首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The activities of serotonin N-acetyltransferase (NAT) and hydroxyindole-O-methyltransferase (HIOMT) and the melatonin content were measured in Syrian hamster pineal glands at 2-hr intervals over a period of 24 hr. NAT and HIOMT are the two enzymes which catalyze the formation of melatonin from serotonin. The use of micromethods for determination of the enzyme activities allowed concurrent measurement of NAT and melatonin or HIOMT and melatonin in the same gland. HIOMT activity showed no significant diurnal rhythm whereas NAT activity and melatonin content exhibited distinct peak values late in the dark phase as described previously. Despite an apparent parallelism between the NAT activity rhythm and melatonin content, no correlation exists between these parameters in single pineal glands.  相似文献   

2.
Pineal function during ethanol intoxication, dependence, and withdrawal   总被引:3,自引:0,他引:3  
Pineal melatonin and serotonin content were determined during one to four days of continuous intoxication, and during the alcohol withdrawal syndrome. The nocturnal rise in pineal melatonin was blunted in continuously intoxicated animals, however this was found to be unrelated to duration of treatment. The initial dependent-intoxicated phase of the alcohol withdrawal syndrome produced a reduction of nocturnal pineal melatonin content with a concomitant elevation in pineal serotonin. The overt withdrawal phase of the alcohol withdrawal syndrome had no effect on pineal melatonin or serotonin content. This data suggests that ethanol may perturb pineal melatonin synthesis either directly, or indirectly by altered receptor function. Contrary to our expectations the pineal may not be a useful model to probe the physiology of increased noradrenergic neurotransmission produced by ethanol withdrawal.  相似文献   

3.
Melatonin is an effective antioxidant, immunostimulant, gonadal maturating regulator and antistress indoleamine that may be potentially useful for fish farmers. We have explored two possible ways of increasing plasma melatonin levels through the diet: direct melatonin supplementation (ME diet) and supplementation with the melatonin precursor tryptophan (TRP diet). To this end, a group of sea bass was fed a commercial diet (STD diet) at a regular time for 16 days, after which plasma, intestine, and bile samples were taken at four different time points: 120 min before, and 15, 180 and 480 min after feeding. Locomotor activity, intestinal and biliary melatonin, and plasma melatonin, serotonin and cortisol levels were measured. This same sampling process and analyses were also carried out after feeding sea bass TRP diet or ME diet for 1 week. Our results show that melatonin, but not tryptophan supplementation of the diet increases plasma, intestine and bile levels of melatonin. Plasma serotonin levels, on the other hand, were increased by dietary tryptophan, but not by melatonin, confirming the availability of supplemented tryptophan for serotonin synthesis. Both treatments were equally effective in reducing the high cortisol levels observed with the STD diet.  相似文献   

4.
Melatonin (N-acetyl-5-methoxytryptamine) is the chief secretory product of the pineal gland and synthesized enzymatically from serotonin (5-hydroxytryptamine). These indoleamine derivatives play an important role in the prevention of oxidative damage. In the present study, DMPD radical scavenging and cupric ion (Cu(2+)) reducing ability of melatonin and serotonin as trolox equivalent antioxidant activity (TEAC) was investigated. Melatonin and serotonin demonstrated 73.5 and 127.4 microg/mL trolox equivalent DMPD( radical+) scavenging activity at the concentration of 100 microg/mL. Also, at the same concentration, melatonin and serotonin showed 14.41 and 116.09 microg/mL trolox equivalent cupric ion (Cu(2+)) reducing ability. These results showed that melatonin and serotonin had marked DMPD(radical+) radical scavenging and cupric ions (Cu(2+)) reducing ability. Especially, serotonin had higher DMPD radical scavenging and cupric ions (Cu(2+)) reducing activity than melatonin because of its phenolic group.  相似文献   

