and others by the DSSP program based on their X-ray crystal structures. Combining the alpha-helix and beta-strand contents estimated from the VUVCD spectra of the target proteins improved the overall sequence-based predictive accuracy Q(3) for three secondary-structure components from 59.5 to 60.7%. Incorporating the position-specific scoring matrix in the NN method improved the predictive accuracy from 70.9 to 72.1% when combining the secondary-structure contents, to 72.5% when combining the numbers of segments, and finally to 74.9% when filtering the VUVCD data. Improvement in the sequence-based prediction of secondary structures was also apparent in two other indices of the overall performance: the correlation coefficient (C) and the segment overlap value (SOV). These results suggest that VUVCD data could enhance the predictive accuracy to over 80% when combined with the currently best sequence-prediction algorithms, greatly expanding the applicability of VUVCD spectroscopy to protein structural biology.  相似文献   

5.
Vacuum-ultraviolet circular dichroism (VUVCD) spectra of five monosaccharides (D-glucose, D-mannose, D-galactose, D-xylose, and D-lyxose) and five disaccharides (maltose, isomaltose, cellobiose, gentiobiose, and lactose) were measured to 160 nm using a synchrotron-radiation VUVCD spectrophotometer in aqueous solution under high vacuum at 25 degrees C. Most of the saccharides show a positive peak with some shoulders at around 170 nm, except for D-galactose and lactose, which show two distinct negative peaks at around 165 and 177 nm. These spectra are influenced by such structural factors as alpha and beta anomers at C-1, axial and equatorial hydroxyl groups at C-2 and C-4, trans (T) and gauche (G) conformations of the hydroxymethyl group at C-5, and the type of glycosidic linkage. Deconvolution of the VUVCD spectra of D-glucose, D-mannose, and D-galactose into six independent Gaussian components for alpha-GG, alpha-GT, alpha-TG, beta-GG, beta-GT, and beta-TG conformations suggests that the alpha anomer has red-shifted spectra relative to the beta anomer, and that GG and GT conformations have positive and negative circular dichroism signs, respectively, while the sign for TG conformation is anomer dependent. These speculations from the deconvolution analyses are also supported by the VUVCD spectra of disaccharides. These results give new insight into the equilibrium conformations of saccharides, demonstrating the usefulness of synchrotron-radiation VUVCD spectroscopy.  相似文献   

6.
To elucidate the effects of specific disulfide bridges (Cys6‐Cys127, Cys30‐Cys115, Cys64‐Cys80, and Cys76‐Cys94) on the secondary structure of hen lysozyme, the vacuum‐ultraviolet circular dichroism (VUVCD) spectra of 13 species of disulfide‐deficient variants in which Cys residues were replaced with Ala or Ser residues were measured down to 170 nm at pH 2.9 and 25°C using a synchrotron‐radiation VUVCD spectrophotometer. Each variant exhibited a VUVCD spectrum characteristic of a considerable amount of residual secondary structures depending on the positions and numbers of deleted disulfide bridges. The contents of α‐helices, β‐strands, turns, and unordered structures were estimated with the SELCON3 program using the VUVCD spectra and PDB data of 31 reference proteins. The numbers of α‐helix and β‐strand segments were also estimated from the VUVCD data. In general, the secondary structures were more effectively stabilized through entropic forces as the number of disulfide bridges increased and as they were formed over larger distances in the primary structure. The structures of three‐disulfide variants were similar to that of the wild type, but other variants exhibited diminished α‐helices with a border between the ordered and disordered structures around the two‐disulfide variants. The sequences of the secondary structures were predicted for all the variants by combining VUVCD data with a neural‐network method. These results revealed the characteristic role of each disulfide bridge in the formation of secondary structures. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
To elucidate the structural characteristics of alcohol-denatured proteins, we measured the vacuum-ultraviolet circular dichroism (VUVCD) spectra of six proteins-myoglobin, human serum albumin, α-lactalbumin, thioredoxin, β-lactoglobulin, and α-chymotrypsinogen A-down to 170 nm in trifluoroethanol solutions (TFE: 0-50%) and down to 175 nm in methanol solutions (MeOH: 0-70%) at pH 2.0 and 25°C, using a synchrotron-radiation VUVCD spectrophotometer. The contents of α-helices, β-strands, turns, poly-L-proline type II helices (PPIIs), and unordered structures of these proteins were estimated using the SELCON3 program, including the numbers of α-helix and β-strand segments. Furthermore, the positions of α-helices and β-strands on amino acid sequences were predicted by combining these secondary-structure data with a neural-network method. All alcohol-denatured proteins showed higher α-helix contents (up to ~ 90%) compared with the native states, and they consisted of several long helical segments. The helix-forming ability was higher in TFE than in MeOH, whereas small amounts of β-strands without sheets were formed in the MeOH solution. The produced α-helices were transformed dominantly from the β-strands and unordered structures, and slightly from the turns. The content and mean length of α-helix segments decreased as the number of disulfide bonds in the proteins increased, suggesting that disulfide bonds suppress helix formation by alcohols. These results demonstrate that alcohol-denatured proteins constitute an ensemble of many long α-helices, a few β-strands and PPIIs, turns, and unordered structures, depending on the types of proteins and alcohols involved.  相似文献   

