首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background and Aims

Heterostylous plants have been characterized by the presence of two or three discrete morphs that differ in their sex organ position within populations. This polymorphism is widely distributed among the angiosperms, but detailed studies are limited to few taxonomic groups. Although a small representation, evolutionary meaningful variations of the heterostylous syndrome have been reported when precise measurements of the sexual whorls were taken. A thorough exploration of groups where heterostyly has been reported should offer new opportunities to further testing the evolutionary hypotheses explaining heterostyly. Here, the traits defining heterostyly were explored in half of the species in Nivenia, the only genus of Iridiaceae where heterostyly has been reported.

Methods

Detailed morphometric analysis of the flower sexual whorls and some traits considered as ancillary are supplied to determine for each population (a) the kind of stylar polymorphism, (b) the morph ratio and (c) the degree of reciprocity between sexual whorls. Also the rates of assortative (within morph) versus disassortative (between morphs) pollen transfer were estimated by analysing pollen loads on stigmas. The association between floral phenotypic integration and the reciprocity between sexual whorls was estimated; both characteristics have been quoted as dependent on the accuracy of the fit between pollinators and flowers and therefore related to the efficiency of pollen transfer.

Key Results

Different types of polymorphism, differing in their degree of reciprocity, were found in Nivenia. Effective disassortative mating appears to be common, since (a) all dimorphic populations show equal morph-ratios (isoplethy), and (b) the pollen placed on the stigmas of each morph is likely to be coming from the other (complementary) morph. The most reciprocal populations of the heterostylous species have also the highest values of phenotypical integration.

Conclusions

Stigma height dimorphism, as opposed to distyly, is proven for the first time in Nivenia. The presence of different types of polymorphism within the genus is consistent with hypotheses of the evolution of heterostyly. The role of the pollinators as the leading force of the transition seems to be apparent, since floral integration is related to reciprocity.  相似文献   

2.
Floral polymorphisms provide suitable model systems to test hypotheses concerning the evolution of outbreeding in plants. Although heterostyly has evolved in more than 28 angiosperm families, the evolutionary pathways involving related floral conditions have not yet been fully resolved. In this study, the reconstruction of ancestral states of style polymorphism, with both parsimony and maximum likelihood methods, was carried out for Boraginaceae species in the tribe Lithospermeae, particularly in the genus Lithodora sensu lato, where species present a wide variety of stylar conditions. Detailed floral morphometric analysis confirm different types of style polymorphism within Lithodora. They also reveal a novel style polymorphism (relaxed style dimorphism) in which anther height is variable within a flower (each anther being at a different height), which contrasts to regular distyly (constant anther height within flowers). Style monomorphism is likely to be the ancestral condition in Lithospermeae where the evolution of distyly has occurred several times. Style dimorphism is probably ancestral to distyly, as predicted by certain evolutionary models proposed for heterostyly. However, a reversion from distyly to style dimorphism also appears to occur in this tribe. This is the first documented occurrence of such a transition. This secondary style dimorphism is of the relaxed type and demonstrates the labile nature of floral polymorphisms, which are not necessarily a transition towards heterostyly. We discuss the selective forces involved in the evolution, maintainance and loss of style polymorphisms.  相似文献   

3.
The reciprocal position of sexual organs in complementary floral morphs is central to our understanding of heterostyly. Reciprocity indices are used to quantify the spatial match between complementary sex organs, but previous indices fail to appropriately account for intra-population variation in sex organ positions. In this study, we examine how an increase in intra-population variation in sex organ heights affects reciprocity and consequently reproductive success. We formulated a reciprocity index that incorporates this variation and asked if estimates of reciprocity can predict reproductive success in naturally occurring heterostylous populations. We developed a reciprocity index that assumed pollen transfer success equalled one for a perfectly matched stigma–anther pair, and decreased to zero with increasing mismatch. We examined the relationship between intra-population variation in organ position and reciprocity, compared previously proposed indices using simulated populations and empirical data from natural populations, and tested the ability of the indices to predict reproductive success. We observed that when differences between mean complementary sex-organ heights are small, increasing intra-population variation in heights resulted in a decrease in reciprocity. However, when this difference is larger, reciprocity increased, reached a peak, and then decreased with increasing variation. Previous indices failed to capture this behavior. Seed set was positively related to reciprocity for our index. These results challenge the current understanding that increasing variation in sex-organ heights will always decrease reciprocity in heterostylous populations. This may help explain why heterostylous systems exhibit and tolerate high amounts of intra-population variation in sex organ heights.  相似文献   

