首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The fungus Shiraia bambusicola yields the phytochemical 11,11'-dideoxyverticillin, which has been shown to possess potent anticancer activity both in vitro and in vivo. In this study, we reveal that 11,11'-dideoxyverticillin has anti-angiogenic activities and explore the potential mechanisms for this effect. Treatment with 11,11'-dideoxyverticillin inhibited the proliferation of human umbilical vein endothelial cells (HUVECs) with IC(50) values of 0.17+/-0.05muM for VEGF-stimulated cells and 0.39+/-0.08muM for serum-stimulated cells. 11,11'-Dideoxyverticillin also antagonized the antiapoptotic effects of VEGF on serum-deprived HUVECs, inhibited VEGF-induced HUVEC migration in vitro, and blocked serum-induced HUVEC tube formation. Moreover, 11,11'-dideoxyverticillin completely blocked VEGF-induced microvessel sprouting from Matrigel-embedded rat aortic rings and vessel growth in Matrigel plugs in mice. In addition, 11,11'-dideoxyverticillin decreased VEGF secretion by MDA-MB-468 breast cancer cells, and significantly suppressed VEGF-induced tyrosine phosphorylation of Flt-1 and KDR/Flk-1. This inhibition of receptor phosphorylation was correlated with a marked decrease in VEGF-triggered pERK activation and a dramatic increase in pP38 MAPK, but no apparent change in pAkt. Together, these findings strongly suggest that 11,11'-dideoxyverticillin is a structurally novel angiogenesis inhibitor.  相似文献   

3.
Vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) exerts its multiple functions by activating two receptor tyrosine kinases, Flt-1 (VEGFR-1) and KDR (VEGFR-2), both of which are selectively expressed on primary vascular endothelium. To dissect the respective signaling pathways and biological functions mediated by these receptors in primary endothelial cells with two receptors intact, we, recently developed chimeric receptors (EGDR and EGLT) in which the extracellular domain of the epidermal growth factor receptor was fused to the transmembrane domain and intracellular domain of KDR and Flt-1, respectively. With these fusion receptors, we have shown that KDR is solely responsible for VPF/VEGF-induced human umbilical vein endothelial cell (HUVEC) proliferation and migration, whereas Flt-1 showed an inhibitory effect on KDR-mediated proliferation but not migration. To further characterize the VPF/VEGF-stimulated HUVEC proliferation and migration here, we have created several EGDR mutants by site-directed mutagenesis. We show that tyrosine residues 1059 and 951 of KDR are essential for VPF/VEGF-induced HUVEC proliferation and migration, respectively. Furthermore, the mutation of tyrosine 1059 to phenylanaline results in the complete loss of KDR/EGDR-mediated intracellular Ca(2+) mobilization and MAPK phosphorylation, but the mutation of tyrosine 951 to phenylanaline did not affect these events. Our results suggest that KDR mediates different signaling pathways for HUVEC proliferation and migration and, moreover, intracellular Ca(2+) mobilization and MAPK phosphorylation are not essential for VPF/VEGF-induced HUVEC migration.  相似文献   

4.
Endostatin, a fragment of collagen XVIII, is a potent anti-angiogenic protein, but the molecular mechanism of its action is not yet clear. We examined the effects of endostatin on the biological and biochemical activities of vascular endothelial growth factor (VEGF). Endostatin blocked VEGF-induced tyrosine phosphorylation of KDR/Flk-1 and activation of ERK, p38 MAPK, and p125(FAK) in human umbilical vein endothelial cells. Endostatin also inhibited the binding of VEGF(165) to both endothelial cells and purified extracellular domain of KDR/Flk-1. Moreover, the binding of VEGF(121) to KDR/Flk-1 and VEGF(121)-stimulated ERK activation were blocked by endostatin. The direct interaction between endostatin and KDR/Flk-1 was confirmed by affinity chromatography. However, endostatin did not bind to VEGF. Our findings suggest that a direct interaction of endostatin with KDR/Flk-1 may be involved in the inhibitory function of endostatin toward VEGF actions and responsible for its potent anti-angiogenic and anti-tumor activities in vivo.  相似文献   

