共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Tureyen K Kapadia R Bowen KK Satriotomo I Liang J Feinstein DL Vemuganti R 《Journal of neurochemistry》2007,101(1):41-56
5.
Lai DM Li H Lee CC Tzeng YS Hsieh YH Hsu WM Hsieh FJ Cheng JT Tu YK 《Neurochemistry international》2008,52(3):470-477
Angiopoietin-like protein (Angptl) 1, a member of the angiopoietin-related protein family, modulates angiogenesis but little else is known of its physiological role. We found that angptl1 was upregulated at the 7th day after focal cerebral ischemia in normal mice. In order to understand the role of angptl1 in cerebral infarction, we induced focal cerebral ischemia in normal and glial fibrillary acidic protein promoter-angptl1 transgenic mice. In the transgenic mice without ischemia, overexpression of angptl1 in the whole brain led to a decrease in cortical microvascular density. Following focal cerebral ischemia, edema, but not infarct size, was less in transgenic mice relative to wild type littermates. This effect might be due to a reduction in the blood brain barrier breakdown, as confirmed by a decrease in Evans Blue leakage in the early post-ischemic phase. We conclude that angptl1 may have a beneficial role in the preservation of vascular integrity following focal cerebral ischemia. 相似文献
6.
Aquaporin-4 gene deletion in mice increases focal edema associated with staphylococcal brain abscess 总被引:16,自引:0,他引:16
Brain abscess is associated with local vasogenic edema, which leads to increased intracranial pressure and significant morbidity. Aquaporin-4 (AQP4) is a water channel expressed in astroglia at the blood-brain and brain-CSF barriers. To investigate the role of AQP4 in brain abscess-associated edema, live Staphylococcus aureus (10(5) colony-forming units) was injected into the striatum to create a focal abscess. Wild-type and AQP4-deficient mice had comparable immune responses as measured by brain abscess volume (approximately 3.7 mm3 at 3 days), bacterial count and cytokine levels in brain homogenates. Blood-brain barrier permeability was increased comparably in both groups as assessed by extravasation of Evans blue dye. However, at 3 days the AQP4 null mice had significantly higher intracranial pressure (mean +/- SEM 27 +/- 2 vs. 17 +/- 2 mmHg; p < 0.001) and brain water content (81.0 +/- 0.3 vs. 79.3 +/- 0.5 % water by weight in the abscess-containing hemisphere; p < 0.01) than wild-type mice. Reactive astrogliosis was found throughout the abscess-containing hemisphere; however, only a subset of astrocytes in the peri-abscess region of wild-type mice had increased AQP4 immunoreactivity. Our findings demonstrate a protective effect of AQP4 on brain swelling in bacterial abscess, suggesting that AQP4 induction may reduce vasogenic edema associated with cerebral infection. 相似文献
7.
Hiramani Dhungana Tarja Malm Adam Denes Piia Valonen Sara Wojciechowski Johanna Magga Ekaterina Savchenko Neil Humphreys Richard Grencis Nancy Rothwell Jari Koistinaho 《Aging cell》2013,12(5):842-850
Ischemic stroke is confounded by conditions such as atherosclerosis, diabetes, and infection, all of which alter peripheral inflammatory processes with concomitant impact on stroke outcome. The majority of the stroke patients are elderly, but the impact of interactions between aging and inflammation on stroke remains unknown. We thus investigated the influence of age on the outcome of stroke in animals predisposed to systemic chronic infection. Th1‐polarized chronic systemic infection was induced in 18–22 month and 4‐month‐old C57BL/6j mice by administration of Trichuris muris (gut parasite). One month after infection, mice underwent permanent middle cerebral artery occlusion and infarct size, brain gliosis, and brain and plasma cytokine profiles were analyzed. Chronic infection increased the infarct size in aged but not in young mice at 24 h. Aged, ischemic mice showed altered plasma and brain cytokine responses, while the lesion size correlated with plasma prestroke levels of RANTES. Moreover, the old, infected mice exhibited significantly increased neutrophil recruitment and upregulation of both plasma interleukin‐17α and tumor necrosis factor‐α levels. Neither age nor infection status alone or in combination altered the ischemia‐induced brain microgliosis. Our results show that chronic peripheral infection in aged animals renders the brain more vulnerable to ischemic insults, possibly by increasing the invasion of neutrophils and altering the inflammation status in the blood and brain. Understanding the interactions between age and infections is crucial for developing a better therapeutic regimen for ischemic stroke and when modeling it as a disease of the elderly. 相似文献
8.