4.
Heterostyly is a stylar polymorphism that has been shaped by the evolution of floral characters adapted for efficient pollen transfer. Different types of stylar polymorphism are described in which the discrete characterization of the exact polymorphic type (e.g., distyly vs. stigma-height dimorphism) requires detailed floral measurements (e.g., sex-organ reciprocity). In clonal and aquatic Nymphoides montana, although the presence of two floral morphs that contain styles of two lengths has been previously reported, no studies have quantitatively estimated the level of reciprocity and/or described the stylar condition. Morphological variations and incompatibility relationships were explored between the two morphs in three southeastern Australian populations. In this study, one population is characterized as stigma-height dimorphism (i.e., two morphs with discrete variation in stigma height but little variation in anther height), whereas the other two populations are typical distylous (i.e., two morphs for reciprocal stigma and anther height). Nymphoides montana is dimorphic in a wide range of ancillary characters, including corolla size, stigma size, shape and papillae morphology, and pollen size, number and exine sculpture. Following glasshouse pollinations, full incompatibility systems were observed in the distylous populations, whereas the stigma-height dimorphic population showed between-morph variation in the extent of incompatibility. Despite the variation in sex-organ reciprocity and incompatibility, other lines of evidence appear to assure the maintenance of the stylar polymorphism in the N. montana study populations. All populations are nearly isoplethic (i.e., both morphs in equal frequencies), which is indicative of balanced polymorphisms that appear to be maintained by legitimate pollen transfer between the morphs.  相似文献   

5.
According to Darwin, the reciprocal position of sexual whorls in heterostylous plants enhances disassortative pollen transfer between different floral morphs. It is believed that greater reciprocity between morphs will promote more efficient transfer of pollen. Additionally, efficient pollination will act as a selective force in achieving greater reciprocity between floral morphs. In this study we test whether variation in reciprocity of sexual organs between morphs is related to the efficiency of pollinators in transferring pollen between them. To do this, we first describe the pollinator??s array in several populations of species of the genus formerly known as Lithodora, which have different types of stylar polymorphism and degrees of reciprocity, and determine their abundance, plant visitation rate, number of flowers visited per plant and handling time in the population. We estimate the efficiency of the pollinator arrays by use of an approximation based on qualitative (location of pollen loads on different areas of insect bodies) and quantitative (plant visitation rate) measurements. Our results show a correlation between the degree of reciprocity and the efficiency of pollinators associated with the populations. These observations suggest that pollinators are a possible selective force driving the evolution of heterostyly.  相似文献   

6.
Background and Aims Distyly is a floral polymorphism characterized by the presence of two discrete morphs with reciprocal positioning of anthers and stigmas in flowers on different plants within the same population. Although reciprocal herkogamy and associated floral traits are generally thought to be discrete and strict polymorphisms, little is known about variation in floral traits related to the distylous syndrome within and among populations of a single species. In this study, variation in floral morphology and reciprocal positioning of the sexual organs in the distylous Primula veris (cowslip) is quantified.Methods Data were collected in ten populations occurring in two contrasting habitat types (grasslands and forests), and for each population the average level of reciprocity was assessed, the strength of the self-incompatibility system was determined, and seed production under natural conditions was quantified.Results In grassland populations, flowers showed clear distyly with low and symmetric reciprocity indices at both the lower and upper level. In forests, P. veris produced larger flowers that showed strong deviations in stigma–anther separation, especially in the L-morph. This deviation was mainly driven by variation in stigma height, resulting in high and asymmetric reciprocity indices and the occurrence of several short-styled homostylous plants. Self-incompatibility was, however, strict in both habitats, and morph ratios did not differ significantly from isoplethy. The observed shift in reciprocity in forest populations was associated with a significant reduction in seed production in the L-morph.Conclusions The results indicate that populations of P. veris show habitat-specific variation in flower morphology. Deviations from perfect reciprocal positioning of stigmas and anthers also translate into reduced seed production, suggesting that small changes in sexual organ reciprocity can have far-reaching ecological and evolutionary implications.  相似文献   

7.