5.
Spleen tyrosine kinase (Syk), expressed in endothelial cells, has been implicated in migration and proliferation and in vasculogenesis. This study was conducted to determine the contribution of Syk and the underlying mechanism to the angiogenic effect of ANG II and VEGF. Angiogenesis was determined by tube formation from the endothelial cell line EA.hy926 (EA) and human umbilical vein endothelial cells (HUVECs) and microvessel sprouting in rat aortic rings. ANG II (10 nM), EGF (30 ng/ml), and VEGF (50 ng/ml) stimulated EA cells and HUVECs to form tubular networks and increased aortic sprouting; these effects were blocked by VEGF receptor-1 and Flt-1 antibody (Flt-1/Fc) but not by the VEGF receptor-2 (Flk-1) antagonist SU-1498. ANG II increased the phosphorylation of Flt-1 but not Flk-1, whereas VEGF increased the phosphorylation of both receptors in EA cells and HUVECs. VEGF expression elicited by ANG II was not altered by Flt-1/Fc or SU-1498. EGF stimulated tube formation from EA cells and HUVECs and Flt-1 phosphorylation and aortic sprouting, which were blocked by the EGF receptor antagonist AG-1478 and Flt-1/Fc but not by SU-1498. ANG II-, EGF-, and VEGF-induced tube formation and aortic sprouting were attenuated by the Syk inhibitor piceatannol and by Syk short hairpin interfering (sh)RNA and small interfering RNA, respectively. ANG II, EGF, and VEGF increased Syk phosphorylation, which was inhibited by piceatannol and Syk shRNA in EA cells and HUVECs. Neither piceatannol nor Syk shRNA altered ANG II-, EGF-, or VEGF-induced phosphorylation of Flt-1. These data suggest that ANG II stimulates angiogenesis via transactivation of the EGF receptor, which promotes the phosphorylation of Flt-1 and activation of Syk independent of VEGF expression.  相似文献   

6.
Sphingosine 1-phosphate (S1P) and vascular endothelial growth factor (VEGF) elicit numerous biological responses including cell survival, growth, migration, and differentiation in endothelial cells mediated by the endothelial differentiation gene, a family of G-protein-coupled receptors, and fetal liver kinase-1/kinase-insert domain-containing receptor (Flk-1/KDR), one of VEGF receptors, respectively. Recently, it was reported that S1P or VEGF treatment of endothelial cells leads to phosphorylation at Ser-1179 in bovine endothelial nitric oxide synthase (eNOS), and this phosphorylation is critical for eNOS activation. S1P stimulation of eNOS phosphorylation was shown to involve G(i) protein, phosphoinositide 3-kinase, and Akt. VEGF also activates eNOS through Flk-1/KDR, phosphoinositide 3-kinase, and Akt, which suggested that S1P and VEGF may share upstream signaling mediators. We now report that S1P treatment of bovine aortic endothelial cells acutely increases the tyrosine phosphorylation of Flk-1/KDR, similar to VEGF treatment. S1P-mediated phosphorylation of Flk-1/KDR, Akt, and eNOS were all inhibited by VEGF receptor tyrosine kinase inhibitors and by antisense Flk-1/KDR oligonucleotides. Our study suggests that S1P activation of eNOS involves G(i), calcium, and Src family kinase-dependent transactivation of Flk-1/KDR. These data are the first to establish a critical role of Flk-1/KDR in S1P-stimulated eNOS phosphorylation and activation.  相似文献   

7.
VEGF induces pathological angiogenesis and is an important target for the development of novel antiangiogenic molecules. In this study, we tested synthetic peptides based on the sequence of VEGF(189) for their ability to inhibit VEGF receptor binding and biological responses. We identified 12-amino acid peptides derived from exon 6 that inhibited VEGF binding to HUVECs, VEGF-stimulated ERK activation, and prostacyclin production. These peptides inhibited VEGF-induced mitogenesis, migration, and VEGF-dependent survival of endothelial cells, but caused no increase in apoptosis in the absence of VEGF. Exon 6-encoded peptides also caused a marked inhibition of VEGF-induced angiogenesis in vitro. Studies of effects of peptides on cross-linking of VEGF to its receptors and on binding of VEGF to porcine aortic endothelial cells expressing either KDR or neuropilin-1 showed that exon 6-encoded peptides effectively blocked the interaction of VEGF with both receptors. Exon 6-derived peptides caused release of bFGF from endothelial cells but inhibited bFGF-dependent ERK activation, cell proliferation and angiogenesis. Our findings indicate that VEGF exon 6-encoded peptides inhibit VEGF-induced angiogenesis, at least in part through inhibition of VEGF binding to KDR. In addition, exon 6-encoded peptides are also effective inhibitors of bFGF-mediated angiogenesis.  相似文献   