孕酮对缺血/再灌注大鼠脑皮层水肿的影响 总被引:10,自引:1,他引:10
目的探讨孕酮(progesterone,PROG)对脑水肿的影响.方法48只大鼠随机分为6组即缺血/再灌(I/R)组,二甲基亚砜(DMSO)组,预防(pretreatment)组,防治(pre+posttreatment)组,治疗(posttreatment)组,地塞米松(DEXA)组.采用大鼠局灶性脑缺血/再灌注(I/R)模型,测定大脑中动脉阻塞(MCAO)24h后脑皮层水、钠、钾、钙含量.结果与DMSO组相比,应用PROG预防及防治组均能明显降低缺血皮层的H2O(P<0.01)、Na+(P<0.01)、Ca2+(P<0.01)含量,升高K+(P<0.01)含量,而治疗组虽能明显降低H2O(P<0.05)、Na+(P<0.01),但降低Ca2+(P>0.05)和升高K+(P>0.05)的效果不显著.DEXA组的结果与PROG预防或防治组类似.结论用PROG预防或防治能显著减轻I/R引起的脑水肿. 相似文献
9.
Zydrune Polianskyte-Prause Tuomas A. Tolvanen Sonja Lindfors Kanta Kon Laura C. Hautala Hong Wang Tsutomu Wada Hiroshi Tsuneki Toshiyasu Sasaoka Sanna Lehtonen 《International journal of biological sciences》2022,18(5):1852
Ebselen, a multifunctional organoselenium compound, has been recognized as a potential treatment for diabetes-related disorders. However, the underlying mechanisms whereby ebselen regulates metabolic pathways remain elusive. We discovered that ebselen inhibits lipid phosphatase SHIP2 (Src homology 2 domain-containing inositol-5-phosphatase 2), an emerging drug target to ameliorate insulin resistance in diabetes. We found that ebselen directly binds to and inhibits the catalytic activity of the recombinant SHIP2 phosphatase domain and SHIP2 in cultured cells, the skeletal muscle and liver of the diabetic db/db mice, and the liver of the SHIP2 overexpressing (SHIP2-Tg) mice. Ebselen increased insulin-induced Akt phosphorylation in cultured myotubes, enhanced insulin sensitivity and protected liver tissue from lipid peroxidation and inflammation in the db/db mice, and improved glucose tolerance more efficiently than metformin in the SHIP2-Tg mice. SHIP2 overexpression abrogated the ability of ebselen to induce glucose uptake and reduce ROS production in myotubes and blunted the effect of ebselen to inhibit SHIP2 in the skeletal muscle of the SHIP2-Tg mice. Our data reveal ebselen as a potent SHIP2 inhibitor and demonstrate that the ability of ebselen to ameliorate insulin resistance and act as an antioxidant is at least in part mediated by the reduction of SHIP2 activity. 相似文献
10.
Brain free fatty acids, edema, and mortality in gerbils subjected to transient, bilateral ischemia, and effect of barbiturate anesthesia 总被引:1,自引:10,他引:1
Brain free fatty acids (FFAs) and brain water content were measured in gerbils subjected to transient, bilateral cerebral ischemia under brief halothane anesthesia (nontreated group) and pentobarbital anesthesia (treated group). Mortality in the two groups was also evaluated. In nontreated animals, both saturated and mono- and polyunsaturated FFAs increased approximately 12-fold in total at the end of a 30-min period of ischemia; during recirculation, the level of free arachidonic acid dropped rapidly, while other FFAs gradually decreased to their preischemic levels in 90 min. In treated animals, the levels of total FFAs were lower than the nontreated group during ischemia, but higher at 90 min of reflow, and the decrease in the rate of free arachidonic acid was slower in the early period of reflow. Water content increased progressively during ischemia and recirculation with no extravasation of serum protein, but the values were consistently lower in the treated group. None of the nontreated animals survived for 2 weeks; in contrast, survival was 37.5% in the treated group. It is suggested that barbiturate protection from transient cerebral ischemia may be mediated by the attenuation of both membrane phospholipid hydrolysis during ischemia and postischemic peroxidation of accumulated free arachidonic acid. 相似文献
11.
