首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The obesity epidemic afflicts over one third of the United States population. With few therapies available to combat obesity, a greater understanding of the systemic causes of this and other metabolic disorders is needed to develop new, effective treatments. The mammalian intestinal microbiota contributes to metabolic processes in the host. This review summarizes the research demonstrating the interplay of diet, intestinal microbiota and host metabolism. We detail the effects of diet-induced modifications in microbial activity and resultant impact on (1) sensory perception of macronutrients and total energy intake; (2) nutrient absorption, transport and storage; (3) liver and biliary function; (4) immune-mediated signaling related to adipose inflammation; and (5) circadian rhythm. We also discuss therapeutic strategies aimed to modify host–microbe interactions, including prebiotics, probiotics and postbiotics, as well as fecal microbiota transplantation. Elucidating the role of gut microbes in shaping metabolic homeostasis or dysregulation provides greater insight into disease development and a promising avenue for improved treatment of metabolic dysfunction.  相似文献   

2.
Alzheimer’s disease (AD) is a most common neurodegenerative disorder, which associates with impaired cognition. Gut microbiota can modulate host brain function and behavior via microbiota-gut-brain axis, including cognitive behavior. Germ-free animals, antibiotics, probiotics intervention and diet can induce alterations of gut microbiota and gut physiology and also host cognitive behavior, increasing or decreasing risks of AD. The increased permeability of intestine and blood-brain barrier induced by gut microbiota disturbance will increase the incidence of neurodegeneration disorders. Gut microbial metabolites and their effects on host neurochemical changes may increase or decrease the risk of AD. Pathogenic microbes infection will also increase the risk of AD, and meanwhile, the onset of AD support the “hygiene hypothesis”. All the results suggest that AD may begin in the gut, and is closely related to the imbalance of gut microbiota. Modulation of gut microbiota through personalized diet or beneficial microbiota intervention will probably become a new treatment for AD.  相似文献   

3.
The human gut hosts a dense and diverse microbial community, spatially organized in multiple scales of structure. Here, we review how microbial organization differs between health and disease. We describe how changes in spatial organization may induce alterations in gut homeostasis, concluding with a future outlook to reveal causality.  相似文献   

4.
Immunostimulation in crustaceans: does it really protect against infection?   总被引:10,自引:0,他引:10  
There is a growing need to control, prevent or minimise the devastating effects of disease in crustacean culture without recourse to toxic chemicals or antibiotics. In keeping with approaches to disease control in fish and higher mammals, interest is developing in compounds that confer protection and/or enhance immune reactivity to likely pathogens in shellfish (sometimes, erroneously, referred to as as "shellfish vaccines"). The agents currently under scrutiny for crustaceans include glucans, lipopolysaccharides and killed bacterial cells. They are thought to act as "immuno-stimulants" because of their known effects on the crustacean immune system in vitro. A number of papers are now appearing in the literature claiming to demonstrate their positive impact on immunity and immunity and disease resistance. This review article considers the problem of disease and its control in crustacean farming, describing the types of capability in cultured species. Analysis of the validity of the results of many of the published studies raises questions about the value of these compounds for cost-effective control of infection in aquaculture, especially for long lasting protection in both adults and juveniles. This review further discusses the potential risks to the wellbeing of the stock animals from repeated use of these agents and makes the case for rigorous testing of putative stimulants, at the gene, protein and functional levels, as well as for the need to consider alternative strategies and approaches to disease control.  相似文献   

5.
6.
7.
Does the microbiota regulate immune responses outside the gut?   总被引:7,自引:0,他引:7  
Perturbations in the gastrointestinal (GI) microbiota composition that occur as a result of antibiotics and diet in "westernized" countries are strongly associated with allergies and asthma ("hygiene hypothesis"). The microbiota ("microflora") plays a crucial role in the development of mucosal tolerance, including the airways. Significant attention has been focused on the role of the microbiota in GI development, immune adaptation and initiation of GI inflammatory diseases. This review covers the post-developmental functions that the microbiota plays in regulating immunological tolerance to allergen exposure outside the GI tract and proposes the question: is the microbiota a major regulator of the immune system?  相似文献   

8.
9.
10.
11.
12.
Multiple recent investigations have highlighted the promise of helminth-based therapies for the treatment of inflammatory disorders of the intestinal tract of humans, including inflammatory bowel disease and coeliac disease. However, the mechanisms by which helminths regulate immune responses, leading to the amelioration of symptoms of chronic inflammation are unknown. Given the pivotal roles of the intestinal microbiota in the pathogenesis of these disorders, it has been hypothesized that helminth-induced modifications of the gut commensal flora may be responsible for the therapeutic properties of gastrointestinal parasites. In this article, we review recent progress in the elucidation of host–parasite–microbiota interactions in both animal models of chronic inflammation and humans, and provide a working hypothesis of the role of the gut microbiota in helminth-induced suppression of inflammation.  相似文献   

13.