8.
A simple approach to estimate the number of alpha-helical and beta-strand segments from protein circular dichroism spectra is described. The alpha-helix and beta-sheet conformations in globular protein structures, assigned by DSSP and STRIDE algorithms, were divided into regular and distorted fractions by considering a certain number of terminal residues in a given alpha-helix or beta-strand segment to be distorted. The resulting secondary structure fractions for 29 reference proteins were used in the analyses of circular dichroism spectra by the SELCON method. From the performance indices of the analyses, we determined that, on an average, four residues per alpha-helix and two residues per beta-strand may be considered distorted in proteins. The number of alpha-helical and beta-strand segments and their average length in a given protein were estimated from the fraction of distorted alpha-helix and beta-strand conformations determined from the analysis of circular dichroism spectra. The statistical test for the reference protein set shows the high reliability of such a classification of protein secondary structure. The method was used to analyze the circular dichroism spectra of four additional proteins and the predicted structural characteristics agree with the crystal structure data.  相似文献   

9.
The structure of PsbQ, one of the three main extrinsic proteins associated with the oxygen-evolving complex (OEC) of higher plants and green algae, is examined by Fourier transform infrared (FTIR) and circular dichroic (CD) spectroscopy and by computational structural prediction methods. This protein, together with two other lumenally bound extrinsic proteins, PsbO and PsbP, is essential for the stability and full activity of the OEC in plants. The FTIR spectra obtained in both H(2)O and D(2)O suggest a mainly alpha-helix structure on the basis of the relative areas of the constituents of the amide I and I' bands. The FTIR quantitative analyses indicate that PsbQ contains about 53% alpha-helix, 7% turns, 14% nonordered structure, and 24% beta-strand plus other beta-type extended structures. CD analyses indicate that PsbQ is a mainly alpha-helix protein (about 64%), presenting a small percentage assigned to beta-strand ( approximately 7%) and a larger amount assigned to turns and nonregular structures ( approximately 29%). Independent of the spectroscopic analyses, computational methods for protein structure prediction of PsbQ were utilized. First, a multiple alignment of 12 sequences of PsbQ was obtained after an extensive search in the public databases for protein and EST sequences. Based on this alignment, computational prediction of the secondary structure and the solvent accessibility suggest the presence of two different structural domains in PsbQ: a major C-terminal domain containing four alpha-helices and a minor N-terminal domain with a poorly defined secondary structure enriched in proline and glycine residues. The search for PsbQ analogues by fold recognition methods, not based on the secondary structure, also indicates that PsbQ is a four alpha-helix protein, most probably folding as an up-down bundle. The results obtained by both the spectroscopic and computational methods are in agreement, all indicating that PsbQ is mainly an alpha protein, and show the value of using both methodologies for protein structure investigation.  相似文献   

