首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Development, structure and the axial distribution of transfer cells and their lignification were investigated inValerianella locusta, Valeriana officinalis, andV. tuberosa (Valerianaceae). Fundamental new results are: (1) Transfer cells often contain numerous lipid droplets. Within the stem the distribution of cells containing lipid droplets correlates to that of transfer cells. (2) InValeriana officinalis persisting protuberances are frequently found on pit membranes of xylem transfer cells. Lignified transfer cells can undergo a second modification: a layer covering the secondary wall forms wall ingrowths similar to those of transfer cells. (3) Peripheral pith cells, abuting transfer cells, are able to modify into transfer cells. Cambial derivatives are only temporarily developed as transfer cells. (4) Phloem transfer cells are found in vascular bundles of the whole axis. (5) In roots, xylem transfer cells are poorly developed or absent. (6) Oil cells with oil bodies are present in the rape ofValeriana tuberosa. They are absent however in the stem of the species investigated. (7) Tannins occur in elements of the primary cortex, phloem and secondary xylem ofValeriana officinalis.  相似文献   

2.
A comparative study has been made of the mucogenic epidermis of the common carp, Cyprinus carpio var. communis, and the three Indian major carps, Catla catla, Labeo rohita and Cirrhina mrigala: on the basis of epidermis structural organization, these species are easily differentiated. The epithelial cells in the superficial layer, as in most fishes, show secretory activity, evidenced by positive histochemical reactions, which is high in C. carpio var. communis, moderate in C. catla and low in L. rohita and C. mrigala. The epithelial cells in the underlying two or three layers also give positive reactions, though their intensity is relatively weak. The mucous cells in C. carpio var. communis are distributed in large numbers arranged in several superimposed layers in the outer regions of the epidermis, whereas in C. catla they are fewer in number and are widely separated in the surface layers as well as in the deeper layers of the epidermis; in both species the mucous cells appear rounded, large, and open on the surface by wide pores. In contrast, in L. rohita and C. mrigala the mucous cells are smaller, restricted mainly to the superficial layer, close together in a single row, and open on the surface by narrow pores. The overall density of mucous cells in L. rohita and C. mrigala, as in C. catla, is much lower than in C. carpio var. communis. In the epidermis of C. carpio var. communis there are a large number of mucous cells, and the few club cells are restricted to the deeper layers. In contrast, in the epidermis of the three Indian major carp the overall density of the mucous cells is much lower and the club cells are very numerous. It is suggested that the high density of club cells compensates an overall low density of mucous cells as an adaptation for an effective defence mechanism. Increased mucus production in the epidermis of C. carpio var. communis, as evidenced by a large number of mucous cells in outer regions and high secretory activity of superficial layer epithelial cells, is associated with increased precipitation of mud held in suspension, needed as an adaptation to the species’peculiar bottom-scooping habits. The varied density of the taste buds in the epidermis of the four carp is associated with their feeding habits.  相似文献   

3.
 Cell lineages of identified midline cells were traced in the amphipod Orchestia cavimana (Crustacea, Malacostraca) by in vivo labelling. Midline cells are a common phenomenon in the germ band of crustaceans and insects. Studies in midline cells of Drosophila showed an origin from separate, paired anlagen and a differentiation into three types of cells. The in vivo labelling of midline cells of Orchestia demonstrates that they originate from the same material as the neural and epidermal ectoderm, divide in a stereotyped cell division pattern and give rise to at least two different types of cells. During the following evolutionarily derived mode of germ band elongation in Orchestia, a morphogenetic process is intercalated that separates germ band halves. On the level of single cells, it can be shown that midline cells are the only ectodermal cells that bridge the large distance between the separated parts. The cells are stretched extensively but do not proliferate. Comparing the midline cells of Orchestia with non-malacostracan crustaceans and insects, the results favour the hypothesis that midline cells are a distinct population of cells homologous in crustaceans and insects. Received: 24 July 1998 / Accepted: 13 October 1998  相似文献   

