首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Steroid myopathy is a well-known adverse effect of glucocorticoids that causes muscle weakness and atrophy; however, its pathogenic mechanism is still unclear. Recently, oxidative stress was reported to contribute to steroid myopathy, but there is no report that actually attempts to measure hydroxyl radical. I developed an animal model of steroid myopathy in rat with dexamethasone (9-Fluoro−11β,17, 21-trihydroxy−16α-methylpregna−1,4-diene−3,20-dione), and measured hydroxyl radical using the salicylate trapping method. There was significant dose-dependent relation between both 2,5- and 2,3-dihydroxybenzoic acids and dexamethasone in the treated group, compared to the control group. These results suggest that hydroxyl radical plays a role in the pathogenesis of steroid myopathy.  相似文献   

2.
Various in vitro experiments have indicated that oxygen-derived free radicals may contribute to excitotoxic neuronal death. In the present study we induced excitotoxicity in rat striatum by perfusing glutamate at a high concentration through a microdialysis probe. We observed an increased formation of hydroxyl radicals (˙OH) during the perfusion of the excitotoxin and an extensive striatal lesion 24 h after the insult. The spin trap, -phenyl-N-tert-butylnitrone (PBN), attenuated both hydroxyl radical levels and the volume of the lesion. This result suggests that the neuroprotection may be due to a free radical scavenging mechanism. It also implies that PBN may be used in pathological situations involving excitotoxicity such as stroke, brain trauma, and chronic neurologic diseases.  相似文献   

3.
Mitochondrial and cytosolic monoamine oxidases were purified 220- and 129-fold, respectively, from rat brain. The purification procedure involved extraction (without the use of detergents for mitochondrial monoamine oxidase), ammonium sulfate precipitation, and chromatography on Sephadex G-25 and a DEAE-cellulose column. The properties of both enzymes with kynuramine as substrate, including Km values and pH optima at different kynuramine concentrations; the Rf values on polyacrylamide gel electrophoresis; and the thermal inactivation patterns were different. 2-Mercaptoethanol, together with heat treatment, released the flavin and decreased the enzyme activity differentially for the two enzymes. The absorption spectrum showed a "Red shift" in the absorption maxima when the spectra of the non-Triton-treated purified preparations were compared with those of the Triton-treated ones, thus possibly revealing that the mitochondrial and the cytosolic monoamine oxidases may be two different enzyme entities.  相似文献   

4.
The Fenton reaction of iron(II) EDTA with hydrgen peroxide, performed in the presence of ascorbateion. has proven to be useful as a probe of structure in DNA systems. Two aspects of this chemistry are discussed: the identity of the active DNA cleaving agent produced by this reagent, and the application of the Fenton reaction to the determination of the structure of the Holliday junction, the four-stranded DNA molecule that is a key intermediate in recombination. The cleavage pattern of the Holliday junction has pseudo-twofold symmetry, putting important constraints on possible structures.  相似文献   

5.
《Free radical research》2013,47(1):521-529
The Fenton reaction of iron(II) EDTA with hydrgen peroxide, performed in the presence of ascorbateion. has proven to be useful as a probe of structure in DNA systems. Two aspects of this chemistry are discussed: the identity of the active DNA cleaving agent produced by this reagent, and the application of the Fenton reaction to the determination of the structure of the Holliday junction, the four-stranded DNA molecule that is a key intermediate in recombination. The cleavage pattern of the Holliday junction has pseudo-twofold symmetry, putting important constraints on possible structures.  相似文献   