8.
Vascular permeability factor (VPF)/vascular endothelial growth factor (VEGF) achieves its multiple functions by activating two receptor tyrosine kinases, Flt-1 (VEGF receptor-1) and KDR (VEGF receptor-2), both of which are selectively expressed on primary vascular endothelium. To dissect the respective signaling pathways and biological functions mediated by these receptors in primary endothelial cells with these two receptors intact, we developed a chimeric receptor system in which the N terminus of the epidermal growth factor receptor was fused to the transmembrane domain and intracellular domain of KDR (EGDR) and Flt-1 (EGLT). We observed that KDR, but not Flt-1, was responsible for VPF/VEGF-induced human umbilical vein endothelial cell (HUVEC) proliferation and migration. Moreover, Flt-1 showed an inhibitory effect on KDR-mediated proliferation, but not migration. We also demonstrated that the inhibitory function of Flt-1 was mediated through the phosphatidylinositol 3-kinase (PI-3K)-dependent pathway because inhibitors of PI-3K as well as a dominant negative mutant of p85 (PI-3K subunit) reversed the inhibition, whereas a constitutively activated mutant of p110 introduced the inhibition to HUVEC-EGDR. We also observed that, in VPF/VEGF-stimulated HUVECs, the Flt-1/EGLT-mediated down-modulation of KDR/EGDR signaling was at or before intracellular Ca(2+) mobilization, but after KDR/EGDR phosphorylation. By mutational analysis, we further identified that the tyrosine 794 residue of Flt-1 was essential for its antiproliferative effect. Taken together, these studies contribute significantly to our understanding of the signaling pathways and biological functions triggered by KDR and Flt-1 and describe a unique mechanism in which PI-3K acts as a mediator of antiproliferation in primary vascular endothelium.  相似文献   

9.
c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) is involved in the regulation of various cellular functions including cell cycle, proliferation, apoptosis. However, whether JNK/SAPK directly regulates the angiogenesis of human umbilical vein endothelial cells (HUVECs) induced by vascular endothelial growth factor A (VEGFA) has not yet been fully elucidated. Our present study firstly demonstrated VEGFA-induced angiogenic responses including the increase of cell viability, migration, and tube formation with a concentration-dependent manner in HUVECs. Further results showed that VEGFA induced the activation of JNK/SAPK, p38 kinase and extracellular signal-regulated kinases 1 and 2 (ERK1/2), while JNK/SAPK inhibitor SP600125 and specific siRNA both blocked all those angiogenic effects induced by VEGFA. Furthermore, VEGFA induced the phosphorylation of ASK1, SEK1/MKK4, MKK7, and c-Jun, which are upstream or downstream signals of JNK/SAPK. In addition, in vivo matrigel plug assay further showed that SP600125 inhibited VEGFA-induced angiogenesis. Further results showed that SP600125 and JNK/SAPK siRNA decreased VEGFA-induced VEGFR2 (Flk-1/KDR) sustained phosphorylation in HUVECs. Taken together, all these results demonstrate that JNK/SAPK regulates VEGFA-induced VEGFR2 sustained phosphorylation, which plays important roles in VEGFA-induced angiogenesis in HUVECs.  相似文献   

10.
Epidemiological and animal studies have indicated that consumption of green tea is associated with a reduced risk of developing certain forms of cancer. However, the inhibitory mechanism of green tea in angiogenesis, an important process in tumor growth, has not been well established. In the present study, green tea extract (GTE) was tested for its ability to inhibit cell viability, cell proliferation, cell cycle dynamics, vascular endothelial growth factor (VEGF) and expression of VEGF receptors fms-like tyrosine kinase (Flt-1) and fetal liver kinase-1/Kinase insert domain containing receptor (Flk-1/KDR) in vitro using human umbilical vein endothelial cells (HUVECs). GTE in culture media did not affect cell viability but significantly reduced cell proliferation dose-dependently and caused a dose-dependent accumulation of cells in the G1 phase. The decrease of the expression of Flt-1 and KDR/Flk-1 in HUVEC by GTE was detected with immunohistochemical and Western blotting methods. These results suggest that GTE may have preventive effects on tumor angiogenesis and metastasis through reduction of expression of VEGF receptors.  相似文献   