Background and Aims

Although evolution of sexual polymorphism has been traditionally analysed using discrete characters, most of these polymorphisms are continuous. This is the case of heterostyly. Heterostyly is a floral polymorphism successfully used as a model to study the evolution of the sexual systems in plants. It involves the reciprocal positioning of anthers and stigmas in flowers of different plants within the same population. Studies of the functioning of heterostyly require the quantification of the degree of reciprocity between morphs of heterostylous species. Some reciprocity indices have been proposed previously, but they show significant limitations that need to be dealt with. This paper analyses these existing indices, and proposes a new index that aims to avoid their main problems (e.g. takes into account population variability and offers a single value per population).

Methods

The new index is based on the comparison of the position of every single sexual organ in the population with each and every organ of the opposite sex. To carry out all the calculations, a macro was programmed with MS®Visual Basic in MS® Excel. The behaviour of the index is tested using hypothetical data to simulate different situations of dimorphic populations; the index is also tested with some actual populations of different species of the genus Lithodora.

Results and Conclusions

The index of reciprocity proposed here is a sound alternative to previous indices: it compares stigma–stamen height gaps for all potential crosses in the population, it comprises stigma–stamen distance as well as dispersion, it is not skewed by the more frequent sex, and it can be meaningfully compared between populations and species. It has produced solid results for both hypothetical and natural populations.Key words: Distyly, floral polymorphism, heterostyly, reciprocity index, stylar dimorphism, Lithodora  相似文献   

8.
Knowledge of developmental pathways for achieving differences in style and anther heights, in concert with those of ancillary features accompanied with data in regard to biomass investment to male and female function, provide an excellent opportunity for examining the developmental correlations between primary and ancillary floral traits so as to understand the evolution of heterostyly. The ontogenetic relationships between bud length and anther height and between bud length and style height, and between bud length versus bud width, anther length, and number of pollen grains per anther for long-styled (LS) and short-styled (SS) morphs of P. PADIFOLIA are described. We also described the ontogenetic biomass allocation to male and female function and to corolla with elongation of buds harvested at regular intervals. We observed an early termination of stylar growth in SS buds, whereas LS styles steadily increased in size. Morph differences for relative growth rates were significant for anther height, anther length, and pollen number but not for bud width. Bud width and anther length had a negative allometric relationship with bud elongation. The relationship between bud length and number of pollen grains per anther was positive and morph differences in pollen number were detected at later stages of development. An increase in corolla mass involved a disproportionate allocation to the female function in SS flowers and male allocation was similar for the two morphs over the course of development. Our results are consistent with theoretical and empirical data for distylous species with an approach herkogamous ancestor, and with the more general hypothesis of ontogenetic lability of heterostyly, in which morph differences in style and anther heights are achieved in various ways. Variations observed in sexual investment between floral morphs suggest differences in sex expression during flower development.  相似文献   

9.

Background and Aims

Heterostyly is a floral polymorphism that has fascinated evolutionary biologists since Darwin''s seminal studies on primroses. The main morphological characteristic of heterostyly is the reciprocal placement of anthers and stigmas in two distinct (distyly) floral morphs. Variation in the degree of intermorph sexual reciprocity is relatively common and known to affect patterns of pollen transfer within species. However, the partitioning of sexual organ reciprocity within and between closely related species remains unknown. This study aimed at testing whether intermorph sexual reciprocity differs within vs. between primrose species that hybridize in nature and whether the positions of sexual organs are correlated with other floral traits.

Methods

Six floral traits were measured in both floral morphs of 15 allopatric populations of Primula elatior, P. veris and P. vulgaris, and anther–stigma reciprocity was estimated within and between species. A combination of univariate and multivariate approaches was used to test whether positions of reproductive organs were less reciprocal between than within species, to assess correlations between sexual organ positions and other corolla traits, and to quantify differences between morphs and species.

Key Results

The three species were morphologically well differentiated in most floral traits, except that P. veris and P. vulgaris did not differ significantly in sexual organ positions. Overall, lower interspecific than intraspecific sexual organ reciprocity was detected. This decrease was marked between P. elatior and P. vulgaris, intermediate and variable between P. elatior and P. veris, but negligible between P. veris and P. vulgaris.

