共查询到20条相似文献,搜索用时 15 毫秒
1.
Membrane proteins control the traffic across cell membranes and thereby play an essential role in cell function from transport of various solutes to immune response via molecular recognition. Because it is very difficult to determine the structures of membrane proteins experimentally, computational methods have been increasingly used to study their structure and function. Here we focus on two classes of membrane proteins—ion channels and transporters—which are responsible for the generation of action potentials in nerves, muscles, and other excitable cells. We describe how computational methods have been used to construct models for these proteins and to study the transport mechanism. The main computational tool is the molecular dynamics (MD) simulation, which can be used for everything from refinement of protein structures to free energy calculations of transport processes. We illustrate with specific examples from gramicidin and potassium channels and aspartate transporters how the function of these membrane proteins can be investigated using MD simulations. 相似文献
2.
Francesco Pietra 《化学与生物多样性》2012,9(2):331-351
Central inhibition of the acid‐sensing hASIC1a channel, acting upstream of the opiate system, might serve to treat any type of pain, avoiding the unwanted addiction problems of the opioid drugs. To this end, inhibition of hASIC1a channel by PcTx1, a peptide from the Trinidad chevron tarantula, is under development. New inhibitors of the hASIC1a channel are also being sought, in the hope of further modulating the activity, from which antiplasmodial amidine and guanidine phenyl drugs have emerged as promising candidates. However, how such current inhibition takes place remains obscure from the molecular point of view, hindering any further progress in developing drugs. Therefore, the nature of the binding sites, and how they are reached by the amidine‐guanidine drugs, was investigated here via automated docking and molecular dynamics with hASIC1a homology models. This study has revealed that this ion channel is rich in binding sites, and that flexible drugs, such as nafamostat, may penetrate it in a snake‐like elongated conformation. Then, crawling like a snake through temporary holes in the protein, nafamostat either simply flips, or changes to a high‐energy folded conformation to become adapted to the shape of the binding site. 相似文献
3.
Francesco Pietra 《化学与生物多样性》2015,12(3):350-357
This work was devised to unravel, along replica‐exchange molecular‐dynamics (REMD) simulations, the conformation in solution of the TM1 and TM2 transmembrane domains of the homotrimeric cASIC1a ion channel. This includes the head of TM1 and tail of TM2 that had previously defied X‐ray diffraction analysis in the crystal. The structure of the open‐channel complex of cASIC1a with psalmotoxin 1 (PcTx1) was chosen here as a basis, although, to make the simulations affordable, the procedure was limited to the missing portions, including a few adjacent α‐helical turns. The latter were held fixed during the simulations. Reassembling the whole subunit, by superimposition of the fixed portions, resulted in diving of both TM1 and TM2 as continuous α‐helices into the cytoplasm. At completion of this work, it appeared, from similar X‐ray diffraction studies, that TM2 for both the complex of cASIC1a with the coral snake MitTx toxin, and the isolated desensitized ion channel, is discontinuous, with the triad G443‐A444‐S445 taking an extended, belt‐like conformation. In this way, a filter ring against hydrated ions is formed by G443 in the trimer. Our REMD examination of this complex revealed a strong resistance by G443, and only that residue, to take dihedral‐angle values compatible with an α‐helical conformation. This suggests that the flexibility of glycine alone does not explain formation of the extended, belt‐like conformation of the triad G443‐A444‐S445. This also requires cooperation in the trimer. 相似文献
4.