Ischemic stroke is a neurovascular disease treatable by thrombolytic therapy, but the therapy has to be initiated within 3 h of the incident. This therapeutic limitation stems from the secondary injury which results mainly from oxidative stress and inflammation. A potent antioxidant/anti-inflammatory agent, caffeic acid phenethyl ester (CAPE) has potential to mitigate stroke's secondary injury, and thereby widening the therapeutic window. We observed that CAPE protected the brain in a dose-dependent manner (1-10 mg/kg body weight) and showed a wide therapeutic window (about 18 h) in a rat model of transient focal cerebral ischemia and reperfusion. The treatment also increased nitric oxide and glutathione levels, decreased lipid peroxidation and nitrotyrosine levels, and enhanced cerebral blood flow. CAPE down-regulated inflammation by blocking nuclear factor kappa B activity. The affected mediators included adhesion molecules (intercellular adhesion molecule-1 and E-selectin), cytokines (tumor necrosis factor-alpha and interleukin-1beta) and inducible nitric oxide synthase. Anti-inflammatory action of CAPE was further documented through reduction of ED1 (marker of activated macrophage/microglia) expression. The treatment inhibited apoptotic cell death by down-regulating caspase 3 and up-regulating anti-apoptotic protein Bcl-xL. Conclusively, CAPE is a promising drug candidate for ischemic stroke treatment due to its inhibition of oxidative stress and inflammation, and its clinically relevant wide therapeutic window. 相似文献
12.
Ching-Chung Liang Steven W. Shaw Yung-Hsin Huang Tsong-Hai Lee 《Journal of cellular and molecular medicine》2021,25(21):10185-10196
Diabetes causes vascular injury and carries a high risk of ischaemic stroke. Human amniotic fluid stem cells ( hAFSCs) can enhance cerebral vascular remodelling and have the potential to improve neurological function after stroke in diabetic rats. Five groups of female rats were examined: (1) normal control, (2) type 1 diabetic (T1DM) rats induced by streptozotocin injection (DM), (3) non-DM rats receiving 60-minute middle cerebral artery occlusion (MCAO), (4) T1DM rats receiving 60-minute MCAO (DM + MCAO) and (5) T1DM rats receiving 60-minute MCAO and injection with 5 × 106 hAFSCs at 3 h after MCAO (DM + MCAO + hAFSCs). Neurological function was examined before, and at 1, 7, 14, 21 and 28 days, and cerebral infarction volume and haemorrhage, cerebral vascular density, angiogenesis and inflammatory were examined at 7 and 28 days after MCAO. hAFSCs treatment caused a significant improvement of neurological dysfunction, infarction volume, blood-brain barrier leakage, cerebral arterial density, vascular density and angiogenesis and a reduction of brain haemorrhage and inflammation compared with non-treatment. Our results showed that the effect of hAFSCs treatment against focal cerebral ischaemia may act through the recovery of vascular remodelling and angiogenesis and the reduction of inflammation in ischaemic brain. 相似文献
13.
Choe CU Lardong K Gelderblom M Ludewig P Leypoldt F Koch-Nolte F Gerloff C Magnus T 《PloS one》2011,6(5):e19046
Background
Converging evidence suggests that inflammatory processes significantly influence brain injury and clinical impairment in ischemic stroke. Although early studies suggested a key role of lymphocytes, recent data has emphasized the orchestrating function of innate immunity, i.e., macrophages and microglia. The bifunctional receptor and ectoenzyme CD38 synthesizes calcium-mobilizing second messengers (e.g., cyclic ADP-ribose), which have been shown to be necessary for activation and migration of myeloid immune cells. Therefore, we investigated the dynamics of CD38 in stroke and the impact of CD38-deficiency on cytokine production, inflammation and cerebral damage in a mouse model of cerebral ischemia-reperfusion.Methodology/Principal Findings
We show that the local expression of the chemokine MCP-1 was attenuated in CD38-deficient mice compared with wildtype mice after focal cerebral ischemia and reperfusion. In contrast, no significant induction of MCP-1 expression was observed in peripheral blood after 6 hours. Flow cytometry analysis revealed less infiltrating macrophages and lymphocytes in the ischemic hemisphere of CD38-deficient mice, whereas the amount of resident microglia was unaltered. An up-regulation of CD38 expression was observed in macrophages and CD8+ cells after focal cerebral ischemia in wildtype mice, whereas CD38 expression was unchanged in microglia. Finally, we demonstrate that CD38-deficiency decreases the cerebral ischemic injury and the persistent neurological deficit after three days of reperfusion in this murine temporary middle cerebral artery occlusion (tMCAO) model.Conclusion/Significance
CD38 is differentially regulated following stroke and its deficiency attenuates the postischemic chemokine production, the immune cell infiltration and the cerebral injury after temporary ischemia and reperfusion. Therefore CD38 might prove a therapeutic target in ischemic stroke. 相似文献14.