Conclusions

Differences in anther and stigma heights between the analysed primrose species were of the same magnitude or larger than intraspecific differences that altered pollen flow within other heterostylous systems. Therefore, it is possible to suggest that considerable reductions of sexual organ reciprocity between species may lower interspecific pollen flow, with potential effects on reproductive isolation.  相似文献   

10.
Plants with hermaphrodite flowers risk conflict between male and female sexual function due to close proximity of sexual organs. Heterostyly, a genetic floral polymorphism characterized mainly by reciprocal herkogamy, may reduce this sexual conflict by increasing the precision of pollen transfer between morphs. This sexual organ reciprocity is often associated with various ancillary characters and a heteromorphic incompatibility system. Here we describe the morphometrics associated with heterostyly and ancillary characters in Plumbago auriculata. Using controlled pollination experiments, we show that this species has a heteromorphic incompatibility system. We also document the fauna of long-proboscid fly and butterfly pollinators in a P. auriculata population in KwaZulu-Natal, South Africa.  相似文献   

11.
Here, we studied the floral morphology and pollination of the distylous plant Linum suffruticosum (Linaceae) in southern Spain.We observed a previously unreported form of distyly that involved twisting and bending of styles and stamens during floral development to achieve three-dimensional reciprocity of anthers and stigmas in the long-styled (pin) and short-styled (thrum) morphs. This developmental pattern causes pin pollen to be placed on the underside of pollinating Usia flies (Bombyliidae), and thrum pollen to be placed on the top of the thorax and abdomen. The pin stigmas contact the flies on the dorsum, apparently picking up predominantly thrum pollen, and the thrum stigmas contact the flies on the ventral surface, apparently picking up predominantly pin pollen.This form of heterostyly would appear on morphological grounds to be far more efficient in dispersing pollen between compatible morphs than the typical pin-thrum system. If so, this plant fits Darwin's prediction of efficient pollen flow between heterostylous morphs more closely than anything Darwin himself reported.Molecular phylogenetic analyses indicate that this form of heterostyly evolved in a lineage that already had typical heterostyly. The analyses also indicate that there have been several independent origins of heterostyly in Linum and at least one reversal to stylar monomorphism.  相似文献   

12.
We investigated the origin of stylar polymorphisms in Narcissus, which possesses a remarkable range of stylar conditions and diverse types of floral morphology and pollination biology. Reconstruction of evolutionary change was complicated by incomplete resolution of trees inferred from two rapidly evolving chloroplast regions, but we bracketed reconstructions expected on the fully resolved plastid-based tree by considering all possible resolutions of polytomies on the shortest trees. Stigma-height dimorphism likely arose on several occasions in Narcissus and persisted across multiple speciation events. As proposed in published models, this rare type of stylar polymorphism is ancestral to distyly. While there is no evidence in Narcissus that dimorphism preceded tristyly, a rapid transition between them may explain the lack of a phylogenetic footprint for this evolutionary sequence. The single instances of distyly and tristyly in Narcissus albimarginatus and N. triandrus, respectively, are clearly not homologous, an evolutionary convergence unique to Amaryllidaceae. Floral morphology was likely an important trigger for the evolution of stylar polymorphisms: Concentrated-changes tests indicate that a long, narrow floral tube may have been associated with the emergence of stigma-height dimorphism and that this type of tube, in combination with a deep corona, likely promoted, or at least was associated with, the parallel origins of heterostyly.  相似文献   

13.

Background and Aims

Heterostyly is a floral polymorphism characterized by the reciprocal position of stamens and stigmas in different flower morphs in a population. This reciprocal herkogamy is usually associated with an incompatibility system that prevents selfing and intra-morph fertilization, termed a heteromorphic incompatibility system. In different evolutionary models explaining heterostyly, it has been alternately argued that heteromorphic incompatibility either preceded or followed the evolution of reciprocal herkogamy. In some models, reciprocal herkogamy and incompatibility have been hypothesized to be linked together during the evolution of the heterostylous system.

Methods

We examine the incompatibility systems in species with different stylar polymorphisms from the genera Lithodora and Glandora (Boraginaceae). We then test whether evolution towards reciprocal herkogamy is associated with the acquisition of incompatibility. To this end, a phylogeny of these genera and related species is reconstructed and the morphological and reproductive changes that occurred during the course of evolution are assessed.

Key Results

Both self-compatibility and self-incompatibility are found within the studied genera, along with different degrees of intra-morph compatibility. We report for the first time extensive variability among members of the genus Glandora and related species in terms of the presence or absence of intraspecies polymorphism and heteromorphic incompatibility. Overall, our results do not support a tight link between floral polymorphism and incompatibility systems.