5.
We investigated possible interactions between melatonin and corticosterone in modulating the reproductive behavior of male red-sided garter snakes (Thamnophis sirtalis parietalis) following spring emergence. We also examined whether melatonin's modulatory actions could be explained by its potential properties as a serotonin receptor antagonist. Exogenous corticosterone significantly reduced courtship behavior of male snakes in a dose-dependent manner. Melatonin also significantly reduced courtship behavior of male garter snakes. Pretreatment with melatonin before administering corticosterone treatments further suppressed courtship behavior of red-sided garter snakes. These results indicate additive inhibitory effects of melatonin and corticosterone in modulating reproductive behavior. Snakes receiving ketanserin, a serotonergic type 2A receptor antagonist, followed by corticosterone also showed reduced courtship behavior; this serotonin receptor antagonist followed by treatment with vehicle did not significantly influence courtship behavior of male snakes. Neither melatonin nor corticosterone treatments significantly influenced testosterone + 5-alpha-dihydrotestosterone concentrations of male garter snakes, supporting a direct effect of melatonin and corticosterone on courtship behavior that is independent of any effect on androgen concentrations. We propose that a serotonin system is involved in the modulation of male courtship behavior by melatonin and corticosterone. In addition, our data support the hypothesis that melatonin may function as a serotonin receptor antagonist. Further research is necessary to discern whether the actions of melatonin and corticosterone are converging on the same pathway or if their effects on different pathways are having additive inhibitory effects on courtship behavior.  相似文献   

6.
Melatonin and serotonin are indoleamines first identified as neurotransmitters in vertebrates; they have now been found to be ubiquitously present across all forms of life. Both melatonin and serotonin were discovered in plants several years after their discovery in mammals, but their presence has now been confirmed in almost all plant families. The mechanisms of action of melatonin and serotonin are still poorly defined. Melatonin and serotonin possess important roles in plant growth and development, including functions in chronoregulation and modulation of reproductive development, control of root and shoot organogenesis, maintenance of plant tissues, delay of senescence, and responses to biotic and abiotic stresses. This review focuses on the roles of melatonin and serotonin as a novel class of plant growth regulators. Their roles in reproductive and vegetative plant growth will be examined including an overview of current hypotheses and knowledge regarding their mechanisms of action in specific responses.  相似文献   

7.
The efficacy of melatonin, glutathione, serotonin, minocycline, lipoic acid and ascorbic acid in counteracting the toxicity of paraquat in Drosophila melanogaster was examined. Male Oregon wild strain flies were fed for 5 days with control food or food containing the test substance. They were transferred in groups of five to vials containing only filter paper soaked with 20 mM paraquat in 5% sucrose solution. Survival was determined 24 and 48 h later. All the substances assayed increased the survival of D. melanogaster. At equimolar concentrations (0.43 mM) melatonin was more effective than serotonin, lipoic acid and ascorbic acid. However, lower concentrations of glutathione (0.22 mM) and minocycline (0.05 mM) were as efficient as melatonin. The highest survival rate (38.6%) after 48 h of paraquat treatment was found with 2.15 mM of lipoic acid. No synergistic effect of melatonin with glutathione, serotonin, minocycline, lipoic acid and ascorbic acid was detected.  相似文献   

8.
1. Current knowledge of the mechanisms of circadian and photic regulation of retinal melatonin in vertebrates is reviewed, with a focus on recent progress and unanswered questions. 2. Retinal melatonin synthesis is elevated at night, as a result of acute suppression by light and rhythmic regulation by a circadian oscillator, or clock, which has been localized to the eye in some species. 3. The development of suitable in vitro retinal preparations, particularly the eyecup from the African clawed frog, Xenopus laevis, has enabled identification of neural, cellular, and molecular mechanisms of retinal melatonin regulation. 4. Recent findings indicate that retinal melatonin levels can be regulated at multiple points in indoleamine metabolic pathways, including synthesis and availability of the precursor serotonin, activity of the enzyme serotonin N-acetyltransferase, and a novel pathway for degradation of melatonin within the retina. 5. Retinal dopamine appears to act through D2 receptors as a signal for light in this system, both in the acute suppression of melatonin synthesis and in the entrainment of the ocular circadian oscillator. 6. A recently developed in vitro system that enables high-resolution measurement of retinal circadian rhythmicity for mechanistic analysis of the circadian oscillator is described, along with preliminary results that suggest its potential for elucidating general circadian mechanisms. 7. A model describing hypothesized interactions among circadian, neurochemical, and cellular mechanisms in regulation of retinal melatonin is presented.  相似文献   

