首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Regeneration blastemas at the stages of medium bud and palette were transplanted to contralateral limb stumps so that either their anterior and posterior positions or their dorsal and ventral positions were apposed to those of the stumps. Grafts were shifted from distal levels to proximal levels, or from proximal levels to distal levels, or remained at either a proximal or a distal level. When anterior and posterior positions of graft and stump were apposed, supernumerary limbs were produced at the graft-stump junction in anterior and posterior positions relative to the stump. All analyzable supernumerary limbs were of stump handedness. Apposition of dorsal and ventral positions of graft and stump led to the formation of supernumerary limbs at dorsal and ventral positions relative to stump tissues. All analyzable supernumerary limbs were once again of stump handedness. Shifts from distal levels to proximal levels never resulted in skeletal deletions, as potential deletions in the proximal-distal axis were always filled in. Shifts from proximal levels to distal levels resulted in a low frequency of serial duplications. The results are discussed in view of a recently presented formal model for pattern regulation in epimorphic fields.  相似文献   

2.
Regeneration blastemas were exchanged between surgically constructed forelimbs comprised of symmetrical tissues (double-anterior and double-posterior) and normal, unoperated forelimbs. Normal blastemas grafted at the stage of medium bud (MB) onto double-half forelimb stumps regenerated normal skeletal patterns in nearly all cases. Double-half blastemas transplanted at the stage of MB onto normal forelimb stumps did not regenerate complete limb patterns. These results indicate that a double-half blastema cannot be “rescued” by transplantation to a normal stump and that a double-half limb stump does not interfere with the ability of a normal blastema to distally transform. The regeneration blastema possesses sufficient positional information at the stage of MB to permit it to develop autonomously. Supernumerary forelimbs resulted from several types of graft-stump combinations. The location and handedness of these supernumerary limbs are predicted by the rules of a recently presented model for pattern regulation in epimorphic fields [French, V., Bryant, P. J., and Bryant, S. V. (1976). Science193, 969–981].  相似文献   

3.
Xenopus laevis exhibits an ontogenetic decline in the ability to regenerate its limbs: Young tadpoles can completely regenerate an amputated limb, whereas post metamorphic froglets regenerate at most a cartilagenous "spike." We have tested the regenerative competence of normally regenerating limb buds of stage 52-53 Xenopus tadpoles grafted onto limb stumps of postmetamorphic froglets. The limb buds become vascularized and innervated by the host and, when amputated, regenerate limbs with normal or slightly less than normal numbers of tadpole hindlimb digits. Reciprocal grafts of froglet forelimb blastemas onto tadpole hindlimb stumps resulted in either autonomous development of tadpole hindlimb structures and/or formation of a cartilaginous spike typical of froglet forelimb regeneration. Our results suggest that the Xenopus froglet host environment is completely permissive for regeneration and that the ability to regenerate a complete limb pattern is an intrinsic property of young tadpole limb cells, a property that is lost during ontogenesis.  相似文献   

4.
We have experimentally tested the similarity of limb pattern-forming mechanisms in urodeles and anurans. To determine whether the mechanisms of limb outgrowth are equivalent, we compared the results of two kinds of reciprocal limb bud grafts between Xenopus and axolotls: contralateral grafts to confront anterior and posterior positions of graft and host, and ipsilateral grafts to align equivalent circumferential positions. Axolotl limb buds grafted to Xenopus hosts are immunologically rejected at a relatively early stage. Prior to rejection, however, experimental (but not control) grafts form supernumerary digits. Xenopus limb buds grafted to axolotl hosts are not rejected within the time frame of the experiment and therefore can be used to test the ability of frog cells to elicit responses from axolotl tissue that are similar to those that are elicited by axolotl tissue itself. When Xenopus buds were grafted to axolotl limb stumps so as to align circumferential positions, the majority of limbs did not form any supernumerary digits. However, in experimental grafts, where anterior and posterior of host and graft were misaligned, supernumerary digits formed at positional discontinuities. These results suggest that Xenopus/axolotl cell interactions result in responses that are similar to axolotl/axolotl cell interactions. Furthermore, axolotl and Xenopus cells can cooperate to build recognizable skeletal elements, despite large differences in cell size and growth rate between the two species. We infer from these results that urodeles and anurans share the same limb pattern-forming mechanisms, including compatible positional signals that allow appropriate localized cellular interactions between the two species. Our results suggest an approach for understanding homology of the tetrapod limb based on experimental cellular interactions.  相似文献   