4.
5.
Guard cells are specialized and metabolically active cells which arise during the differentiation of the epidermis. Using Nicotiana glauca epidermal peels as a source of purified guard cells, we have constructed a cDNA library from guard cell RNA. In order to isolate genes that are predominantly expressed in guard cells, we performed a differential screen of this library, comparing the hybridization of a radiolabeled cDNA probe synthesized from guard cell RNA to that from a mesophyll cell cDNA probe. Sixteen clones were isolated based on their greater level of hybridization with the guard cell probe. Of these, eight had high homology to lipid transfer protein (LTP), two were similar to glycine-rich protein (GRP), and one displayed high homology to proline-rich proteins from Arabidopsis thaliana (AtPRP2, AtPRP4) and from potato guard cells (GPP). Northern analysis confirmed that one or more NgLTP genes, NgGRP1, and NgGPP1 are all differentially expressed, with highest levels in guard cells, and low or undetectable levels in mesophyll cells and in roots. In addition, all are induced to some degree in drought-stressed guard cells. NgLTP and NgGRP1 expression was localized by in situ hybridization to the guard cells and pavement cells in the epidermis. NgGRP1 expression was also detected in cells of the vasculature. Genomic Southern analysis indicated that LTP is encoded by a family of highly similar genes in N. glauca. This work has identified members of a subset of epidermis- and guard cell-predominant genes, whose protein products are likely to contribute to the unique properties acquired by guard cells and pavement cells during differentiation.  相似文献   

6.
The taste disc of the red-bellied toad Bombina orientalis (Discoglossidae) has been investigated by light and electron microscopy and compared with that of Rana pipiens (Ranidae). Unlike the frog, B. orientalis possesses a disc-shaped tongue that cannot be ejected for capture of prey. The taste discs are located on the top of fungiform papillae. They are smaller than those in Ranidae, and are not surrounded by a ring of ciliated cells. Ultrastructurally, five types of cells can be identified (mucus cells, wing cells, sensory cells, and both Merkel cell-like basal cells and undifferentiated basal cells). Mucus cells are the main secretory cells of the taste disc and occupy most of the surface area. Their basal processes do not synapse on nerve fibers. Wing cells have sheet-like apical processes and envelop the mucus cells. They contain lysosomes and multivesicular bodies. Two types of sensory cells reach the surface of the taste disc; apically, they are distinguished by either a brush-like arrangement of microvilli or a rod-like protrusion. They are invaginated into lateral folds of mucus cells and wing cells. In contrast to the situation in R. pipiens, sensory cells of B. orientalis do not contain dark secretory granules in the perinuclear region. Synaptic connections occur between sensory cells (presynaptic sites) and nerve fibers. Merkel cell-like basal cells do not synapse onto sensory cells, but synapse-like connections exist between Merkel cell-like basal cells (presynaptic site) and nerve fibers.  相似文献   

7.
In the periodic albino mutant (ap/ap) of Xenopus laevis, peculiar leucophore‐like cells appear in the skins of tadpoles and froglets, whereas no such cells are observed in the wild‐type (+/+). These leucophore‐like cells are unusual in (1) appearing white, but not iridescent, under incident light, (2) emitting green fluorescence under blue light, (3) exhibiting pigment dispersion in the presence of α‐melanocyte stimulating hormone (αMSH), and (4) containing an abundance of bizarre‐shaped, reflecting platelet‐like organelles. In this study, the developmental and ultrastructural characteristics of these leucophore‐like cells were compared with melanophores, iridophores and xanthophores, utilizing fluorescence stereomicroscopy, and light and electron microscopy. Staining with methylene blue, exposure to αMSH, and culture of neural crest cells were also performed to clarify the pigment cell type. The results obtained clearly indicate that: (1) the leucophore‐like cells in the mutant are different from melanophores, iridophores and xanthophores, (2) the leucophore‐like cells are essentially similar to melanophores of the wild‐type with respect to their localization in the skin and manner of response to αMSH, (3) the leucophore‐like cells contain many premelanosomes that are observed in developing melanophores, and (4) mosaic pigment cells containing both melanosomes specific to mutant melanophores and peculiar reflecting platelet‐like organelles are observed in the mutant tadpoles. These findings strongly suggest that the leucophore‐like cells in the periodic albino mutant are derived from the melanophore lineage, which provides some insight into the origin of brightly colored pigment cells in lower vertebrates.  相似文献   