10.
B A Clack  D M Gray 《Biopolymers》1989,28(11):1861-1873
The CD spectra of four filamentous bacteriophages--fd, IKe, Pf1, and Pf3--were analyzed to determine the alpha-helix contents of their major coat proteins. Measured spectra included the 192-nm band so that analyses could be carried out over the full wavelength range of the reference spectra for protein secondary structures available (a) from globular proteins [J.T. Yang, C.S.C. Wu, and H.M. Martinez (1986) Methods in Enzymology 130, 208-269] and (b) from poly(L-lysine) [N. Greenfield and G.D. Fasman (1960) Biochemistry 8, 4108-4116]. Extended analyses were also performed with the addition of the spectrum of a model beta-turn to the Greenfield and Fasman reference set, with the spectrum of a short alpha-helix in the Yang et al. reference set, and with an estimate of the spectrum of Trp added to both reference sets. The reference set based on the simple poly(L-lysine) polypeptide, plus a spectrum of a model beta-turn or of Trp, gave reasonably good fits to the measured spectra for all four phages and yielded the largest percentages of alpha-helix. The class I phages--fd and IKe--had large percentages of alpha-helix of 98 +/- 2 and 97 +/- 5%, respectively, while the two class II phages--Pf1 and Pf3--had similar but smaller alpha-helix contents of 83 +/- 6 and 84 +/- 2, respectively. While these alpha-helix contents were within the ranges previously reported from CD spectra of these phages in solution, they were more precise, and they indicated that the coat proteins of the intact phages have CD spectra that are probably modeled better by the reference spectra of polypeptides than by those of globular proteins.  相似文献   

11.
Protein-derived basic CD spectra for alpha-helix, antiparallel and parallel beta-structures, beta-bends and irregular form of proteins have been determined from the experimental CD spectra of six (myoglobin, lysozyme, ribonuclease A, papain, lactate dehydrogenase, subtilisin BPN') or seven (glyceraldehyde-3-phosphate dehydrogenase added) reference proteins and the analysis of the X-ray data. The secondary structures of thirteen proteins (seven reference and six additional ones) have been analysed using the basic CD spectra thus obtained. The data obtained have been compared with the results of the X-ray data analysis. It is shown that the accuracy of determination of the beta-structure and beta-bends contents using our basic CD spectra is about 2-3 times better than using the basic spectra reported by Chang et al. (Analyt. Biochem. 91, 13-31, 1978).  相似文献   

12.
A new method for determination of the secondary protein structure from the CD spectra taking into account the contribution of aromatic amino acid residues is proposed. New proteins reference CD spectra for five secondary structures (alpha-helices, antiparallel and parallel beta-structures, beta-bends and irregular form) without contribution of aromatic residues are obtained. By means of this new method the secondary structure of sixteen different proteins was analysed. There is a good correlation of these results with the X-ray data.  相似文献   

13.
W C Johnson 《Proteins》1999,35(3):307-312
We have developed an algorithm to analyze the circular dichroism of proteins for secondary structure. Its hallmark is tremendous flexibility in creating the basis set, and it also combines the ideas of many previous workers. We also present a new basis set containing the CD spectra of 22 proteins with secondary structures from high quality X-ray diffraction data. High flexibility is obtained by doing the analysis with a variable selection basis set of only eight proteins. Many variable selection basis sets fail to give a good analysis, but good analyses can be selected without any a priori knowledge by using the following criteria: (1) the sum of secondary structures should be close to 1.0, (2) no fraction of secondary structure should be less than -0.03, (3) the reconstructed CD spectrum should fit the original CD spectrum with only a small error, and (4) the fraction of alpha-helix should be similar to that obtained using all the proteins in the basis set. This algorithm gives a root mean square error for the predicted secondary structure for the proteins in the basis set of 3.3% for alpha-helix, 2.6% for 3(10)-helix, 4.2% for beta-strand, 4.2% for beta-turn, 2.7% for poly(L-proline) II type 3(1)-helix, and 5.1% for other structures when compared with the X-ray structure.  相似文献   