11.
Vascular endothelial growth factor (VEGF) is vital to physiological as well as pathological angiogenesis, and regulates a variety of cellular functions, largely by activating its 2 receptors, fms-like tyrosine kinase (Flt1) and kinase domain receptor (KDR). KDR plays a critical role in the proliferation of endothelial cells by controlling VEGF-induced phospholipase Cγ-protein kinase C (PLCγ-PKC) signaling. The function of Flt1, however, remains to be clarified. Recent evidence has indicated that Flt1 regulates the VEGF-triggered migration of endothelial cells and macrophages. Here, we show that RACK1, a ubiquitously expressed scaffolding protein, functions as an important regulator of this process. We found that RACK1 (receptor for activated protein kinase C 1) binds to Flt1 in vitro. When the endogenous expression of RACK1 was attenuated by RNA interference, the VEGF-driven migration was remarkably suppressed whereas the proliferation was unaffected in a stable Flt1-expressing cell line, AG1-G1-Flt1. Further, we demonstrated that the VEGF/Flt-mediated migration of AG1-G1-Flt1 cells occurred mainly via the activation of the PI3 kinase (PI3K)/Akt and Rac1 pathways, and that RACK1 plays a crucial regulatory role in promoting PI3K/Akt-Rac1 activation.  相似文献   

12.
Anti-angiogenesis is regarded as an effective strategy for cancer treatment, and vascular endothelial growth factor (VEGF) plays a key role in the regulations of angiogenesis and vasculogenesis. In the present study, the authors synthesized five novel nicotinamide derivatives which structurally mimic the receptor tyrosine kinase inhibitor sunitinib and evaluated their anti-angiogenic effects. Transwell migration assays revealed that 2-(1-benzylpiperidin-4-yl) amino-N-(3-chlorophenyl) nicotinamide (BRN-103), among the five derivatives most potently inhibited VEGF-induced human umbilical vein endothelial cells (HUVECs). In addition, BRN-103 dose-dependently inhibited VEGF-induced migration, proliferation, and capillary-like tube formation of HUVECs and vessel sprouting from mouse aortic rings. To understand the molecular mechanisms responsible for these activities, the authors examined the effect of BRN-103 on VEGF signaling pathways in HUVECs. BRN-103 was found to suppress the VEGF-induced phosphorylation of VEGF receptor 2 (VEGR2) and the activations of AKT and eNOS. Taken together, these results suggest that BRN-103 inhibits VEGF-mediated angiogenesis signaling in human endothelial cells.  相似文献   

13.
14.
Human microvascular endothelial cell-1 (HMEC-1) generated by transfection with SV40 large T antigen has been the prevailing model for in vitro studies on endothelium. However, the transduction of SV40 may lead to unwanted cell behaviors which are absent in primary cells. Thus, establishing a new microvascular endothelial cell line, which is capable of maintaining inherent features of primary endothelial cells, appears to be extremely important. Here, we immortalized primary human microvascular endothelial cells (pHMECs) by engineering the human telomerase catalytic protein (hTERT) into the cells. Endothelial cell-specific markers were examined and the angiogenic responses were characterized in these cells (termed as HMVECs, for human microvascular endothelial cells). We found that VEGF receptor 2 (Flk-1/KDR), tie1, and tie2 expression is preserved in HMVEC, whereas Flk-1/KDR is absent in HMEC-1. In addition, HMVEC showed similar angiogenic responses to VEGF as HMEC-1. Furthermore, the HMVEC line was found to generate a prominent angiogenic response to periostin, a potent angiogenic factor identified recently. The data indicate that HMVEC may serve as a suitable in vitro endothelium model.  相似文献   