8.
The South African marine alga Amphithallia crassiuscula, previously subsumed in the widely reported Synarthrophyton patena, is here re-described as a distinct species and genus. Thalli grow as obligate epiphytes on Gelidium capense in the upper sublittoral zone (while S. patena grows on Ballia callitricha). Gametophytes are monoecious with four-celled carpogonial branches and sterile cells are borne on supporting cells (dioecious or hermaphroditic with two or three-celled carpogonial branches and sterile cells borne on hypogynous cells in Synarthrophyton). Postfertilization stages involve a connecting filament linking the carpogonium to several putative auxiliary cells, demonstrating a non-procarpic condition with apparent absence of a fusion cell. Gonimoblast filaments develop at the level of basal cells of carpogonial branches. Spermatangial mother cells remain either unbranched (cutting off spermatangia only) or develop dendroid (branched) filaments with terminal spermatangia (as in Synarthrophyton). Multiporate conceptacles develop straight pore canals lined by non-differentiated cells (conical canals with differentiated pore cells along the base in Synarthrophyton). The here described pre- and post-fertilization characters are new for the order Corallinales motivating the establishment of the new genus Amphithallia.  相似文献   

9.
 The Malpighian tubules of Drosophila hydei and D. melanogaster larvae are composed of two types of cell, principal cells and stellate cells. In the anterior larval Malpighian tubules approximately 26% (D. hydei) and 18% (D. melanogaster), respectively, of all cells are stellate cells. In the larvae of D. melanogaster, the stellate cells are fenestrated and the hemolymph space and tubule lumen are separated only by the basal lamina. Injection of dyes into the hemolymph did not indicate any facilitated transfer of substances through the fenestrated cells. The principal cells of the distal segment are carbonic anhydrase positive indicating transport activity, whereas the stellate cells lack this enzyme. In the stellate cells of the transitional segment, the sodium content is strikingly high in comparison to the neighbouring principal cells and lumen where no sodium was detected. This finding indicates that stellate cells reabsorb sodium as supposed earlier in 1969 by Berridge and Oschman (Tissue Cell 1:247–272). Accepted: 12 February 1999  相似文献   

10.
Summary An ultrastructual study of hemocytes from 9 different insect orders has led to the identification of 8 cell types: (1) Plasmatocytes, whose cytoplasm is filled with small dense lysosomes and large heterogeneous structures, are phagocytic cells. (2) Granulocytes, filled with uniformly electron dense granules, are involved in capsule formation. (3) Coagulocytes, which contain granules and structured globules and which possess a well developed RER, are involved in phagocytosis. (4) Spherule cells are filled with large spherical inclusions. (5) Oenocytoids are large cells with few cytoplasmic organelles. These 5 hemocyte types represent the majority of insect blood cells. (6) Prohemocytes, blastic cells which are one of the stem cells of hemocytes, are very few in number in each species investigated. (7) Thrombocytoids and (8) Prodocytes are restricted to a small number of insect species.The ultrastructural characteristics of these hemocyte types are discussed.  相似文献   

11.
Melanocytes are pigment‐producing cells generated from neural crest cells (NCCs) that delaminate from the dorsal neural tube. The widely accepted premise that NCCs migrating along the dorsolateral pathway are the main source of melanocytes in the skin was recently challenged by the finding that Schwann cell precursors are the major cellular source of melanocytes in the skin. Still, in a wide variety of vertebrate embryos, melanocytes are exclusively derived from NCCs. In this study, we show that a NCC population that is not derived from Sox1+ dorsal neuroepithelial cells but are derived from Sox1? cells differentiate into a significant population of melanocytes in the skin of mice. Later, these Sox1? cells clearly segregate from cells that originated from Sox1+ dorsal neuroepithelial cell‐derived NCCs. The possible derivation of Sox1? cells from epidermal cells also strengthens their non‐neuroepithelial origin.  相似文献   