Background

Visceral pain is a complex and heterogeneous disorder, which can range from the mild discomfort of indigestion to the agonizing pain of renal colic. Regulation of visceral pain involves the spinal cord as well as higher order brain structures. Recent findings have linked the microbiota to gastrointestinal disorders characterized by abdominal pain suggesting the ability of microbes to modulate visceral hypersensitivity and nociception to pain.

Main body

In this review we describe the neuroanatomical basis of visceral pain signaling and the existing evidence of its manipulation exerted by the gut microbiota. We included an updated overview of the potential therapeutic effects of dietary intervention, specifically probiotics and prebiotics, in alleviating hypersensitivity to visceral pain stimuli.

Conclusions

The gut microbiota dramatically impacts normal visceral pain sensation and affects the mechanisms mediating visceral nociception. Furthermore, manipulation of the gut microbiota using prebiotics and probiotics plays a potential role in the regulation of visceral pain disorders.
  相似文献   

14.
The Asian tiger mosquito Aedes albopictus is a major public health concern because of its invasive success and its ability to transmit pathogens. Given the low availability of treatments against mosquito-borne diseases, vector control remains the most suitable strategy. The methods used thus far are becoming less effective, but recent strategies have emerged from the study of mosquito-associated microorganisms. Although the role of the microbiota in insect biology does not require further proof, much remains to be deciphered in mosquitoes, especially the contribution of the microbiota to host nutrient metabolism. Mosquitoes feed on plant nectar, composed of mostly fructose. We used stable isotope probing to identify bacteria and fungi assimilating fructose within the gut of Ae. albopictus. Mosquitoes were fed a 13C-labelled fructose solution for 24 h. Differences in the active microbial community according to the sex of mosquitoes were highlighted. The bacterium Lelliottia and the fungi Cladosporium and Aspergillus dominated the active microbiota in males, whereas the bacterium Ampullimonas and the yeast Cyberlindnera were the most active in females. This study is the first to investigate trophic interactions between Ae. albopictus and its microbiota, thus underscoring the importance of the microbial component in nectar feeding in mosquitoes.  相似文献   

15.
16.
The microbiota of the human gut is gaining broad attention owing to its association with a wide range of diseases, ranging from metabolic disorders (e.g. obesity and type 2 diabetes) to autoimmune diseases (such as inflammatory bowel disease and type 1 diabetes), cancer and even neurodevelopmental disorders (e.g. autism). Having been increasingly used in biomedical research, mice have become the model of choice for most studies in this emerging field. Mouse models allow perturbations in gut microbiota to be studied in a controlled experimental setup, and thus help in assessing causality of the complex host-microbiota interactions and in developing mechanistic hypotheses. However, pitfalls should be considered when translating gut microbiome research results from mouse models to humans. In this Special Article, we discuss the intrinsic similarities and differences that exist between the two systems, and compare the human and murine core gut microbiota based on a meta-analysis of currently available datasets. Finally, we discuss the external factors that influence the capability of mouse models to recapitulate the gut microbiota shifts associated with human diseases, and investigate which alternative model systems exist for gut microbiota research.KEY WORDS: Gut microbiota, Humanized mouse models, Mouse core gut microbiota, Mouse models, Mouse pan-gut microbiota  相似文献   

17.
Farooqi S 《Cell metabolism》2006,4(4):260-262
In this issue of Cell Metabolism, Erondu et al., (2006) identify a selective neuropeptide Y5 receptor antagonist that, as predicted from rodent studies, results in weight loss when administered to overweight and obese human subjects. In a one-year randomized placebo-controlled clinical trial, the weight loss was modest; the results support the emerging concept that NPY acts via overlapping and redundant energy homeostasis pathways.  相似文献   

18.
Coronavirus Disease (COVID-19) has infected people in 210 nations and has been declared a pandemic on March 12, 2020 by the World Health Organization (WHO). In the absence of effective treatment and/or vaccines for COVID-19, natural products of known therapeutic and antiviral activity could offer an inexpensive, effective option for managing the disease. Benefits of products of honey bees such as honey, propolis, and bee venom, against various types of diseases have been observed. Honey bees products are well known for their nutritional and medicinal values, they have been employed for ages for various therapeutic purposes. In this review, promising effects of various bee products against the emerging pandemic COVID-19 are discussed. Products of honey bees that contain mixtures of potentially active chemicals, possess unique properties that might help to protect, fight, and alleviate symptoms of COVID-19 infection.  相似文献   

19.
20.
The gut microbiota can facilitate viral infection and transmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号