15.
Vascular endothelial growth factor (VEGF) receptor activation regulates endothelial cell (EC) survival, migration and proliferation. Recently, it was suggested the cross-talk between the VEGF receptors-1 (FLT-1) and -2 (KDR) modulated several of these functions, but the detailed molecular basis for such interactions remained unexplained. Here we demonstrate for the first time that VEGF stimulation of EC monolayers induced a rapid FLT-1-mediated internalization of KDR to the nucleus, via microtubules and the endocytic pathway, internalization which required the activation of PI 3-kinase/AKT. KDR deletion mutants were generated in several tyrosine residues; in these, VEGF-induced KDR internalization was impaired, demonstrating this process required activation (phosphorylation) of the receptor. Furthermore, we demonstrate that in vitro wounding of EC monolayers leads to a rapid and transient internalization of VEGF+KDR to the nucleus, which is essential for monolayer recovery. Notably, FLT-1 blockade impedes VEGF and KDR activation and internalization, blocking endothelial monolayer recovery. Our data reveal a previously unrecognized mechanism induced by VEGF on EC, which regulates EC recovery following wounding, and as such indicate novel targets for therapeutic intervention.  相似文献   

16.
Vascular endothelial growth factor (VEGF), a potent mediator of endothelial proliferation and migration, has an important role also in brain edema formation during hypoxia and ischemia. VEGF binds to the tyrosine kinase receptors Flt-1 and Flk-1. Yet, their relative importance for hypoxia-induced hyperpermeability is not well understood. We used an in vitro blood-brain barrier (BBB) model consisting of porcine brain microvascular endothelial cells (BMEC) to determine the role of Flt-1 in VEGF-induced endothelial cell (EC) barrier dysfunction. Soluble Flt-1 abolished hypoxia/VEGF-induced hyperpermeability. Furthermore, selective antisense oligonucleotides to Flt-1, but not to Flk-1, inhibited hypoxia-induced permeability changes. Consistent with these data, addition of the receptor-specific homolog placenta-derived growth factor, which binds Flt-1 but not Flk-1, increased endothelial permeability to the same extent as VEGF, whereas adding VEGF-E, a viral VEGF molecule from the orf virus family activating Flk-1 and neuropilin-1, but not Flt-1, did not show any effect. Using the carcinoma submandibular gland cell line (CSG), only expressing Flt-1, it was demonstrated that activation of Flt-1 is sufficient to induce hyperpermeability by hypoxia and VEGF. Hyperpermeability, induced by hypoxia/VEGF, depends on activation of phosphatidylinositol 3-kinase/Akt (PI3-K/Akt), nitric oxide synthase (NOS) and protein kinase G (PKG). The activation of the PI3-K/Akt pathway by hypoxia was confirmed using an in vivo mice hypoxia model. These results demonstrate that hypoxia/VEGF-induced hyperpermeability can be mediated by activation of Flt-1 independently on the presence of Flk-1 and indicate a central role for activation of the PI3-K/Akt pathway, followed by induction of NOS and PKG activity.  相似文献   

17.
Binding of vascular endothelial growth factor (VEGF) to its receptor, VEGFR-2 (Flk-1/KDR), induces dimerization and activation of the tyrosine kinase domain of the receptor, resulting in autophosphorylation of cytoplasmic tyrosine residues used as docking sites for signaling proteins that relay the signals for cell proliferation, migration, and permeability enhancement. We explored the VEGF/receptor signaling pathway by performing a two-hybrid screen of a rat lung cDNA library in yeast using the intracellular domain of rat VEGFR-2 as bait. Two clones encoding lipocortin V were isolated. Subsequent studies with the yeast two-hybrid assay showed that the complete intracellular domain of VEGFR-2 was required for the interaction. Co-immunoprecipitation of translated proteins confirmed the interaction between the VEGF receptor and lipocortin V. VEGF induced a rapid tyrosine phosphorylation of lipocortin V in human umbilical vein endothelial cells (HUVEC). Pretreatment of HUVEC with antisense oligodeoxyribonucleotide (ODN) for lipocortin V significantly inhibited VEGF-induced cell proliferation, which was accompanied by a decrease in protein synthesis and tyrosine phosphorylation of lipocortin V. Our results indicate that lipocortin V may function as a signaling protein for VEGFR-2 by directly interacting with the intracellular domain of the receptor and appears to be involved in regulation of vascular endothelial cell proliferation mediated by VEGFR-2.  相似文献   