Bacterial homologues of mammalian potassium channels provide structures of two states of a gated K channel. Thus, the crystal structure of KcsA represents a closed state whilst that of MthK represents an open state. Using homology modelling and molecular dynamics simulations we have built a model of the transmembrane domain of KcsA in an open state and have compared its conformational stability with that of the same domain of KcsA in a closed state. Approximate Born energy calculations of monovalent cations within the two KcsA channel states suggest that the intracellular hydrophobic gate in the closed state provides a barrier of height ~5 kT to ion permeation, whilst in the open state the barrier is absent. Simulations (10 ns duration) in an octane slab (a simple membrane mimetic) suggest that closed- and open-state models are of comparable conformational stability, both exhibiting conformational drifts of ~3.3 Å C RMSD relative to the respective starting models. Substantial conformational fluctuations are observed in the intracellular gate region during both simulations (closed state and open state). In the simulation of open-state KcsA, rapid (<5 ns) exit of all three K+ ions occurs through the intracellular mouth of the channel. Helix kink and swivel motion is observed at the molecular hinge formed by residue G99 of the M2 helix. This motion is more substantial for the open- than for the closed-state model of the channel. 相似文献
5.
The force fields commonly used in molecular dynamics simulations of proteins are optimized under bulk conditions. Whether the same force fields can be used in simulations of membrane proteins is not well established, although they are increasingly being used for such purposes. Here we consider ion permeation in the gramicidin A channel as a test of the AMBER force field in a membrane environment. The potentials of mean force for potassium ions are calculated along the channel axis and compared with the one deduced from the experimental conductance data. The calculated result indicates a rather large central barrier similar to those obtained from other force fields, which are incompatible with the conductance data. We suggest that lack of polarizability is the most likely cause of this problem, and, therefore, urge development of polarizable force fields for simulations of membrane proteins. 相似文献
6.
Chuichay P Vladimirov E Siriwong K Hannongbua S Rösch N 《Journal of molecular modeling》2006,12(6):885-896
We have carried out molecular-dynamics (MD) simulations on dimers of the positively charged laser dyes pyronine 6G (P6G) and rhodamine 6G (R6G) in aqueous solution, generating trajectories of 2.5 ns for various computational protocols. We discuss how the choice of atomic partial charges and the length of the trajectories affect the predicted structures of the dimers and compare our results to those of earlier MD-simulations, which were restricted to only 0.7 ns. Our results confirm that monomers of P6G easily undergo relative rotations within the dimer, but we found new conformations of the R6G dimer at longer simulation times. In addition, we analyzed in detail the energy change during the formation of dimers. With suitable corrections, the electrostatic energy from an Ewald treatment agrees with the results from an approach relying on a residue-based cutoff. For P6G, we show that the strong solvent-mediated electrostatic attraction between the monomers is counteracted by an almost equally large solvent-induced entropy contribution to yield a small driving force to dimer formation, in very good agreement with the free-energy change from a thermodynamic-integration procedure. Thus, earlier rationalizations of the dimer formation, based only on energy arguments, yield a qualitatively wrong picture.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users. 相似文献
7.
KcsA potassium channel belongs to a wide family of allosteric proteins that switch between closed and open states conformations
in response to a stimulus, and act as a regulator of cation activity in living cells. The gating mechanism and cation selectivity
of such channels have been extensively studied in the literature, with a revival emphasis these latter years, due to the publication
of the crystallized structure of KcsA. Despite the increasing number of research and review papers on these topics, quantitative
interpretation of these processes at the atomic scale is far from achieved. On the basis of available experimental and theoretical
data, and by including our recent results, we review the progresses in this field of activity and discuss the weaknesses that
should be corrected. In this spirit, we partition the channel into the filter, cavity, extra and intracellular media, in order
to analyze separately the specificity of each region. Special emphasis is brought to the study of an open state for the channel
and to the different properties generated by the opening. The influence of water as a structural and dynamical component of
the channel properties in closed and open states, as well as in the sequential motions of the cations, is analyzed using molecular
dynamics simulations and ab initio calculations. The polarization and charge transfer effects on the ions’ dynamics and kinetics are discussed in terms of partial
charge models. 相似文献
8.
Francesco Pietra 《化学与生物多样性》2012,9(6):1019-1032
Extensive random‐acceleration molecular‐dynamics (RAMD) simulations of the egress of dioxygen (O2) from a model of rabbit 12/15‐lipoxygenase? arachidonic acid complex disclosed several exit portals in addition to those previously described from implicit ligand sampling calculations and limited MD simulations. 相似文献
9.