5.
The formation of supernumerary limbs was studied in the adult newt, Notophthalmus viridescens. Forelimb blastemas at the stages of medium bud and early digits were either transplanted to the contralateral forelimb with their dorsal-ventral axis opposed to that of the limb stump, or removed, rotated through 180°, and replaced on the same limb stump with both dorsal-ventral and anterior-posterior axes opposed to those of the stump, or as a control, removed, and replaced in normal orientation. Supernumerary limbs were produced in both experimental series, but not in the controls.Following contralateral transplantation, supernumerary limbs arose close to the graft junction at the two positions where dorsal limb tissue was in contact with ventral limb tissue. Both dorsal and ventral supernumerary limbs were of the same handedness as the limb stump and they were mirror-images of the regenerate developing directly from the transplanted blastema. Following 180° rotation, supernumerary limbs arose close to the graft junction at those positions where anterior-ventral and posterior-dorsal limb tissues were in contact. The supernumerary limb which arose in the posterior-dorsal position with respect to the limb stump was a mirror-image of the transplant, and was therefore of opposite handedness to both transplant and stump. The supernumerary limb which arose in the anterior-ventral position was of the same handedness as both transplant and stump. A new model of pattern regulation in epimorphic fields which can account for these results and which has retrospective value in the interpretation of earlier experiments on developing limbs is discussed.  相似文献   

6.
The formation of supernumerary limbs and limb structures was studied by juxtaposing normally nonadjacent embryonic chick limb bud tissue. A “wedge” (ectoderm and mesoderm) of anterior or mid donor right wing bud (stage 21) was inserted in a slit made in a host right limb bud (stage 21) at the same position as its position of origin or to a more posterior position. The AER of the donor tissue and host wing bud were aligned with each other. Donor tissue was grafted with its dorsalventral polarity the same as the host's limb bud or reversed to that of the host's. Depending on the position of origin of the donor limb bud tissue and the position to which it was transplanted in a host, supernumerary wings or wing structures formed. Furthermore, depending on the orientation of the graft in the host, supernumerary limbs with either left or right asymmetry developed. The results of experiments performed here are considered in light of two current models which have been used to describe supernumerary limb formation: one based on local, short-range, cell-cell interactions and the other based on long-range positional signaling via a diffusible morphogen.  相似文献   

7.
When blastemas of several stages of differentiation were grafted in normal orientation to stump levels proximal or distal to their level of origin, normal limbs regenerated. Histological and autoradiographic studies of the development of these regulated limbs showed that the grafted blastemas formed only structures normally distal to their level of origin. In the case of a blastema transplanted proximally, regulation occurred by intercalary regeneration from the stump, whereas, when blastemas were transplanted distally, regulation appeared to take place within the blastema itself by a distal shift in its pattern of organization. The results suggest that the proximal limit of the limb regenerate is determined by level-specific properties of the limb cells but that these properties allow for interactions leading to regulation when different levels of stump and blastema are brought together.  相似文献   

8.
The objective of this study was to determine whether retinoic acid (RA) coordinately proximalizes positional memory and the cellular recognition system that detects pattern discontinuity in regenerating amphibian limbs. The strategy was to test the capacity of RA-treated blastemas to evoke intercalary regeneration when grafted to an amputation level proximal to their level of origin. Control wrist and ankle, or elbow and knee blastemas treated with the retinoid solvent, dimethylsulphoxide, evoked intercalary regeneration as effectively as untreated blastemas, when grafted to the midstylopodial amputation surface of host limbs. RA-treated wrist and ankle or elbow and knee blastemas were proximalized and formed complete limbs that were at an angle to, or continuous with, the midstylopodium of the host limb. No intercalary regeneration, from either graft or host, was observed in these cases. The results indicate that the cellular mechanism that recognizes disparities between non-neighbouring cells and initiates intercalary regeneration is coordinately proximalized with positional memory. Thus the recognition mechanism and positional memory are directly related. Intercalary regeneration and corrective displacement (affinophoresis), both of which restore a pattern of normal cell neighbours by different means in regenerating axolotl limbs, appear to use the same mechanism to recognize pattern discontinuity.  相似文献   