14.
Chellgren BW  Creamer TP 《Proteins》2006,62(2):411-420
Loss of conformational entropy is one of the primary factors opposing protein folding. Both the backbone and side-chain of each residue in a protein will have their freedom of motion restricted in the final folded structure. The type of secondary structure of which a residue is part will have a significant impact on how much side-chain entropy is lost. Side-chain conformational entropies have previously been determined for folded proteins, simple models of unfolded proteins, alpha-helices, and a dipeptide model for beta-strands, but not for polyproline II (PII) helices. In this work, we present side-chain conformational estimates for the three regular secondary structure types: alpha-helices, beta-strands, and PII helices. Entropies are estimated from Monte Carlo computer simulations. Beta-strands are modeled as two structures, parallel and antiparallel beta-strands. Our data indicate that restraining a residue to the PII helix or antiparallel beta-strand conformations results in side-chain entropies equal to or higher than those obtained by restraining residues to the parallel beta-strand conformation. Side-chains in the alpha-helix conformation have the lowest side-chain entropies. The observation that extended structures retain the most side-chain entropy suggests that such structures would be entropically favored in unfolded proteins under folding conditions. Our data indicate that the PII helix conformation would be somewhat favored over beta-strand conformations, with antiparallel beta-strand favored over parallel. Notably, our data imply that, under some circumstances, residues may gain side-chain entropy upon folding. Implications of our findings for protein folding and unfolded states are discussed.  相似文献   

15.
The structure of the lectin discoidin I has been studied by circular dichroism and fluorescence spectroscopy. A positive ellipticity band at 224 nm is detected in the CD spectrum of discoidin I. The fluorescence spectra show a defined shoulder at 325 nm that through acrylamide quenching has been associated with a displaced tryptophan residue partly buried in the discoidin I molecule. This tryptophan could also be responsible for the 224 nm positive band of the CD spectrum. These spectroscopic characteristics of discoidin I indicate the existence of structural homologies with fibronectin, where the optical activity of aromatic chromophores has been associated with the positive ellipticity band at 227 nm. The CD adjust parameters and theoretical secondary structure predictions show that discoidin I is a molecule with a low content of alpha-helix and beta-strand and high content of beta-turn structures, similar to other lectins.  相似文献   

16.
Rigler P  Ulrich WP  Hovius R  Ilegems E  Pick H  Vogel H 《Biochemistry》2003,42(47):14017-14022
High signal-to-noise Fourier transform infrared (FTIR) spectra of the 5-hydroxytryptamine (serotonin) receptor (5-HT(3)R) and the nicotinic acetylcholine receptor (nAChR) were obtained by microscope FTIR spectroscopy using micrometer-sized, fully hydrated protein films. Because this novel procedure requires only nanogram quantities of membrane proteins, which is 4-5 orders of magnitude less than the amount of protein typically used for conventional FTIR spectroscopy, it opens the possibility to access the structure and dynamics of many important mammalian receptor proteins. The secondary structure of detergent-solubilized 5-HT(3)R determined by curve fitting of the amide I band yielded 36% alpha-helix, 33% beta-strand, 15% beta-turn, and 16% nonregular structures, which remained unchanged upon reconstitution in lipid membranes. From hydrogen-deuterium exchange, the secondary structure of the water-accessible part of 5-HT(3)R was determined as 14% alpha-helix, 16% beta-strand, 26% beta-turn, and 14% nonregular structures. Interestingly, we found that both the overall and the water-accessible nAChR secondary structures were nearly identical to those of 5-HT(3)R, in agreement with predicted structures of this class of receptors. This is the first time that structural investigations were obtained for two closely related ligand-gated ion channels under strictly identical experimental conditions.  相似文献   

17.
Accurately predicted protein secondary structure provides useful information for target selection, to analyze protein function and to predict higher dimensional structure. Existing research shows that more data + refined search = better prediction. We analyze relation between the prediction accuracy and another crucial factor, the protein size. Empirical tests performed with two secondary structure predictors on a large set of high-resolution, non-redundant proteins show that the average accuracies for small proteins (<100 residues) equal 73% and 54% for alpha-helices and beta-strands, respectively. The alpha-helix/beta-strand accuracies for very large proteins (>300 residues) equal 77%/68%, respectively. Similarly, the tests with three secondary structure content predictors show that the prediction errors for the small/very large proteins equal 0.13/0.09 and 0.09/0.06 for alpha-helix and beta-strand content, respectively. Our tests confirm that the secondary structure/content predictions for the very large proteins are characterized statistically significantly better quality than prediction for the small proteins. This is in contrast with the tertiary structure predictions in which higher accuracy is obtained for smaller proteins.  相似文献   