6.
-phenyl-tert-butyl-nitrone (PBN) a spin adduct forming agent is believed to have a protective action in ischemia-reperfusion injury of brain by forming adducts of oxygen free radicals including ±OH radical. Electron paramagnetic resonance (EPR) has been used to both detect and monitor the time course of oxygen free radical formation in the in vivo rat cerebral cortex. Cortical cups were placed over both cerebral hemispheres of methoxyflurane anesthetized rats prepared for four vessel occlusion-evoked cerebral ischemia. Prior to the onset of sample collection, both cups were perfused with artificial cerebrospinal fluid (aCSF) containing the spin trap agent -(4-pyridyl-1-oxide)-N-tert butylnitrone (POBN 100 mM) for 20 min. In addition 50 mg/kg BW of POBN was administered intraperitoneally (IP) 20 min prior to ischemia in order to improve our ability to detect free radical adducts. Cup fluid was subsequently replaced every 15 min during ischemia and every 10 min during reperfusion with fresh POBN containing CSF and the collected cortical superfusates were analyzed for radical adducts by EPR spectroscopy. After a basal 10 min collection, cerebral ischemia was induced for 15 or 30 min (confirmed by EEG flattening) followed by a 90 min reperfusion. -OH radical adducts (characterized by six line EPR spectra) were detected during ischemia and 90 min reperfusion. No adduct was detected in the basal sample or after 90 min of reperfusion. Similar results were obtained when diethylenetriaminepenta-acetic acid (100 μM; DETAPAC) a chelating agent was included in the artificial CSF. Systemic administration of PBN (100 mg/kg BW) produced a significant attenuation of radical adduct during reperfusion. A combination of systemic and topical PBN (100 mM) was required to suppress -OH radical adduct formation during ischemia as well as reperfusion. PBN free radical adducts were detected in EPR spectra of the lipid extracts of PBN treated rat brains subjected to ischemia/reperfusion. Thus this study suggests that PBN's protective action in cerebral ischemia/reperfusion injury is related to its ability to prevent a cascade of free radical generation by forming spin adducts.  相似文献   

7.
《Free radical research》2013,47(4):255-265
α-phenyl-tert-butyl-nitrone (PBN) a spin adduct forming agent is believed to have a protective action in ischemia-reperfusion injury of brain by forming adducts of oxygen free radicals including ±OH radical. Electron paramagnetic resonance (EPR) has been used to both detect and monitor the time course of oxygen free radical formation in the in vivo rat cerebral cortex. Cortical cups were placed over both cerebral hemispheres of methoxyflurane anesthetized rats prepared for four vessel occlusion-evoked cerebral ischemia. Prior to the onset of sample collection, both cups were perfused with artificial cerebrospinal fluid (aCSF) containing the spin trap agent α-(4-pyridyl-1-oxide)-N-tert butylnitrone (POBN 100 mM) for 20 min. In addition 50 mg/kg BW of POBN was administered intraperitoneally (IP) 20 min prior to ischemia in order to improve our ability to detect free radical adducts. Cup fluid was subsequently replaced every 15 min during ischemia and every 10 min during reperfusion with fresh POBN containing CSF and the collected cortical superfusates were analyzed for radical adducts by EPR spectroscopy. After a basal 10 min collection, cerebral ischemia was induced for 15 or 30 min (confirmed by EEG flattening) followed by a 90 min reperfusion. -OH radical adducts (characterized by six line EPR spectra) were detected during ischemia and 90 min reperfusion. No adduct was detected in the basal sample or after 90 min of reperfusion. Similar results were obtained when diethylenetriaminepenta-acetic acid (100 μM; DETAPAC) a chelating agent was included in the artificial CSF. Systemic administration of PBN (100 mg/kg BW) produced a significant attenuation of radical adduct during reperfusion. A combination of systemic and topical PBN (100 mM) was required to suppress -OH radical adduct formation during ischemia as well as reperfusion. PBN free radical adducts were detected in EPR spectra of the lipid extracts of PBN treated rat brains subjected to ischemia/reperfusion. Thus this study suggests that PBN's protective action in cerebral ischemia/reperfusion injury is related to its ability to prevent a cascade of free radical generation by forming spin adducts.  相似文献   

8.
Hydroxyl radical-scavenging property of indomethacin   总被引:1,自引:0,他引:1  
The ability of indomethacin to scavenge hydroxyl radical (.OH) using high pressure liquid chromatography (HPLC) was investigated. .OH radical was generated by photolysis of H2O2 (1.5–10 mmoles/L) with UV light and was trapped with salicyclic acid (500 nmoles). H2O2 produced .OH in a concentration-dependent manner as estimated by .OH adduct products 2,3- and 2,5-dihydroxybenzoic acid (DHBA). Indomethacin in increasing concentrations (5–600 moles/L) produced increasing inhibition of generation of 2,3-DHBA (7–67%) and of 2,5-DHBA (7–77%). The results indicate that indomethacin scavenges .OH in a concentration-dependent manner.  相似文献   