9.
The results of a detailed analysis of 100 supernumerary limbs generated by 180° ipsilateral rotation (on the same limb stump) of regeneration blastemas is presented. The limbs were analyzed in terms of their position of origin, frequency, cartilage structure by Victoria blue staining, and muscle structure by serial sections. Single, double, or triple supernumeraries can be produced at no unique position of origin, although the posterodorsal quadrant was preferred. Four classes of supernumerary limbs were generated by such operations—normal; double dorsal or double ventral; part normal/part mirror imaged; part normal/part inverted in approximately equal frequencies. After amputation of these supernumeraries the same muscle patterns are faithfully regenerated. A hypothesis to explain the production of these abnormal limbs is proposed based on the observed phenomenon of fusion of supernumerary blastemata, but their regenerative behaviour presents problems for current models of pattern formation. Similar results have been obtained with developing limb buds and the relation between development and regeneration is discussed.  相似文献   

10.
As an approach to the problem of pattern formation in the insect appendage, various graft combinations were studied in the legs of the large milkweed bug Oncopeltus fasciatus. Metathoracic legs of fourth instar larvae were amputated through the tibia within 24 hr after ecdysis and grafted back onto the stumps. The orientation of the graft was altered by rotation through 90 or 180° and/or by exchanging right and left stumps and grafts, yielding seven possible orientations in addition to the control. Many of these grafts resulted in the production of one or two supernumerary regenerates of the distal segments, which appeared at the graft junction after the second postoperative ecdysis. When two supernumerary regenerates resulted, one appeared to be produced from the stump and the other from the graft. When one regenerate was present, it appeared to be a composite of material produced from both the stump and the graft. In contrast to the results obtained in cockroaches, the external face of the leg appeared to be the only one capable of giving rise to a supernumerary regenerate.  相似文献   

11.
The influence of the wound epithelium on the cellular events preceding blastema formation was examined by comparing dedifferentiation, DNA labeling indices, and mitotic indices of the distal mesodermal tissues in control regenerating newt forelimbs and in amputated forelimbs covered with a flap of full thickness skin. Three kinds of results were seen following the skin-flap graft operations. Epidermal migration across the amputation surface was completely inhibited in 22% (8) of the cases and these limbs repaired the amputation wound but did not form regeneration blastemas. In 11% (4) of the experimental limbs, essentially normal wound epithelia displaced the skin flaps and the limb stumps formed blastemas and regenerated. The majority of the skin grafts (67%) exhibited epidermal migration restricted to the free edges of the flaps. These limbs formed eccentric blastemas on the ventral side of the limb next to the dermis-free epidermis and regenerated laterally in that direction.  相似文献   

12.
Summary Previous grafting experiments have demonstrated that cells from non-contiguous positions within developing and regenerating limbs differ in a property referred to as positional identity. The goal of this study was to determine how long the positional identity of axolotl limb blastema cells is stable during culture in vitro. We have developed an assay for posterior positional properties such that blastema cells can be cultured and then grafted into anterior positions in host blastemas, to determine if they can stimulate supernumerary digit formation. We report that posterior blastema cells are able to maintain their positional identities for at least a week in culture. In addition, we observed that blastema cells are able to rapidly degrade collagenous substrates in vitro, a property that apparently distinguishes them from limb cells of other vertebrates. These results provide information regarding the time boundaries within which the positional properties of blastema cells can be studied and manipulated in vitro. Correspondence to: S.V. Bryant  相似文献   