Conclusions

The independent evolution of stylar polymorphism and incompatibility appears to have occurred in this group of plants. This refutes the canonical view that there is strong linkage between these reproductive traits.  相似文献   

14.
Distyly has been interpreted as a mechanism that favors cross-fertilization. In this research we describe floral attributes and ancillary floral polymorphisms typically associated to heterostylous plants in Palicourea demissa (Rubiaceae), a distylous shrub of the Venezuelan Andes cloud forests. A hand-pollination experiment was done to evaluate self- and intramorph incompatibility and female reproductive output in both floral morphs. The studied population was morphologically distylous but morph differences in most ancillary floral polymorphisms and reciprocity of the sexual organ heights were found. The floral morphs were self-incompatible and did not differ in fruit set under controlled cross-pollination conditions, but at the population level they exhibited imperfect reciprocal herkogamy. Fruits and seeds of short-styled plants were larger than those of long-styled plants and fruit set was higher in short-styled plants under natural conditions, suggesting a higher reproductive potential among short-styled plants. Given the 1:1 morph ratio within the studied population, further evidence is needed to determine the influence of floral visitors and seed dispersers in the expression of heterostyly in P. demissa under natural conditions.  相似文献   

15.
Reciprocal herkogamy (heterostyly) is an example of extreme relevance of accuracy of the location of the sexual organs within some floral systems. It involves the reciprocal positioning of anthers and stigmas in flowers of different plants within the same population, and the accuracy of this positioning is important to promote out‐cross pollination, prevent self‐interference, or both. Hence, several indices have been proposed to quantify reciprocity, most of them for populations with two different morphs (distylous). Here, we propose an extension of our index of reciprocity for distylous populations to be applied also to populations with three morphs (tristylous), allowing effective comparisons of reciprocity between tristylous, but also distylous populations. As for the distylous version, the index is based on comparison of the position of every single sexual organ in the sample with each and every organ of the opposite sex, for each of the three possible organ levels. Due to the massive amount of calculations required, a macro was developed that is available as Supplementary Information and at the website of the authors. The index and macro were tested on several hypothetical tristylous and distylous populations with predetermined mean and dispersion of sexual organs at each level, as well as on several actual tristylous and distylous populations. The index proposed is a solid tool for the study of reciprocity in distylous and tristylous populations. Comparisons between distylous and tristylous populations are easily performed and can be readily interpreted. The applicability of the index is facilitated through the software provided.  相似文献   

16.
Distyly typically involves reciprocal polymorphism in stamen and style lengths and a set of associated polymorphisms of pollen and stigma characters. This flower polymorphism has been regarded as a strategy to reduce the likelihood of self- and intramorph pollination and to promote legitimate intermorph pollination. Although most distylous plants are characterized by a physiological self- and intramorph-incompatibility system, previous work on Pulmonaria affinis and other distylous Boraginaceae species have shown that self-incompatibility was not strict. In this study, we examined pollen deposition rates and the functioning of the distylous breeding system in Pulmonaria officinalis. Flowers exhibited reciprocal herkogamy and several other ancillary features of heterostyly. Controlled pollinations clearly showed weak self-incompatibility, with the LS-morph showing higher rates of seed set following self-, intramorph- and intermorph-pollinations than the SS-individuals. On the other hand, SS-pollen showed higher germination rates and pollen tube growth than that of LS-pollen. Under natural conditions, both the proficiency of legitimate pollen transfer and the proportion of deposited pollen were asymmetrical. Although SS-pollen grains showed a higher proficiency for legitimate transfer than that of LS-pollen on a per pollen basis, the ratio of legitimate to illegitimate deposited pollen on stigmas of SS-flowers markedly exceeded that of LS-flowers. The latter was explained by the higher pollen production rates of LS-individuals compared to SS-individuals. High levels of illegitimate pollen deposition on LS-stigmas, on the other hand, were attributed to the limited proboscis length of the principal pollinators and the occurrence of floral hairs at the corolla entrance of LS-flowers. This study thus indicates asymmetrical pollen transport patterns and morph-specific differences in the strength of the incompatibility system; two aspects that may affect female reproductive success and morph ratio variation under pollen limited conditions.  相似文献   