12.
The spontaneous discharges which recorded extracellularly from cells in the lateral geniculate nucleus (LGN) of a cat were classified into the following 3 main groups depending upon the shapes of their interval histograms and autocorrelation functions: the gamma type whose interval histogram is fitted by a gamma distribution function and whose autocorrelation function has some periodic property which damps down within about several 10 ms, the burst type whose interval histogram has a peak in the first bin (less than 8 ms) and whose autocorrelation function has a large positive peak within several msec, and the multimodal type whose interval histogram has a complex shape with three or more peaks and whose autocorrelation function has a periodic property. Each type of spontaneous discharge seems to be inherent at scotopic and mesopic backgrounds, and the cells whose spontaneous discharges are the gamma type, the burst type, and the multimodal type are called here a gamma cell, burst cell, and the multimodal cell, respectively. Gamma cells are subdivided into X- and Y-cells (gamma-X and gamma-Y cells), but burst cells are all Y-cells and multimodal cells observed up to now are all X-cells. It is clear that these various types of cells are distributed significantly differently in each lamina. All the cells that we found up to now in lamina A were either burst cells or multimodal cells, but every type of cell was found in lamina A1. The majority of cells in lamina C were the gamma type. In most cases, the peak values of the PST histograms of gamma-Y cells (especially, on-center cells) are larger than those of burst cells. These results suggest that Y-cells projecting to area 17 from laminae A and A1 are the burst type, and Y-cells projecting to area 18 from laminae C and A1 are the gamma-Y type.  相似文献   

13.
Tendon stem cells are multi‐potent adult stem cells with broad differentiation plasticity that render them of great importance in cell‐based therapies for the repair of tendons. We called them tendon‐derived stem cells (TDSCs) to indicate the tissue origin from which the stem cells were isolated in vitro. Based on the work of other sources of MSCs and specific work on TDSCs, some properties of TDSCs have been characterized / implicated in vitro. Despite these findings, tendon stem cells remained controversial cells. This was because MSCs residing in different organs, although very similar, were not identical cells. There is evidence of differences in stem cell‐related properties and functions related to tissue origins. Similar to other stem cells, tendon stem cells were identified and characterized in vitro. Their in vivo identities, niche (both anatomical locations and regulators) and roles in tendons were less understood. This review aims to summarize the current evidence of the possible anatomical locations and niche signals regulating the functions of tendon stem cells in vivo. The possible roles of tendon stem cells in tendon healing and non‐healing are presented. Finally, the potential strategies for understanding the in vivo identity of tendon stem cells are discussed.  相似文献   

14.
Cytokine responses to microbes are triggered by pattern recognition receptors, such as Toll-like receptors (TLRs), which sense pathogen-associated molecular patterns. Cell wall-associated triacylated lipoproteins in Staphylococcus aureus are known to be native TLR2 ligands that mediate host inflammatory responses against S. aureus. However, the mechanism by which these lipidated lipoproteins, which are buried under the thick S. aureus cell wall, work to stimulate TLR2 remains unclear. Heat-killed wild type S. aureus cells activated human monocytic THP-1 cells to produce proinflammatory cytokines, including interleukin (IL)-8, whereas the lipoprotein lipidation-deficient lgt mutant induced less than an eighth of the amount of IL-8 induced by the wild type. IL-8 induction in response to heat-killed S. aureus cells in THP-1 cells was not inhibited by a blocking antibody against cell surface TLR2, suggesting that intracellular TLR2 might be involved in the induction of IL-8 by S. aureus lipoprotein. The relationship between phagocytosis and IL-8 production in THP-1 cells was analyzed on a single-cell level by flow cytometry using fluorescein-labeled S. aureus cells and phycoerythrin-labeled anti-IL-8 antibody. Production of intracellular IL-8 was correlated with phagocytosis of S. aureus cells in THP-1 cells and in human peripheral blood mononuclear cells. Opsonization of S. aureus cells enhanced both the phagocytosis of S. aureus cells and the production of intracellular IL-8 in THP-1 cells. These results suggest that lipidated lipoproteins on S. aureus cells stimulate human monocytes after phagocytosis.  相似文献   

15.
Adrenocorticotrophin secreting cells are identified in the hypophysis of the brown spiny mouseMus platythrix by conventional methods of light microscopy. Quantitative data showed that certain smaller acidophilic cells in thepars distalis, under conditions provoking their hypersecretion such as unilateral adrenalectomy and metopirone treatment, increase in number and size from the pre-existing corticotrophs. There is no evidence for the transmigration of these cells from the chromophobes, basophils or any other cell type. Thepars intermedia revealed two types of cells of which the type II cells are histochemically identical to adrenocorticotrophin secreting cells of thepars distalis  相似文献   