13.
The effects of retinoic acid (RA) on anteroposterior (AP) positional memory of regenerating axolotl limbs were tested after removing the anterior or posterior half from the zeugopodium (lower arm or leg). RA (150 micrograms/g body wt) was injected into groups of animals bearing the following types of limbs: (1) anterior and posterior half zeugopodia grafted to the eyesocket and amputated distally 7 days later; (2) unamputated anterior and posterior half zeugopodia in situ; (3) double anterior and double posterior half zeugopodia amputated distally 7 days after their construction; (4) sham-operated zeugopodia amputated distally 7 days after operation. Controls consisted of these four groups injected with the retinoid solvent, dimethyl sulfoxide, or not injected. Control half zeugopodia grafted to the eyesocket regenerated no more than one or two digits. Control unamputated half zeugopodia in situ underwent partial or complete regeneration of the missing half from the proximal and midline wound surfaces exposed during construction of the half zeugopodia. Control double anterior and posterior zeugopodia both regenerated symmetrical, hypomorphic regenerates with 1-3 digits in the double anteriors and 1-6 digits in the double posteriors. Sham-operated controls regenerated normally. Regenerating anterior and posterior halves responded differently to RA. RA-treated anterior half zeugopodia in the eyesocket, and anterior half stumps adjacent to the unamputated posterior half zeugopodia in situ both produced regenerates that duplicated stump structures in the proximodistal axis and formed a complete and normal AP pattern. RA-treated double anterior zeugopodia regenerated proximodistal-duplicated pairs of mirror-imaged limbs, each with a complete and normal AP pattern. In contrast, half posterior zeugopodia in the eyesocket, the posterior half stumps of unamputated half anterior zeugopodia in situ, and double posterior zeugopodia all failed to regenerate. These results suggest that RA modifies positional memory in only one direction in the AP axis, posterior.  相似文献   

14.
Summary 1. Undifferentiated fore limb blastemas were denuded of their epidermis and grafted to the flank musculature; each transplant consisted of four such blastemas. Outgrowth of the mesenchyme and subsequent digit formation were prevented by covering the transplants with whole flank skin with its dermis intact. 2. Notwithstanding the absence of digits, 26 out of the 36 differentiated transplants formed one or two oblong, stout cartilages resembling proximal skeletal elements of the limb. Considering that four blastemas had been grafted in random orientation, this indicates considerable intrinsic morphogenetic capacities of the blastemal mesenchyme in the absence of organizing influences of the epidermis. 3. Thus, although permanent contact with wound epidermis has previously been shown to be necessary for blastemal mesenchyme to form distal limb structures, such contact is not required for the formation of proximal skeletal elements. The implications of this finding for regional organization in the regenerating limb are discussed.On leave from Department of Zoology, Faculty of Science, Alexandria University, Alexandria. Egypt.  相似文献   

15.
The relationship between limb development and limb regeneration is considered with regard to the mechanisms by which pattern is established during limb outgrowth. In a previous paper (Muneoka, K. and Bryant, S. V. 1982 Nature (London) 298, 369-371) the interaction between cells from the developing limb bud and the regenerating limb blastema was found to result in the production of organized supernumerary limb structures. In this paper the relative cellular contribution from developing and regenerating cells to supernumerary limbs resulting from contralateral grafts between limb buds and blastemas has been analyzed using the triploid cell marker in the axolotl. Results show that there is substantial participation from both developing and regenerating limb cells to all supernumerary limbs analyzed. These data lend further support to the hypothesis that developing and regenerating limbs utilize the same patterning mechanisms during limb outgrowth. This conclusion is discussed in terms of patterning models for developing and regenerating limbs and it is proposed that the rules of the polar coordinate model can best explain the behavior of cells during limb development as well as limb regeneration.  相似文献   

16.
Cardiac allografts were used to compare the immunologic capacity of nude mice and adult, thymectomized, lethally irradiated, bone marrow-reconstituted (AT × BM) mice. Neither nude nor AT × BM mice were able to reject cardiac allografts of any party. However, both rejected grafts of any party following implantation of neonatal thymus or thymus from 3-week-old syngeneic mice. Irradiated syngeneic thymus grafts (800 R) were equally effective in restoring host responsiveness against allografts. In contrast, allogeneic thymus grafts restored the capacity to reject second-party heart grafts only in AT × BM mice. Second-party grafts persisted indefinitely when placed on nude mice implanted with an allogeneic, unirradiated thymus graft. Third-party grafts transplanted 17 weeks after reconstitution, however, were rejected. Irradiated nude mice given normal littermate bone marrow and simultaneously grafted with second-party thymus and heart allografts also failed to reject their second-party heart grafts. The difference in ultimate capacity to respond between AT × BM and nude mice suggests that a maturational defect exists in the nude mouse enviroment which impedes development of precursor T lymphocytes.  相似文献   