The similarity in structure of potassium (K(+)) channels from different families has been revealed by only recently available crystallographic 3D structural data. The hydropathic analysis presented in this work illuminates whether homologous residues perform the same functions in channels that use different gating mechanisms. We calculated and compared the hydropathic profiles of two K(+) channels, KcsA and Kv1.2 (the latter a member of the Shaker family), at their pore-forming domain. Quantitative information describing important interactions stabilizing the protein beyond obvious secondary-structure elements was extracted from the analysis and applied as a template for subsequent molecular-dynamics (MD) analyses. For example, two key groups of interactions, defining the turns that connect the transmembrane helices and responsible for the orientation of the pore helix, were identified. Our results also indicate that Asp(80) and Asp(379) play a similar role in stabilizing the P-loop of KcsA and Kv1.2, respectively, but to significantly different extents. 相似文献
10.
A minimalistic tetrapeptide amphiphile scaffold for transmembrane pores with a preference for sodium
Debajyoti Basak Sucheta Sridhar Amal K. Bera Nandita Madhavan 《Bioorganic & medicinal chemistry letters》2017,27(13):2886-2889
Synthetic channels or pores that are easy to synthesize, stable and cation-selective are extremely attractive for the development of therapeutics and materials. Herein, we report a pore developed from a small tetrapeptide scaffold that shows a preference for sodium over lithium/potassium. The sodium selectivity is attributed to the appended oligoether tail at the C-terminus. A peptide dimer is proposed as the predominant cation-transporting pore. Such pyridine containing stable pores can be potentially utilized for the pH modulated ion transport. 相似文献
11.
We describe an electrostatic model of the gramicidin A channel that allows protein atoms to move in response to the presence of a permeating ion. To do this, molecular dynamics simulations are carried out with a permeating ion at various positions within the channel. Then an ensemble of atomic coordinates taken from the simulations are used to construct energy profiles using macroscopic electrostatic calculations. The energy profiles constructed are compared to experimentally-determined conductance data by inserting them into Brownian dynamics simulations. We find that the energy landscape seen by a permeating ion changes significantly when we allow the protein atoms to move rather than using a rigid protein structure. However, the model developed cannot satisfactorily reproduce all of the experimental data. Thus, even when protein atoms are allowed to move, the dielectric model used in our electrostatic calculations breaks down when modeling the gramicidin channel. 相似文献
12.
Attila Borics Richard F. Murphy Sándor Lovas 《Journal of biomolecular structure & dynamics》2013,31(6):761-770
Abstract It was previously shown that the structural ensemble of model peptides DDKG and GKDG (H. Ishii et al. Biopolymers 24, 2045–2056, 1985), DEKS (A. Otter et al. J. Biomol. Struct. Dyn. 7, 455–476, 1989) NPGQ (F. R. Carbone et al. Int. J. Pept. Protein. Res. 26, 498–508, 1985), SALN (H. Santa et al. J. Biomol. Struct. Dyn. 16, 1033–1041, 1999), SYPFDV and SYPYDV (J. Yao et al. J. Mol. Biol. 243, 736–753, 1994), VPDAH and VPDSH (B. Imperiali et al. J. Am. Chem. Soc. 114, 3182–3188, 1992) in solution contains a significant—or in some cases dominant—proportion of β-turn conformation. In this study, a protein database was searched for the above, unprotected sequences which incorporate only L-amino acid residues. Simulated annealing and 25 ns MD simulations of structures were also performed. The DSSP and STRIDE secondary structure-assigning algorithms and clustering were used to analyze trajectories and i, i+3 hydrogen bonds were also sought. The DSSP analysis showed a fluctuation between β-turn and random meander structure, although bend structures were not detected because of the insufficient length of peptide chains. This alternating trend was confirmed when the STRIDE algorithm was used to analyze trajectories, but STRIDE assigned more turn structures. The population of the strongest clusters was above 40% and the middle structures adopted β-turn structure for most sequences. These results are in good agreement with previous experimental results and support the idea of the ultra-marginal stability of turns in the absence of stabilizing long-range interactions of the neighboring segments of a polypeptide chain. However, interactions between the side-chains in tetrapeptides could also contribute to turn stability and result in unusual stability in some cases. Our observations suggest that such interactions are the consequence rather than the driving force of turn formation. 相似文献
13.