Katsura K Takahashi K Asoh S Watanabe M Sakurazawa M Ohsawa I Mori T Igarashi H Ohkubo S Katayama Y Ohta S 《Journal of neurochemistry》2008,106(1):258-270
Many practical therapies have been explored as clinical applications for ischemic cerebral infarction; however, most are still insufficient to treat acute stroke. We show here a potential combination therapy in a rat focal ischemic model to improve neurological symptoms as well as to reduce infarct volumes at the maximum level. We applied protein transduction technology using artificial anti-death Bcl- x l derivative with three amino acid-substitutions (Y22 F , Q26 N and R165 K ) (FNK) protein fused with a protein-transduction-domain peptide (PTD-FNK). When PTD-FNK was administrated 1 h after initiating ischemia followed by the administration of an immunosuppressant FK506 with a 30-min time lag, infarct volumes of the total brain and cortex were markedly reduced to 27% and 14%, respectively. This procedure not only reduced the infarct volume and edema, but also markedly improved neurological symptoms. The therapeutic effect continued for at least 1 week after ischemia. FK506 inhibited the transduction of PTD-FNK in vitro , which explains the requirement of a time lag for the administration of FK506. An additional in vitro experiment showed that PTD-FNK, when administered 30 min before FK506, gave the maximal protective effect by reducing the intracellular calcium concentration. We propose that this combination therapy would provide a synergistic protective effect by both drugs, reducing adverse the effects of FK506. 相似文献
15.
16.
Changes in brain levels of N-acylethanolamines and 2-arachidonoylglycerol in focal cerebral ischemia in mice 总被引:1,自引:0,他引:1
Degn M Lambertsen KL Petersen G Meldgaard M Artmann A Clausen BH Hansen SH Finsen B Hansen HS Lund TM 《Journal of neurochemistry》2007,103(5):1907-1916
The N -acylethanolamines (NAEs) and 2-arachidonoylglycerol (2-AG) are bioactive lipids that can modulate inflammatory responses and protect neurons against glutamatergic excitotoxicity. We have used a model of focal cerebral ischemia in young adult mice to investigate the relationship between focal cerebral ischemia and endogenous NAEs. Over the first 24 h after induction of permanent middle cerebral artery occlusion, we observed a time-dependent increase in all the investigated NAEs, except for anandamide. Moreover, we found an accumulation of 2-AG at 4 h that returned to basal level 12 h after induction of ischemia. Accumulation of NAEs did not depend on regulation of N -acylphosphatidylethanolamine-hydrolyzing phospholipase D or fatty acid amide hydrolase. Treatment with the fatty acid amide hydrolase inhibitor URB597 (cyclohexyl carbamic acid 3'-carbamoyl-biphenyl-3-yl ester; 1 mg/kg; i.p.) 1.5 h before arterial occlusion decreased the infarct volume in our model system. Our results suggest that NAEs and 2-AG may be involved in regulation of neuroprotection during focal cerebral ischemia in mice. 相似文献
17.
Mita Y Ishihara K Fukuchi Y Fukuya Y Yasumoto K 《Biological trace element research》2005,105(1-3):229-248
To study the preventive effect of supplemented chromium picolinate (CrPic) on the development of diabetic nephropathy in mice,
we analyzed the effects of CrPic supplementation on renal function and concentrations of serum glucose and tissue chromium
(Cr). In experiment 1, male KK-Ay obese diabetic mice were fed either a control diet (control) or a diet supplemented with
2 mg/kg diet (Cr2) or 10 mg/kg diet (Cr10) of Cr for 12 wk. Cr10 significantly ameliorated hyperglycemia after a glucose load,
creatinine clearance rates, and urinary microalbumin levels (p<0.05). In experiment 2, the Cr10 diet was fed to male KK-Ay obese diabetic mice and C57BL nondiabetic mice for 4 wk. The
CrPic diet reduced urinary albumin excretion in the diabetic mice (p<0.05). Inductively coupled plasma-mass spectrometry analysis revealed that the renal Cr content and the recovery of renal
Cr concentration after Cr supplementation were significantly lower in the diabetic mice than in the nondiabetic mice (p<0.01). These observations suggest that Cr supplementation of type 2 diabetic mice reduces the symptoms of hyperglycemia and
improves the renal function by recovering renal Cr concentration. 相似文献
18.
