首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Total Escherichia coli RNA has been fractionated on Sepharose 6B in 0.1 M ammonium acetate, pH 5.0. The elution order was 23S rRNA, 16S rRNA,, 5S rRNA, and tRNA, which is in contrast with the reported elution order of eukaryotic RNA, chromatographed under similar conditions. tRNA was obtained in two regions, well separated from the high molecular weight rRNA but with a slight contamination of 5S rRNA. The capacity is at least 40 A260 units of RNA per ml of gel.  相似文献   

2.
We have evidence that the open reading frame previously denoted spoU is necessary for tRNA (Gm18) 2'-O-methyltransferase activity. The spoU gene is located in the gmk-rpoZ-spoT-spoU-recG operon at 82 minutes on the Escherichia coli chromosome. The deduced amino acid sequence of spoU shows strong similarities to previously characterized 2'-O-methyltransferases. Comparison of the nucleoside modification pattern of hydrolyzed tRNA, 16S rRNA and 23S rRNA from wild-type and spoU null mutants showed that the modified nucleoside 2'-O-methylguanosine (Gm), present in a subset of E. coli tRNAs at residue 18, is completely absent in the spoU mutant, suggesting that spoU encodes tRNA (Gm18) 2'-O-methyltransferase. Nucleoside modification of 16S and 23S rRNA was unaffected in the spoU mutant. Insertions in the downstream recG gene did not affect RNA modification. Absence of Gm18 in tRNA does not influence growth rate under the tested conditions and does not interfere with activity of the SupF amber suppressor, a suppressor tRNA that normally has the Gm18 modification. We suggest that the spoU gene be renamed trmH (tRNA methylation).  相似文献   

3.
4.
The ribosomal RNA (rRNA) of Escherichia coli contains 24 methylated residues. A set of 22 methyltransferases responsible for modification of 23 residues has been described previously. Herein we report the identification of the yhiR gene as encoding the enzyme that modifies the 23S rRNA nucleotide A2030, the last methylated rRNA nucleotide whose modification enzyme was not known. YhiR prefers protein-free 23S rRNA to ribonucleoprotein particles containing only part of the 50S subunit proteins and does not methylate the assembled 50S subunit. We suggest renaming the yhiR gene to rlmJ according to the rRNA methyltransferase nomenclature. The phenotype of yhiR knockout gene is very mild under various growth conditions and at the stationary phase, except for a small growth advantage at anaerobic conditions. Only minor changes in the total E. coli proteome could be observed in a cell devoid of the 23S rRNA nucleotide A2030 methylation.  相似文献   

5.
An Escherichia coli open reading frame, ygcA, was identified as a putative 23 S ribosomal RNA 5-methyluridine methyltransferase (Gustafsson, C., Reid, R., Greene, P. J., and Santi, D. V. (1996) Nucleic Acids Res. 24, 3756-3762). We have cloned, expressed, and purified the 50-kDa protein encoded by ygcA. The purified enzyme catalyzed the AdoMet-dependent methylation of 23 S rRNA but did not act upon 16 S rRNA or tRNA. A high performance liquid chromatography-based nucleoside analysis identified the reaction product as 5-methyluridine. The enzyme specifically methylated U1939 as determined by a nuclease protection assay and by methylation assays using site-specific mutants of 23 S rRNA. A 40-nucleotide 23 S rRNA fragment (nucleotide 1930--1969) also served as an efficient substrate for the enzyme. The apparent K(m) values for the 40-mer RNA oligonucleotide and AdoMet were 3 and 26 microm, respectively, and the apparent k(cat) was 0.06 s(-1). The enzyme contains two equivalents of iron/monomer and has a sequence motif similar to a motif found in iron-sulfur proteins. We propose to name this gene rumA and accordingly name the protein product as RumA for RNA uridine methyltransferase.  相似文献   

6.
7.
A K Knap  D Wesolowski  S Altman 《Biochimie》1990,72(11):779-790
Certain nucleotides in M1 RNA, the catalytic RNA subunit of RNase P from E coli, are protected from chemical modification when M1 RNA forms complexes with tRNA precursor molecules (ES complexes). Many of these nucleotides are important in the formation of the Michaelis complex. In the presence of tRNA precursor molecules, the pattern of protection from chemical modification of a region in M1 RNA that resembles the E site in 23S rRNA is similar to the pattern of protection of the E site in the presence of deacylated tRNA. In the complex with the RNA enzyme, more nucleotides in the substrate become accessible to modification, an indication that the substrate is in an unfolded conformation under these conditions.  相似文献   