18.
Vibrational circular dichroism (VCD) studies are reported for two unrelated recombinant growth factor proteins: epidermal growth factor and basic fibroblast growth factor (bFGF). NMR, electronic CD, and bFGF X-ray studies indicate that these two proteins are primarily composed of beta-sheet and loop secondary structure elements with no detectable alpha-helices. Two reports on solution conformation of these proteins using FTIR absorption spectroscopy with subsequent resolution enhancement confirmed the presence of a large fraction of a beta-sheet conformation but in addition indicated the presence of large absorption bands in the 1650-1656 cm-1 region, which are typically assigned to alpha-helices. The VCD spectra of both proteins have band shapes that strongly resemble those of other high beta-sheet fraction proteins, such as the trypsin family of proteins. Quantitative analysis of the VCD spectra also indicates that these proteins are predominantly in beta-sheet and extended ("other") conformations with very little alpha-helix fraction. These results agree with the CD interpretation and affirm that the FTIR peaks in the region 1650-1656 cm-1 can be assigned to loops. This study provides an example of the limitations of using FTIR frequencies alone for examination of protein secondary structure.  相似文献   

19.
Inverse circular dichroism (CD) spectra are presented for each of the five major secondary structures of proteins: alpha-helix, antiparallel and parallel beta-sheet, beta-turn, and other (random) structures. The fraction of the each secondary structure in a protein is predicted by forming the dot product of the corresponding inverse CD spectrum, expressed as a vector, with the CD spectrum of the protein digitized in the same way. We show how this method is based on the construction of the generalized inverse from the singular value decomposition of a set of CD spectra corresponding to proteins whose secondary structures are known from X-ray crystallography. These inverse spectra compute secondary structure directly from protein CD spectra without resorting to least-squares fitting and standard matrix inversion techniques. In addition, spectra corresponding to the individual secondary structures, analogous to the CD spectra of synthetic polypeptides, are generated from the five most significant CD eigenvectors.  相似文献   

20.
MOTIVATION: Circular dichroism (CD) spectroscopy has become established as a key method for determining the secondary structure contents of proteins which has had a significant impact on molecular biology. Many excellent mathematical protocols have been developed for this purpose and their quality is above question. However, reference database sets of proteins, with CD spectra matched to secondary structure components derived from X-ray structures, provide the key resource for this task. These databases were created many years ago, before most CD spectrophotometers became standardized and before it was commonplace to validate X-ray structures prior to publication. The analyses presented here were undertaken to investigate the overall quality of these reference databases in light of their extensive usage in determining protein secondary structure content from CD spectra. RESULTS: The analyses show that there are a number of significant problems associated with the CD reference database sets in current use. There are disparities between CD spectra for the same protein collected by different groups. These include differences in magnitudes, peak positions or both. However, many current reference sets are now amalgamations of spectra from these groups, introducing inconsistencies that can lead to inaccuracies in the determination of secondary structure components from the CD spectra. A number of the X-ray structures used fall short on the validation criteria now employed as standard for structure determination. Many have substantial percentages of residues in the disallowed regions of the Ramachandran plot. Hence their calculated secondary structure components, used as a foundation for the reference databases, are likely to be in error. Additionally, the coverage of secondary structure space in the reference datasets is poorly correlated to the secondary structure components found in the Protein Data Bank. A conclusion is that a new reference CD database with cross-correlated, machine-independent CD spectra and validated X-ray structures that cover more secondary structure components, including diverse protein folds, is now needed. However, that reasonably accurate values for the secondary structure content of proteins can be determined from spectra is a testament to CD spectroscopy being a very powerful technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号