9.
Using ESR with 5,5-dimethyl-l-pyrroline N-oxide (DMPO) as a spin-trapping reagent, we measured the levels of free radical species generated from living cells of Chlorella vulgaris var. vulgails (IAM C-534). To investigate the production of free radicals in the living Chlorella vulgaris cells, the influence of DMPO toward the intact cells of the Chlorella vulgaris using the O2 evolution rate was first studied as a guide. Since the 02 evolution rate was not changed by DMPO, it was judged that DMPO has no toxicity toward the intact cells of Chlorella vulgaris.

Only hydroxyl radicals (-OH) were detected as the DMPO-OH adduct in the suspension of intact cells of Chlorella vulgaris irradiated with visible light. Moreover, since production of -OH was inhibited by some hydroxyl radical scavengers such as KI and ethanol, production of -OH was proved to be due to hydroxyl radicals. It was also clear that the intensity of OH increased with increasing irradiation intensity of visible light. Therefore, it was suggested that -OH might be one of the photoinhibition factors of the intact Chlorella vulgaris cells in severe light conditions.  相似文献   

10.
鸟嘌呤碱基与羟基自由基反应的密度泛函理论   总被引:3,自引:0,他引:3  
羟基自由基 (·OH)进攻嘌呤碱基是破坏核酸造成DNA断链损伤的重要原因之一 .采用密度泛函 (DFT)理论中B3LYP方法在 6— 31G基组水平上对鸟嘌呤 (G)受羟基自由基进攻形成的各种可能产物自由基进行几何全优化 .根据总能量、键长和自旋密度的计算结果 ,从理论上确认了C 5和C 8位加成机制 .得产物自由基G5OH·、G8OH· ,且G5OH·易与N 11位H脱水得一个更稳定的产物自由基 ,而G8OH·不易发生开环反应 ,得到与实验一致的结论 .这些稳定自由基的形成造成DNA断链损伤  相似文献   

11.
DNA or 2-deoxyguanosine reacts with hydroxyl free radical to form 8-hydroxy-deoxyguanosine (8-OH-dG). We found that 8-OH-dG can be effectively separated from deoxyguanosine by high pressure liquid chromatography and very sensitively detected using electrochemical detection. The sensitivity by electrochemical detection is about one-thousand fold enhanced over optical detection. Utilizing deoxyguanosine in bicarbonate buffer it was found that ferrous ion, but not ferric ion, was effective in forming 8-OH-dG. The hydroxyl free radical scavenging agents, thiourea and ethanol, were very effective in quenching Fe(11) mediated 8-OH-dG formation, but superoxide dismutase had very little effect.  相似文献   

12.
《Free radical research》2013,47(3):163-172
DNA or 2-deoxyguanosine reacts with hydroxyl free radical to form 8-hydroxy-deoxyguanosine (8-OH-dG). We found that 8-OH-dG can be effectively separated from deoxyguanosine by high pressure liquid chromatography and very sensitively detected using electrochemical detection. The sensitivity by electrochemical detection is about one-thousand fold enhanced over optical detection. Utilizing deoxyguanosine in bicarbonate buffer it was found that ferrous ion, but not ferric ion, was effective in forming 8-OH-dG. The hydroxyl free radical scavenging agents, thiourea and ethanol, were very effective in quenching Fe(11) mediated 8-OH-dG formation, but superoxide dismutase had very little effect.  相似文献   