17.
Most heterostylous plants possess a reciprocal arrangement of stigmas and anthers (reciprocal herkogamy), heteromorphic self‐incompatibility, and ancillary polymorphisms of pollen and stigmas. The topographical complementarity hypothesis proposes that ancillary polymorphisms function in the rejection of incompatible pollen thus promoting disassortative pollination. Here, we test this hypothesis by investigating patterns of pollen transfer and capture in populations of dimorphic Armeria maritima and A. pubigera and distylous Limonium vulgare (Plumbaginaceae), and by studying pollen adherence and germination patterns in A. maritima following controlled hand‐pollinations. Armeria lacks reciprocal herkogamy allowing the evaluation of the extent to which ancillary polymorphisms affect the composition of pollen loads. We compared the amounts of compatible and incompatible pollen on stigmas in natural populations and calculated the proficiencies of pollen transfer for each mating type. We detected disassortative pollination in each species, and mating types did not differ in compatible pollen capture, although cob stigmas captured more incompatible pollen. Controlled hand‐pollinations revealed the failure of incompatible pollen to adhere and germinate on stigmas. Our results provided evidence that, while structural in nature, pollen‐stigma dimorphisms are tightly associated with heteromorphic incompatibility and likely function to promote disassortative pollination, especially in the absence of reciprocal herkogamy.  相似文献   

18.
Summary A factorial cross design was used to evaluate the influence of differences among pollen donors and recipients on variation in stylar attrition of pollen tubes in self-fertile plants of Petunia hybrida. Pollinations to flower buds were used to reduce the inhibitory ability of the style and these crosses were compared with flower pollinations to assess the degree of stylar influence on pollen fertilization ability. There was less pollen tube attrition after bud pollinations than after flower pollinations, indicating that styles of buds were less able to inhibit pollen tubes. The variance component for plants acting as pollen donors tended to be greater after flower pollinations than after bud pollinations. The lower variance in male success after bud pollinations indicates that differences among pollen donors after flower pollinations were due to stylar inhibition of pollen rather than differences in pollen vigor. Since the level of variation in pollen growth after pollination to flowers was greater among clones than among ramets within clones, the differences in pollen fertilization ability are probably genetically based.  相似文献   

19.
Although the spatial separation of sexual organs within a flower (herkogamy) has been interpreted as a mechanism that promotes efficient pollen transfer, there have been few attempts to relate variation in herkogamy to probabilities of pollen flow. Here, we used a heterostylous species with variation in reciprocal herkogamy to test this hypothesis. We measured legitimate and illegitimate pollen flow with fluorescent dyes in four selected populations of Oxalis alpina corresponding to the extremes of a previously reported evolutionary gradient from tristyly to distyly. After the breakdown of tristyly, the observed increment in reciprocal herkogamy between the long and short morphs was associated with a 30% increase in the proportion of dye received from compatible illegitimate pollinations. In all populations, the most likely effective pollen vectors were two Heterosarus bee species. Our results support the adaptive value of reciprocal herkogamy in promoting efficient pollen transfer in heterostylous species.  相似文献   

20.
The evolution of the flower is commonly thought to have spurred angiosperm diversification. Similarly, particular floral traits might have promoted diversification within specific angiosperm clades. We hypothesize that traits promoting the precise positional transfer of pollen between flowers might promote diversification. In particular, precise pollen transfer might produce partial reproductive isolation that facilitates adaptive divergence between parapatric populations differing in their reproductive-organ positions. We investigate this hypothesis with an individual-based model of pollen transfer dynamics associated with heterostyly, a floral syndrome that depends on precise pollen transfer. Our model shows that precise pollen transfer can cause sexual selection leading to divergence in reproductive-organ positions between populations served by different pollinators, pleiotropically causing an increase in reproductive isolation through a “magic trait” mechanism. Furthermore, this increased reproductive isolation facilitates adaptive divergence between the populations in an unlinked, ecologically selected trait. In a different pollination scenario, however, precise pollen transfer causes a decrease in adaptive divergence by promoting asymmetric gene flow. Our results highlight the idea that magic traits are not “magic” in isolation; in particular, the effect size of magic traits in speciation depends on the external environment, and also on other traits that modify the strength of the magic trait''s influence on non-random mating. Overall, we show that the evolutionary consequences of pollen transfer dynamics can depend strongly on the available pollinator fauna and on the morphological fit between flowers and pollinators. Furthermore, our results illustrate the potential importance of even weak reproductive isolating barriers in facilitating adaptive divergence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号