18.
Cysteine-rich motor neuron 1 (CRIM1) is expressed in vascular endothelial cells and plays a crucial role in angiogenesis. In this study, we investigated the expression of CRIM1 mRNA in human umbilical vein endothelial cells (HUVECs). CRIM1 mRNA levels were not altered in vascular endothelial growth factor (VEGF)-stimulated monolayer HUVECs or in cells in collagen gels without VEGF. In contrast, the expression of CRIM1 mRNA was elevated in VEGF-stimulated cells in collagen gels. The increase in CRIM1 mRNA expression was observed even at 2 h when HUVECs did not form tubular structures in collagen gels. Extracellular signal-regulated kinase (Erk) 1/2, Akt and focal adhesion kinase (FAK) were activated by VEGF in HUVECs. The VEGF-induced expression of CRIM1 mRNA was significantly abrogated by PD98059 or PF562271, but was not affected by LY294002. These results demonstrate that CRIM1 is an early response gene in the presence of both angiogenic stimulation (VEGF) and environmental (extracellular matrix) factors, and Erk and FAK might be involved in the upregulation of CRIM1 mRNA expression in vascular endothelial cells.  相似文献   

19.
Ligand-stimulated degradation of receptor tyrosine kinase (RTK) is an important regulatory step of signal transduction. The vascular endothelial growth factor (VEGF) receptor Flk-1/KDR is responsible for the VEGF-stimulated nitric oxide (NO) production from endothelial cells. Cellular mechanisms mediating the negative regulation of Flk-1 signaling in endothelial cells have not been investigated. Here we show that Flk-1 is rapidly down-regulated following VEGF stimulation of bovine aortic endothelial cells (BAECs). Consequently, VEGF pretreatment of endothelial cells prevents any further stimulation of Flk-1, resulting in decreased NO production from subsequent VEGF challenges. Ubiquitination of RTKs targets them for degradation; we demonstrate that activation of Flk-1 by VEGF leads to its polyubiquitination in BAECs. Furthermore, VEGF stimulation of BAECs or COS-7 cells transiently transfected with Flk-1 results in the phosphorylation of the ubiquitin ligase Cbl, the enhanced association of Cbl with Flk-1, and the relocalization of Cbl to vesicular structures in BAECs. Overexpression of Cbl in COS-7 cells enhances VEGF-induced ubiquitination of Flk-1, whereas a Cbl mutant lacking the ubiquitin ligase RING finger domain, 70Z/3-Cbl, does not. Moreover, expression of Cbl in contrast to 70Z/3-Cbl inhibits the Flk-1-dependent activation of eNOS and, thus, NO release. In BAEC overexpressing Cbl, the degradation of Flk-1 upon VEGF stimulation is accelerated compared with cells transfected with a control vector (green fluorescent protein). Our findings demonstrate that Flk-1 is rapidly down-regulated following sustained VEGF stimulation and identify Cbl as a negative regulator of Flk-1 signaling to eNOS. Cbl thus plays a role in the regulation of VEGF signaling by mediating the stimulated ubiquitination and, consequently, degradation of Flk-1 in endothelial cells.  相似文献   

20.
Bioactivity of anti-angiogenic ribozymes targeting Flt-1 and KDR mRNA.   总被引:13,自引:0,他引:13  
Vascular endothelial growth factor (VEGF) and its receptors Flt-1 and KDR play important roles in physiological and pathological angiogenesis. Ribozymes that target the VEGF receptor mRNAs were developed and their biological activities in cell culture and an animal model were assessed. Ribozymes targeting Flt-1 or KDR mRNA sites reduced VEGF-induced proliferation of cultured human vascular endothelial cells and specifically lowered the level of Flt-1 or KDR mRNA present in the cells. Anti- Flt-1 and KDR ribozymes also exhibited anti-angiogenic activity in a rat corneal pocket assay of VEGF-induced angiogenesis. This report illustrates the anti-angiogenic potential of these ribozymes as well as their value in studying VEGF receptor function in normal and pathophysiologic states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号