Kainic acid-induced seizures produced early (2 hr) generalized edema and later (24 and 48 hr) necrotic edema in temporal cortex and hippocampus as measured by specific gravity changes. Mannitol given during the seizure partially protected against the early edema and prevented the necrotic edema indicating early edema may play a role in later brain damage. However, H2O intoxication, causing much greater generalized edema than the kainic acidinduced seizures, caused no necrotic edema in temporal cortex or hippocampus at 48 hr. Thus it appears that mannitol protection against kainic acid-induced brain damage may be by a mechanism in addition to dehydration.Special Issue dedicated to Dr. O. H. Lowry. 相似文献
19.
目的:观察α-亚麻酸(ALA)对糖尿病大鼠体内炎症介质和氧化应激的影响,探讨ALA在糖尿病防治中的作用。方法:雄性SD大鼠高脂饮食喂养4周后,腹腔注射链脲佐菌素(STZ)30 mg/kg建立2型糖尿病(T2DM)模型。将大鼠随机分为3组(n=10):正常对照组、糖尿病模型组和ALA治疗组(500μg/kg.d)。4周后测定大鼠血清中肿瘤坏死因子(TNF-α)、可溶性P-选择素(sP-selectin)、可溶性细胞间黏附分子(sICAM-1)、一氧化氮(NO)、丙二醛(MDA)的含量以及超氧化物岐化酶(SOD)和过氧化氢酶(CAT)的活性。结果:与正常对照组相比,糖尿病大鼠血清中炎症介质TNF-α、sP-selectin和sICAM-1的含量增加,血清NO含量下降而MDA升高,同时抗氧化酶SOD和CAT的活性降低;ALA治疗可显著降低糖尿病大鼠血清中TNF-α、sP-selectin和sICAM-1的含量(与STZ+vehicle组相比,P<0.01),增加血清NO水平并减少MDA含量,升高抗氧化酶SOD和CAT的活性(与STZ+vehicle组相比,均P<0.05)。结论:ALA可显著降低糖尿病大鼠血清炎症介质的生成,减轻氧化应激水平,具有抗炎和抗氧化作用。提示ALA对糖尿病及糖尿病并发症的发生发展可能具有一定的防治作用。 相似文献
20.
Enhanced neurogenesis and cell migration following focal ischemia and peripheral stimulation in mice
Peripheral stimulation and physical therapy can promote neurovascular plasticity and functional recovery after CNS disorders such as ischemic stroke. Using a rodent model of whisker-barrel cortex stroke, we have previously demonstrated that whisker activity promotes angiogenesis in the penumbra of the ischemic barrel cortex. This study explored the potential of increased peripheral activity to promote neurogenesis and neural progenitor migration toward the ischemic barrel cortex. Three days after focal barrel cortex ischemia in adult mice, whiskers were manually stimulated (15 min x 3 times/day) to enhance afferent signals to the ischemic barrel cortex. 5-Bromo-2'-deoxyuridine (BrdU, i.p.) was administered once daily to label newborn cells. At 14 days after stroke, whisker stimulation significantly increased vascular endothelial growth factor and stromal-derived factor-1 expression in the penumbra. The whisker stimulation animals showed increased doublecortin (DCX) positive and DCX/BrdU-positive cells in the ipsilateral corpus of the white matter but no increase in BrdU-positive cells in the subventricular zone, suggesting a selective effect on neuroblast migration. Neurogenesis indicated by neuronal nuclear protein and BrdU double staining was also enhanced by whisker stimulation in the penumbra at 30 days after stroke. Local cerebral blood flow was better recovered in mice that received whisker stimulation. It is suggested that the enriched microenvironment created by specific peripheral stimulation increases regenerative responses in the postischemic brain and may benefit long-term functional recovery from ischemic stroke. 相似文献