16.
A new species of Dudresnaya is described from Puerto Rico and Georgia. Gametophytes have cylindrical axes, exserted apical cells, rectangular to hexagonal crystals in the axial cells, ellipsoidal outer assimilatory cells, spermatangial mother cells which are terminal or subterminal cells of the subdichotomously branched outer assimilatory branches and auxiliary cells which are indistinguishable in appearance from adjacent, large, deeply staining cells of the auxiliary cell branch. Tetrasporophytes are unknown.  相似文献   

17.
Neuroendocrine cells in the lungs of three species of anurans, Bombina variegata, Bufo bufo and Bu. viridis, occur both as single cells and in the form of neuroepithelial bodies. Neuroendocrine cells are covered by ciliated cells or pneumocytes, which separate them from the lumen of the lung. Neuroepithelial bodies are dispersed in the apical part of the main septa of lungs of Bo. variegata and Bu. bufo or are situated on special protrusions of septa in the lungs of Bu. viridis. Neuroepithelial bodies are innervated by intraepithelial nerve endings of afferent and efferent types.  相似文献   

18.
Analysis of early neurogenesis in the spider Cupiennius salei (Chelicerata, Aranea, Ctenidae) has shown that the cells of the central nervous system are recruited from clusters of cells that invaginate from the neuroectoderm. This is in contrast to Drosophila, where only single cells delaminate and become neuroblasts, the stem cells of the nervous system. In order to compare the processes further, we have cloned homologues of the pan-neural Drosophila genes prospero and snail from the spider and have analysed their RNA and protein expression pattern. We find that snail expression is transient and only a subset of neural cells expresses Snail protein at any given time, making it difficult to assess whether it is indeed a pan-neural gene in the spider. Prospero protein expression, on the other hand, is seen in all invaginating cells and continues throughout differentiation of the neurons. In contrast to Drosophila, asymmetric localization cannot be detected, even in cells that still divide. Our results provide no evidence for neuroblasts or stem cells in the spider, although there are a limited number of mitoses in the cells that are derived from the invaginating clusters. These aspects of spider neurogenesis are more similar to the neurogenesis process known from vertebrates.Edited by P. Simpson  相似文献   

19.
An attempt was made to find evidence that morphologically distinct terminal cells of filamentous cyanobacterium Aphanizomenon gracile strain CCALA 8 are capable of dividing and forming trichomes. Based on our current knowledge, the division of morphologically diversified terminal cells is possible in nostocalean cyanobacteria. However, this process has been observed only in a few species. Terminal cells of A. gracile differ morphologically from other vegetative cells of a trichome, as they are not hyaline and can sometimes be found as solitary cells in cultures. Hence, it was reasonable for us to suspect that these cells are capable of dividing and forming trichomes. We observed terminal cells under a light and transmission electron microscope. Microscopic observations revealed that the septum formed in both solitary terminal cells and in terminal cells attached to trichomes. Our study is the first to demonstrate division and renewal of trichomes in terminal cells of A. gracile. Previously, such mode of reproduction was described only for another nostocalean cyanobacterium Raphidiopsis mediterranea. Moreover, our findings further emphasize the variability among members that belong to the genus Aphanizomenon , in which a type species (A. flos‐aquae) has hyaline cells incapable of dividing and renewing trichomes, while A. gracile can additionally propagate by solitary terminal cells division. This additional feature distinguishing A. gracile from typical species of Aphanizomenon, such as A. flos‐aquae, might be valuable for resolving taxonomic position of the species considering ambiguous genetic relationship between A. gracile and A. flos‐aquae.  相似文献   

20.
The current methods of production of conditionally immortal cells in vivo and in vitro have been considered, including the method based on transgenesis of animals. Examples are given for utilization of conditionally immortal cells obtained in vivo from tissues of transgenic mice and rats carrying the gene of mutant T-antigen tsA58 SV40. The recent studies were analyzed, which concern the investigation and utilization of embryonic and regional stem cells, as well as immortal cells obtained through transfection of the recombinant construct of telomerase gene into human cells. The main problems of cell biotechnology are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号