首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Promoter sequences of three anther-specific genes, each of which shows sequence identity to lipid transfer protein (LTP12), xyloglucan endotransglucosylase/hydrolase (XTH3), and polygalacturonase (PGA4), were obtained from Arabidopsis thaliana, fused to the #-glucuronidase (GUS) gene, and then introduced into A. thaliana. Histochemical GUS assay showed that the PGA4 promoter was active in the tapetum at the bicellular pollen stage and in tricellular pollen. The promoter of LTP12 and XTH3 directed GUS expression exclusively in the tapetum. The LTP12 promoter was activated from the uninucleate microspore stage, while the XTH3 promoter was activated from the bicellular pollen stage. This type of activation pattern at the late developmental stage of the tapetum has not been reported previously. The promoter sequences employed in this study will be useful for the characterization of genes differentially expressed in anthers.  相似文献   

2.
3.
4.
Full-length cDNAs are essential for functional analysis of plant genes. We constructed high-content, full-length cDNA libraries from Arabidopsis thaliana plants based on chemical introduction of a biotin group into the diol residue of the CAP structure of eukaryotic mRNA, followed by RNase I treatment, to select full-length cDNA. More than 90% of the total clones obtained were of full length; recombinant clones were obtained with high efficiency (2.2 × 106/9 μg starting mRNA). Sequence analysis of 111 randomly picked clones indicated that 32 isolated cDNA groups were derived from novel genes in the A. thaliana genome.  相似文献   

5.
6.
7.
The evolution of genomes can be studied by comparing maps of homologous genes which show changes in nucleic acid sequences and chromosome rearrangements. In this study, we developed a set of 32 amplified consensus gene markers (ACGMs) that amplified gene sequences from Arabidopsis thaliana and Brassica napus. Our methodology, based on PCR, facilitated the rapid sequencing of homologous genes from various species of the same phylogenetic family and the detection of intragenic polymorphism. We found that such polymorphism principally concerned intron sequences and we used it to attribute a Brassica oleracea or Brassica rapa origin to the B. napus sequences and to map 43 rapeseed genes. We confirm that the genetic position of homologous genes varied between B. napus and A. thaliana. ACGMs are a useful tool for genome evolution studies and for the further development of single nucleotide polymorphism suitable for use in genetic mapping and genetic diversity analyses.  相似文献   

8.
9.
Several cloned disease resistance genes from a wide range of plant species are known to share conserved regions with similar structural motifs. Degenerate primers based on conserved sequences of the nucleotide binding site of the genes RPS2, N and L6 were used for polymerase chain reaction (PCR) amplification from genomic DNA of two doubled haploid lines of Brassica oleracea. Sequences of amplified products were highly variable, but most of them showed similarity to known disease resistance genes, including RPS5, RPS2 and N, and to disease resistance gene-like sequences (RGLs) from different species. Primers based on B. oleracea sequences amplified five groups of RGLs. Products were mapped through cleaved amplified polymorphic sequence assays onto four different linkage groups of B. oleracea. PCR amplification from cDNA and allele analysis indicated that four locus-specific RGL fragments are expressed in cauliflower. Screening of a B. oleracea bacterial artificial chromosome library (BAC) with four B. oleracea RGL probes identified a small number of clones, suggesting that the four RGLs may not be highly copied. Screening of a BAC library of A. thaliana with the same probes identified clones that mapped onto four different chromosomes. These map positions correspond to known disease resistance loci of A. thaliana. Received: 12 November 1999 / Accepted: 19 June 2000  相似文献   

10.
Regulatory promoter regions responsible for the enhanced expression in anthers and pollen are defined in detail for three nuclear encoded mitochondrial Complex I (nCI) genes from Arabidopsis thaliana. Specific regulatory elements were found conserved in the 5′ upstream regions between three different genes encoding the 22 kDa (PSST), 55 kDa NADH binding (55 kDa) and 28 kDa (TYKY) subunits, respectively. Northern blot analysis and transgenic Arabidopsis plants carrying progressive deletions of the promoters fused to the β-glucuronidase (GUS) reporter gene by histochemical and fluorimetric methods showed that all three promoters drive enhanced expression of GUS specifically in anther tissues and in pollen grains. In at least two of these promoters the –200/–100 regions actively convey the pollen/anther-specific expression in gain of function experiments using CaMV 35S as a minimal promoter. These nCI promoters thus contain a specific regulatory region responding to the physiological demands on mitochondrial function during pollen maturation. Pollen-specific motifs located in these regions appear to consist of as little as seven nucleotides in the respective promoter context.  相似文献   

11.
12.
13.
A cDNA clone of the geneLhca2 encoding a photosystem I (PSI) type II chlorophylla/b-binding protein was isolated fromArabidopsis thaliana. The isolation of this, the fourth PSI cab gene fromArabidopsis, confirms a previous report [1] that indicatedArabidopsis may contain all four PSI cab genes identified in other plant species.Lhca2 is a single-copy gene as are the other knownArabidopsis PSI cab genes. The patterns of developmental expression and tissue-specific regulation ofLhca2 are similar to those of other PSI and PSII cab genes, but the light induction pattern and the steady-state mRNA level ofLhca2 are distinct. This suggests that a different mechanism may be employed to regulate the expression ofLhca2.  相似文献   