8.
9.
Normal expression and function of transfer RNA (tRNA) are of paramount importance for translation. In this study, we show that tRNA defects are also associated with increased levels of immature ribosomal RNA (rRNA). This association was first shown in detail for a mutant strain that underproduces tRNA(Arg2) in which unprocessed 16S and 23S rRNA levels were increased several-fold. Ribosome profiles indicated that unprocessed 23S rRNA in the mutant strain accumulates in ribosomal fractions that sediment with altered mobility. Underproduction of tRNA(Arg2) also resulted in growth defects under standard laboratory growth conditions. Interestingly, the growth and rRNA processing defects were attenuated when cells were grown in minimal medium or at low temperatures, indicating that the requirement for tRNA(Arg2) may be reduced under conditions of slower growth. Other tRNA defects were also studied, including a defect in RNase P, an enzyme involved in tRNA processing; a mutation in tRNA(Trp) that results in its degradation at elevated temperatures; and the titration of the tRNA that recognizes rare AGA codons. In all cases, the levels of unprocessed 16S and 23S rRNA were enhanced. Thus, a range of tRNA defects can indirectly influence translation via effects on the biogenesis of the translation apparatus.  相似文献   

10.
The reaction of site-specific cleavage of tRNA at a 7-methylguanine residue, including subsequent treatment with sodium borohydride and aniline [Wintermeyer, W. and Zachau, H.G. (1975) FEBS Lett. 58, 306-309], was shown to work only within a certain range of tRNA concentrations (higher than 30 microM). The Escherichia coli 16S rRNA, which contained a unique m7G (position 527), could not be split by this method when taken at any concentration. It was found that the presence of statistically methylated carrier RNA in the reaction mixture at the borohydride stage significantly stimulates site-specific fragmentation of 16S rRNA and 32P-labeled tRNAs. Direct sequencing proved that 16S rRNA and tRNA are cleaved by this procedure successfully at the m7G residue. The E. coli 16S rRNA was preparatively cleaved by the described procedure into two fragments. The 5'-terminal fragment (1-526) and the 3'-terminal fragment (528-1542) were isolated in the pure form and their secondary structure investigated by the circular dichroism method. The results of this study showed that the secondary and tertiary structures of the 5'-terminal one-third of the 16S rRNA are at least as ordered as those of intact 16S rRNA or its 3'-terminal two-thirds.  相似文献   

11.
12.
13.
14.
The 16S ribosomal RNA gene of yeast mitochondria was titrated in various cytoplasmic petite mutants by DNA-RNA hybridization. The gene was located close to the prolyl transfer RNA gene. The properties of the rho? strains suggest that the gene order would be: - PI - 16S - prolyl tRNA - valyl tRNA - (tRNAs) - RI - RIII -; the 23S ribosomal gene is far from the 16S one. Several petite mutants were found which have retained, in addition to many transfer RNA genes, both of the 23S and 16S ribosomal RNA genes. The two genes seem to be transcribed in these mutants.  相似文献   

15.
16.
17.
18.
Lalonde MS  Zuo Y  Zhang J  Gong X  Wu S  Malhotra A  Li Z 《RNA (New York, N.Y.)》2007,13(11):1957-1968
Mycoplasma genitalium, a small bacterium having minimal genome size, has only one identified exoribonuclease, RNase R (MgR). We have purified MgR to homogeneity, and compared its RNA degradative properties to those of its Escherichia coli homologs RNase R (EcR) and RNase II (EcII). MgR is active on a number of substrates including oligoribonucleotides, poly(A), rRNA, and precursors to tRNA. Unlike EcR, which degrades rRNA and pre-tRNA without formation of intermediate products, MgR appears sensitive to certain RNA structural features and forms specific products from these stable RNA substrates. The 3'-ends of two MgR degradation products of 23S rRNA were mapped by RT-PCR to positions 2499 and 2553, each being 1 nucleotide downstream of a 2'-O-methylation site. The sensitivity of MgR to ribose methylation is further demonstrated by the degradation patterns of 16S rRNA and a synthetic methylated oligoribonucleotide. Remarkably, MgR removes the 3'-trailer sequence from a pre-tRNA, generating product with the mature 3'-end more efficiently than EcII does. In contrast, EcR degrades this pre-tRNA without the formation of specific products. Our results suggest that MgR shares some properties of both EcR and EcII and can carry out a broad range of RNA processing and degradative functions.  相似文献   

19.
Time of action of 4.5 S RNA in Escherichia coli translation   总被引:15,自引:0,他引:15  
A new class of suppressor mutants helps to define the role of 4.5 S RNA in translation. The suppressors reduce the requirement for 4.5 S RNA by increasing the intracellular concentration of uncharged tRNA. Suppression probably occurs by prolonging the period in which translating ribosomes have translocated but not yet released the uncharged tRNA, indicating that this is the point at which 4.5 S RNA enters translation. The release of 4.5 S RNA from polysomes is affected by antibiotics that inhibit protein synthesis. The antibiotic-sensitivity of this release indicates that 4.5 S RNA exits the ribosome following translocation and prior to release of protein synthesis elongation factor G. These results indicate that 4.5 S RNA acts immediately after ribosomal translocation. A model is proposed in which 4.5 S RNA stabilizes the post-translocation state by replacing 23 S ribosomal RNA as a binding site for elongation factor G. The 4.5 S RNA-requirement of mutants altered in 23 S ribosomal RNA support this model.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号