In this review, we describe our approach to creating artificial receptor-channel proteins or sensor systems, using an extramembrane segment conformationally switchable by external stimuli. Alamethicin is known to self-assemble in membranes to form ion channels with various open states. Employment of an alpha-helical leucine-zipper segment resulted in the effective modulation of the association states of alamethicin to produce a single predominant channel-open state. A decrease in the helical content of the extramembrane segments was found to induce a channel-current increase. Therefore, conformational changes in the extramembrane segments induced by the interaction with ligands can be reflected in the current levels. 相似文献
14.
Francesco Pietra 《化学与生物多样性》2013,10(6):963-975
This work deals with two neuroglobins from phylogenetically distant organisms. Deriving from the acoelomorph Symsagittifera roscoffensis, SrNgb is functionally pentacoordinated, and is assumed to function as a reserve of dioxygen (O2). Obtained from mice, mNgb is functionally hexacoordinated, and presumably triggers signals from sensing O2. Here, it is investigated how these two globins are permeated by diatomic gases, SrNgb by O2 and mNgb by CO. With protein atomic coordinates available from high‐resolution X‐ray diffraction analysis, O2 and CO pathways were traced from molecular‐dynamics simulations in H2O solution, which makes no difference between the two gases, accelerated by applying an external randomly‐oriented minimal force to the center of mass of the diatomic gas molecule. This allowed us to explore a statistically significant large number of trajectories. It emerged that CO leaves mNgb from preferentially peripheral gates located on the side of the heme propionate chains, whereas O2 leaves SrNgb from the opposite side. This shows no analogy with either the functionally pentacoordinated, O2‐transporting, myoglobin (Mgb), or the hexacoordinated, O2‐sensing, cytoglobin, despite the same three‐over‐three typical α‐helical globin folding. The sole analogy that could be observed was a preference for the shortest diatomic gas pathways with both SrNgb and Mgb. It is tempting to speculate that this fulfills the need of being quick in delivering O2 to depleted organs. 相似文献
15.
Exploring blocker binding to a homology model of the open hERG K+ channel using docking and molecular dynamics methods 总被引:3,自引:0,他引:3
Binding of blockers to the human voltage-gated hERG potassium channel is studied using a combination of homology modelling, automated docking calculations and molecular dynamics simulations, where binding affinities are evaluated using the linear interaction energy method. A homology model was constructed based on the available crystal structure of the bacterial KvAP channel and the affinities of a series of sertindole analogues predicted using this model. The calculations reproduce the relative binding affinities of these compounds very well and indicate that both polar interactions near the intracellular opening of the selectivity filter as well as hydrophobic complementarity in the region around F656 are important for blocker binding. These results are consistent with recent alanine scanning mutation experiments on the blocking of the hERG channel by other compounds. 相似文献
16.
STEFAN MATILE NAOMI SAKAI JIRI MAREDA JIRO KUMAKI EIJI YASHIMA 《Journal of receptor and signal transduction research》2013,33(5-6):461-472
This short review describes synthetic pores that are made from rigid-rod molecules and can bind oligo-and polymers such as polyacetylenes, p-oligophenyls, terpenoids, polypeptides, polysaccharides, and oligonucleotides. The spotlight is on recent breakthroughs to image the longtime elusive pore-polymer host-guest complexes as single giant pseudorotaxanes. 相似文献
17.