14.
Arabidopsis belongs to the Brassicaceae family and plays an important role as a model plant for which researchers have developed fine-tuned genome resources. Genome sequencing projects have been initiated for other members of the Brassicaceae family. Among these projects, research on Chinese cabbage (Brassica rapa subsp. pekinensis) started early because of strong interest in this species. Here, we report the development of a library of Chinese cabbage full-length cDNA clones, the RIKEN BRC B. rapa full-length cDNA (BBRAF) resource, to accelerate research on Brassica species. We sequenced 10 000 BBRAF clones and confirmed 5476 independent clones. Most of these cDNAs showed high homology to Arabidopsis genes, but we also obtained more than 200 cDNA clones that lacked any sequence homology to Arabidopsis genes. We also successfully identified several possible candidate marker genes for plant defence responses from our analysis of the expression of the Brassica counterparts of Arabidopsis marker genes in response to salicylic acid and jasmonic acid. We compared gene expression of these markers in several Chinese cabbage cultivars. Our BBRAF cDNA resource will be publicly available from the RIKEN Bioresource Center and will help researchers to transfer Arabidopsis-related knowledge to Brassica crops.  相似文献   

15.
In the sequences released by the Arabidopsis Genome Initiative (AGI), we discovered a new and unexpectedly large family of orphan genes (127 genes by 01.08.99), named AtPCMP. The distribution of the AtPCMP genes on the five chromosomes suggests that the genome of Arabidopsis thaliana contains more than 200 genes of this family (1% of the whole genome). The deduced AtPCMP proteins are characterized by a surprising combinatorial organization of sequence motifs. The amino-terminal domain is made of a succession of three conserved motifs which generate an important diversity. These proteins are classified into three subfamilies based on the length and nature of their carboxy-terminal domain constituted by 1–6 motifs. All the motifs characterized have an important level of conservation in both sequence and spacing. A specific signature of this large family is defined. The presence of ESTs in databases and the detection of clones in A. thaliana cDNA libraries indicate that most of the genes of this family are expressed. The absence of similar sequences outside the plant kingdom strongly suggests that this unusually large orphan family is unique to plants. Features, the genesis, the potential function and the evolution of this plant combinatorial and modular protein family are discussed.  相似文献   

16.
Stem canker (blackleg) caused by Leptosphaeria maculans is a widespread disease of Brassica napus. In contrast, most Arabidopsis thaliana accessions are highly resistant. Hence, novel material derived from symmetric and asymmetric somatic hybrids between B. napus and A. thaliana was utilised in a screen for L. maculans resistance. Initially, both cotyledon and adult-leaf resistance traits were transferred from A. thaliana to B. napus. In later generations the two traits segregated and cotyledon resistance was lost. The adult-leaf resistance was investigated with respect to genome localisation and protein expression. Analyses of remaining A. thaliana DNA in resistant plants showed co-segregation between adult-leaf resistance and chromosome-3 molecular markers. Resistant offspring from asymmetric hybrid plants that contained fragments of chromosome 3 were studied in more detail. Two regions at positions 9.8-10.4 Mbp and 18-19.5 Mbp, where several defence-related genes are located, were identified. A proteomic approach was taken to further investigate genes involved in the defence interaction. Forty eight hours after inoculation with L. maculans, only a few proteins, such as glycolate oxidase, were identified as differentially expressed in the resistant line compared to B. napus, despite the presence of additional A. thaliana chromosomes. The plant materials described in the present study constitute a new genetic source of L. maculans resistance and are currently being incorporated into B. napus breeding programmes.  相似文献   

17.
To better understand the molecular control of floral development, we identified a flower-specific cDNA,RsPCPI, from Korean radish (Raphanus sativus). Based on nucleotide sequence analysis, this clone contains an open reading frame of 65 amino acids and shares 91% identity with a pollen coat protein from cabbage (Brassica oleracea). Southern analysis revealed thatRsPCPI is present as a single-copy gene or a member of a small gene family in the radish genome. BecauseRsPCPI mRNA was present exclusively in mature floral buds but not in young floral buds or in vegetative tissues, we propose that this gene is anther-specific.  相似文献   

18.
To better understand gene expression at very low levels, we have designed a method to eliminate cDNA clones representing abundant mRNAs. A cDNA library for drought-stressed hot pepper (Capsicum annuum) (Choi et al., 2002) underwent double-negative screening, once with probes made from a drought-stressed plant, the second time, with probes from a non-stressed plant. The cDNA clones that showed very weak or negative signals were isolated for further analysis, which resulted in 1399 cDNA clones from about 20,000 screened clones. When nucleotide sequences were determined, we obtained 1142 tentative unique genes, with a redundancy rate of 20.41%. An homology database search for the deduced amino acid sequences revealed that about 79% of the cDNA clones could not be matched for functioning with previously characterized sequences. However, when these uncategorized clones were subjected to classification based on functional domains, most could be cited. Notably, clones with possible functions in RNA transport, protein synthesis, and regulation of protein activity showed a dramatic increase in appearance while those coding for transposable elements, viral proteins, and plasmid proteins occupied a much smaller portion compared with those in theArabidopsis thaliana genome. In addition, those coding for proteins targeted to the endoplasmic reticulum were dramatically more abundant in our clones compared with theArabidopsis database.  相似文献   

19.
The genome of the basal choradate Ciona intestinalis contains a basic set of genes with less redundancy compared to the vertebrate genome. Extensive EST analyses, cDNA sequencing, and clustering yielded "Ciona intestinalis Gene Collection Release 1," which contains cDNA clones for 13,464 genes, covering nearly 85% of the Ciona mRNA species. This release is ready for use in cDNA cloning, micro/macroarray analysis, and other comprehensive genome-wide analyses for further molecular studies of basal chordates.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号