13.
Brain Hydroxyl Radical Generation in Acute Experimental Head Injury   总被引:6,自引:4,他引:2  
Abstract: The time course and intensity of brain hydroxyl radical (?OH) generation were examined in male CF-1 mice during the first hour after moderate or severe concussive head injury. Hydroxyl radical production was measured using the salicylate trapping method in which the production of 2,3- and/or 2,5-dihydroxybenzoic acid (DHBA) in brain 15 min after salicylate administration was used as an index of ?OH formation. In mice injured with a concussion of moderate severity as defined by the 1-h posttraumatic neurologic recovery (grip score), a 60% increase in 2,5-DHBA formation was observed by 1 min after injury compared with that observed in uninjured mice. The peak in DHBA formation occurred at 15 min after injury (+67.5%; p < 0.02, compared with uninjured). At 30 min, the increase in DHBA lost significance, indicating that the posttraumatic increase in brain ?OH formation is a transient phenomenon. In severely injured mice, the peak increase in DHBA (both 2,3- and 2,5-) was observed at 30 min after injury, but also fell off thereafter as with the moderate injury severity. Preinjury dosing of the mice with SKF-525A (50 mg/kg i.p.), an inhibitor of microsomal drug oxidations, did not blunt the posttraumatic increase in salicylate-derived 2,5-DHBA, thus showing that it is not due to increased metabolic hydroxylation. Neither injury nor SKF-525A administration affected the DHBA plasma levels. However, saline perfusion of the injured mice to remove the intravascular blood before brain removal eliminated the injury-induced increase in 2,5-DHBA, but did not affect the baseline levels seen in uninjured mice. This implies that the source of the increased DHBA in the injured mice is the microvasculature, probably the endothelium. The administration of the 21-aminosteroid lipid antioxidant, tirilazad mesylate, which possesses ?OH scavenging properties, also attenuated the posttraumatic increase in DHBA, further supporting that it reflects an increase in ?OH radical formation. These results are the first direct demonstration of the occurrence and time course of increased ?OH production in injured brain.  相似文献   

14.
The neurotoxic effects of psychostimulants are mediated by several mechanisms, which together lead to neuronal damage. These mechanisms include an increase in the extracellular content of dopamine, stimulation of dopamine oxidation, accumulation of extracellular glutamate, and an increase in body temperature. In the present study, the dopamine receptor antagonist sulpiride proved able to prevent the delayed loss of dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC) and depressed the gradual generation of hydroxyl radicals induced in the rat striatum by D-amphetamine. However, sulpiride at a dose of 75 mg/kg × 2, coadministered with D-amphetamine (7.5 mg/kg × 4), potentiated the increase in extracellular dopamine and initially slightly enhanced D-amphetamine-induced stereotypy. The gradual increase in hydroxyl radical generation predicts the depletion of dopamine and DOPAC in the rat striatum after D-amphetamine administration, but the increase in extracellular dopamine is not a pivotal factor in the enhanced production of hydroxyl radicals.  相似文献   

15.
Phosvitin, a phosphoprotein known as an iron-carrier in egg yolk, binds almost all the yolk iron. In this study, we investigated the effect of phosvitin on Fe(II)-catalyzed hydroxyl radical (?OH) formation from H2O2 in the Fenton reaction system. Using electron spin resonance (ESR) with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) and deoxyribose degradation assays, we observed by both assays that phosvitin more effectively inhibited ?OH formation than iron-binding proteins such as ferritin and transferrin. The effectiveness of phosvitin was related to the iron concentration, indicating that phosvitin acts as an antioxidant by chelating iron ions. Phosvitin accelerates Fe(II) autoxidation and thus decreases the availability of Fe(II) for participation in the ?OH-generating Fenton reaction. Furthermore, using the plasmid DNA strand breakage assay, phosvitin protected DNA against oxidative damage induced by Fe(II) and H2O2. These results provide insight into the mechanism of protection of the developing embryo against iron-dependent oxidative damage in ovo.  相似文献   

16.
百合皂苷的提取、纯化及其对自由基的清除作用   总被引:9,自引:0,他引:9  
本文用正交实验法对百合总皂甙的提取工艺中温度、乙醇浓度、固液比例、回流时间和提取次数5个因素进行研究,优选出简便可靠、且适合工业化生产的百合总皂甙的提取工艺。其最佳提取工艺条件是:温度为60℃,乙醇浓度为70%,固液比例为1∶6,提取时间3h,提取次数3次。以溴邻苯三酚红(BPR)为显色剂,基于Co(II)H2O2体系反应产生的羟自由基(·OH)使溴邻苯三酚红(BPR)的颜色发生变化,采用756型紫外可见分光光度计测定其吸光度的变化值,研究百合皂苷在此体系中清除羟自由基的作用,对照实验表明:百合总皂苷提取物对羟自由基的清除作用比人参皂苷强。  相似文献   