17.
Seeds of anise (Pimpinella anisum) were exposed to doses of 0, 5, 10, 15 and 20kGy in a (60)Co package irradiator. Irradiated and unirradiated samples were stored at room temperature. Microbial populations on seeds, total and inorganic soluble solids in water extract and sensory properties of the latter were evaluated after 0, 6 and 12 months of storage. Results indicated that gamma irradiation reduced the aerobic plate counts of aniseed. Immediately after irradiation, the total soluble solids in an extract of irradiated seeds were greater than those of unirradiated ones. The total soluble solids in an extract of irradiated and un-irradiated seeds increased after 6 and 12 months of storage. There were no significant differences (p>0.05) in inorganic soluble solids between the water extract of irradiated and unirradiated aniseeds. Sensory evaluation indicated that gamma irradiation improved sensory characteristics of aniseed water extract tested immediately after irradiation; however, after 12 months of storage, no significant differences (p>0.05) were found in color, taste or flavor between extract of irradiated and unirradiated seeds.  相似文献   

18.
A set of tendons, aponeurotic sheets and retinaculae, which transduce muscle action from proximal limb levels to flexion and extension of the digits, is found in limbs of many vertebrates. This set of structures, here termed the digit tendon complex, is described for the axolotl forelimb. We show that the complex forms autonomously in muscleless axolotl limb regenerates produced from a cuff of unirradiated dermis surrounding an irradiated limb stump, and persists for up to a year after amputation. The pattern of other connective tissue structures, including the skeleton, is also normal. Fibroblast condensations that may represent sets of these cells normally associated with muscles in the extensor and flexor compartments of the carpal region also form in muscleless limbs. The results are discussed in terms of the importance of the dermis in pattern regulation, selforganization of connective tissues in general and autonomous development of the digit tendon complex in particular.  相似文献   

19.
To test for the presence of polarizing mesoderm in an amphibian, Xenopus laevis hindlimb bud tips were rotated 180° on the proximodistal axis and returned to the stump. Supernumerary outgrowths were induced in the preaxial stump and preaxial tip tissues, and the most postaxial digit always formed next to the grafted postaxial tissue. The occurrence of polarized supernumerary outgrowths indicated that the posterior limb border contained a polarizing zone. When the limb tip was cut at varying known lengths from the body wall, rotated, and grafted to the limb stump, the incidence of twinning along the proximodistal axis permitted insight into the distribution of the polarizing zone along the posterior border. The location of polarizing tissues was found to be similar to that in the chick wing bud at comparable stages. To confirm the posterior border stump influence on the rotated preaxial limb tip tissues, 180° tip rotations were made at the proximodistal level with the highest incidence of twinning. In these cases, the adjacent stump posterior border tissues (polarizing zone) were removed, leaving a substantial amount of the deeper postaxial stump tissue, however. The frequency of twinning from tip tissues was greatly reduced in these larvae compared to those with rotated limb tips on intact stumps. Cytological examination of supernumerary outgrowths resulting from grafts of two-nucleolate tips onto one-nucleolate stumps confirmed the preaxial source of the supernumerary outgrowths.  相似文献   

20.
The marrow in the left femur of each of 17 mice was destroyed by X-irradiation and 59Fe and 239Pu uptake into both femurs was measured 1, 3 and 7 days later. Uptake of 59Fe into marrow was depressed in the left femur 1 and 3 days after irradiation but was enhanced in the right unirradiated femur 3 days after the left femur was irradiated. There was no corresponding depression of 239Pu uptake into the left irradiated femur or enhancement into the right unirradiated femur. These results do not support the view that a functioning erythropoietic marrow is necessary for 239Pu to be deposited in bone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号