Francesco Pietra 《化学与生物多样性》2013,10(4):556-568
This work deals with dioxygen (O2) binding sites and pathways through inducible human heme oxygenase (HO‐1). The experimentally known distal binding site 1, and sites 2–3 above it, could be reproduced by means of non‐deterministic random‐acceleration molecular‐dynamics (RAMD) simulations. In addition, RAMD revealed the proximal binding site 5, a deeply‐seated binding site 4, which lies behind heme, as well as a few gates communicating with the external medium. In getting from site 1 to the main gate, which lies on the protein front opposed to site 4, O2 follows chiefly the shortest direct pathway. Less frequently, O2 visits intermediate sites 2, 4, or 5 along longer pathways. A similarity between HO‐1, myoglobin, and cytoglobin in using, for diatomic gas delivery, the direct shortest pathway from the heme center to the surrounding medium, is emphasized. Otherwise, comparing other proteins and diatomic gases, each system reveals its peculiarities as to sites, gates, and pathways. Thus, relating these properties to the physiological functions of the proteins remains in general a challenge for future studies. 相似文献
18.
19.
Rong Shen 《生物化学与生物物理学报:生物膜》2009,1788(5):1024-1032
Ion distribution in the selectivity filter and ion-water and ion-protein interactions of NaK channel are systematically investigated by all-atom molecular dynamics simulations, with the tetramer channel protein being embedded in a solvated phospholipid bilayer. Analysis of the simulation results indicates that K+ ions prefer to bind within the sites formed by two adjacent planes of oxygen atoms from the selectivity filter, while Na+ ions are inclined to bind to a single plane of four oxygen atoms. At the same time, both K+ and Na+ ions can diffuse in the vestibule, accompanying with movements of the water molecules confined in a complex formed by the vestibule together with four small grottos connecting to it. As a result, K+ ions show a wide range of coordination numbers (6-8), while Na+ ions display a constant coordination number of ∼ 6 in the selectivity filter, which may result in the loss of selectivity of NaK. It is also found that a Ca2+ can bind at the extracellular site as reported in the crystal structure in a partially hydrated state, or at a higher site in a full hydration state. Furthermore, the carbonyl group of Asp66 can reorient to point towards the center pore when an ion exists in the vestibule, while that of Gly65 always aligns tangentially to the channel axis, as in the crystallographic structures. 相似文献
20.
Milov AD Samoilova MI Tsvetkov YD Jost M Peggion C Formaggio F Crisma M Toniolo C Handgraaf JW Raap J 《化学与生物多样性》2007,4(6):1275-1298
Three analogs of alamethicin F50/5, labelled with the TOAC (='2,2,6,6-tetramethylpiperidin-1-oxyl-4-amino-4-carboxylic acid') spin label at positions 1 (Alm1), 8 (Alm8), and 16 (Alm16), resp., were studied by Electron-Spin-Resonance (ESR) and Pulsed Electron-Electron Double-Resonance (PELDOR) techniques in solvents of different polarity to investigate the self-assembly of amphipathic helical peptides in membrane-mimicking environments. In polar solvents, alamethicin forms homogeneous solutions. In the weakly polar chloroform/toluene 1 : 1 mixture, however, this peptide forms aggregates that are detectable at 293 K by ESR in liquid solution, as well as by PELDOR in frozen, glassy solution at 77 K. In liquid solution, free alamethicin molecules and their aggregates show rotational-mobility correlation times tau(r) of 0.87 and 5.9 ns, resp. Based on these values and analysis of dipole-dipole interactions of the TOAC labels in the aggregates, as determined by PELDOR, the average number N of alamethicin molecules in the aggregates is estimated to be less than nine. A distance-distribution function between spin labels in the supramolecular aggregate was obtained. This function exhibits two maxima: a broad one at a distance of 3.0 nm, and a wide one at a distance of ca. 7 nm. A molecular-dynamics (MD)-based model of the aggregate, consisting of two parallel tetramers, each composed of four molecules arranged in a 'head-to-tail' fashion, is proposed, accounting for the observed distances and their distribution. 相似文献