17.
Preexisting hyperglycemia is associated with enhanced reperfusion injury in the postischemic rat brain. The goal of this study was to evaluate whether the hyperglycemic exacerbation of brain injury is associated with enhanced generation of hydroxyl radicals in rats subjected to middle cerebral artery occlusion (2 h), followed by reperfusion (2 h). Magnetic resonance images revealed the exacerbation of focal brain injury in hyperglycemic rats. The salicylate trapping method was used in conjunction with microdialysis to continuously estimate hydroxyl radical production by measurement of the stable adducts 2,3- and 2,5-dihydroxybenzoic acid (DHBA) during ischemia/reperfusion. In normoglycemic rats, from a mean baseline level of 130 nmol/l, 2,3-DHBA levels surged to peak levels of 194 nmol/l 45 min into ischemia and to 197 nmol/l 15–30 min into the reperfusion period, returning to baseline by 2 h into reperfusion. A similar temporal profile was observed in hyperglycemic rats, except that absolute 2,3-DHBA levels were higher (165 nmol/l at baseline, 317 nmol/l peak during ischemia, 333 nmol/l peak during reperfusion), and levels remained significantly high (p < .05) throughout the reperfusion period. These results suggest that hydroxyl radical is an important contributor to the exacerbation of neuronal and cerebrovascular injury after focal ischemia/reperfusion in hyperglycemic rats.  相似文献   

18.
Abstract— The levels of hydroxyl radicals and oxidized GSH have been examined as indices of oxidative stress in young (3 months), middle-aged (15 months), and old (20–24 months) gerbil brain hippocampus, cortex, and striaturn. The hydroxyl radical stress was estimated by measuring the salicylate hydroxyl radical trapping products 2,5-and 2,3-dihydroxybenzoic acid. The stress was significantly higher in all three brain regions in middle-aged and old gerbils versus young animals (66.0%). Regional comparisons showed that the stress was significantly higher in cortex than in either the hippocampus or striatum of the middle-aged and old gerbils (32.0%). The ratio of oxidized to total GSH also increased progressively in middle-aged and old animals in all three brain regions (p < 0.05, 41.1%), further indicating a general age-related increase in oxidative stress. Parallel to this age-related increase in oxidative stress, a significant, albeit slight (8%), decrease in neuronal number in hippocampal CA1 region was observed in both the middle-aged and old animals. Possible differences in antioxidant levels were also examined. Total GSH levels were similar across age groups (variance <12%). However, the regional comparison showed that it was highest in striatum in all age groups. The levels of a-tocopherol (vitamin E) were significantly higher in the middle-aged and old animals in all three regions (70.4%). Vitamin E was highest in the hippocampus and the differences between the hippocampus and the cortex and striatum increased with age. Although of a lesser magnitude, significant increases in hippocampal total ascorbic acid level were also noted with age (p < 0.05, 10%). Ascorbic acid was the most regionally specific of the three antioxidants examined, with hippocampus > cortex > striatum for all age groups. The difference in ascorbic acid level between hippocampus and cortex also increased with age (64.4%). The results suggest that the general age-related, regionally specific increases in oxidative stress stimulate the accumulation of antioxidants. It is interesting that the hippocampus, which is selectively vulnerable to various insults such as ischemia, epilepsy, and insulin-induced hypoglycemia, exhibits the greatest age-related increase in vitamin E and ascorbic acid, perhaps reflective of a greater impact of the progressive increase in baseline oxidative stress.  相似文献   

19.
Changes in Monoamine Oxidase Activity in Rat Brain During Alloxan Diabetes   总被引:10,自引:8,他引:2  
Abstract: The effect of alloxan diabetes on the activity of monoamine oxidase was studied in three regions of the rat brain at various time intervals after the onset of diabetes. It was observed that monoamine oxidase activity was decreased at early time intervals after diabetes, followed by a recovery in all three regions of the brain. A reversal of the effect was observed with insulin administration to the diabetic rats.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号