9.
A theory is presented that explains the evolution of the pinealocyte from the common ancestral photoreceptor of both the pinealocyte and retinal photoreceptor. Central to the hypothesis is the previously unrecognized conflict between the two chemistries that define these cells-melatonin synthesis and retinoid recycling. At the core of the conflict is the formation of adducts composed of two molecules of retinaldehyde and one molecule of serotonin, analogous to formation in the retina of the toxic bis-retinyl ethanolamine (A2E). The hypothesis argues that early in chordate evolution, at a point before the genes required for melatonin synthesis were acquired, retinaldehyde--which is essential for photon capture--was depleted by reacting with naturally occurring arylalkylamines (tyramine, serotonin, tryptamine, phenylethylamine) and xenobiotic arylalkylamines. This generated toxic bis-retinyl arylalkylamines (A2AAs). The acquisition of arylalkylamine N-acetyltransferase (AANAT) prevented this by N-acetylating the arylalkylamines. Hydroxyindole-O-methyltransferase enhanced detoxification in the primitive photoreceptor by increasing the lipid solubility of serotonin and bis-retinyl serotonin. After the serotonin --> melatonin pathway was established, the next step leading toward the pinealocyte was the evolution of a daily rhythm in melatonin and the capacity to recognize it as a signal of darkness. The shift in melatonin from metabolic garbage to information developed a pressure to improve the reliability of the melatonin signal, which in turn led to higher levels of serotonin in the photodetector. This generated the conflict between serotonin and retinaldehyde, which was resolved by the cellular segregation of the two chemistries. The result, in primates, is a pineal gland that does not detect light and a retinal photodetector that does not make melatonin. High levels of AANAT in the latter tissue might serve the same function AANAT had when first acquired- prevention of A2AA formation.  相似文献   

10.
Melatonin (N-acetyl-5-methoxytryptamine) is the chief secretory product of the pineal gland and synthesized enzymatically from serotonin (5-hydroxytryptamine). These indoleamine derivatives play an important role in the prevention of oxidative damage. In the present study, DMPD radical scavenging and cupric ion (Cu2+) reducing ability of melatonin and serotonin as trolox equivalent antioxidant activity (TEAC) was investigated. Melatonin and serotonin demonstrated 73.5 and 127.4 μg/mL trolox equivalent DMPD√+ scavenging activity at the concentration of 100 μg/mL. Also, at the same concentration, melatonin and serotonin showed 14.41 and 116.09 μg/mL trolox equivalent cupric ion (Cu2+) reducing ability. These results showed that melatonin and serotonin had marked DMPD√+ radical scavenging and cupric ions (Cu2+) reducing ability. Especially, serotonin had higher DMPD radical scavenging and cupric ions (Cu2+) reducing activity than melatonin because of its phenolic group.  相似文献   

11.
Central composite design was used to quantify the relationship between darkness, melatonin and serotonin with growth ofTetrahymena thermophila and hydrolytic enzyme activities. Circadian variation was the most important factor to optimise the maximal population without a long generation time; i.e. light at the beginning of culture for 640 min followed by darkness for 800 min. In addition, the medium should be supplemented with serotonin and melatonin (0.1 mM each). Supplemental melatonin and serotonin increased lipase, phosphatase and protease activities but without a circadian variation.  相似文献   

12.
Retinal circadian rhythms are driven by an intrinsic oscillator, using chemical signals such as melatonin, secreted by photoreceptor cells. The purpose of the present work was to identify the origin of serotonin, the precursor of melatonin, in the retina of adult rat, where no immunoreactivity for serotonin or tryptophan hydroxylase had ever been detected. To demonstrate local synthesis of serotonin in the rat retina, substrates of tryptophan hydroxylase, the first limiting enzyme in the serotonin pathway, have been used. Tryptophan, in the presence of an inhibitor of aromatic amino acid decarboxylase, enhanced 5-hydroxytryptophan levels, whereas alpha-methyltryptophan, a competitive substrate inhibitor, was hydroxylated into alpha-methyl-5-hydroxytryptophan. Tryptophan hydroxylase substrate concentration was higher in the dark period than in the light period, and formation of hydroxylated compounds was increased. The presence of tryptophan hydroxylase mRNA in the rat retina was confirmed by RT-PCR. Taken together, the results support the local synthesis of serotonin by tryptophan hydroxylation, this metabolic pathway being required more critically when 5-HT is used for melatonin synthesis.  相似文献   

13.
The isoelectric point and substrate specificity of the main isoform of glutathione-S-transferase (GST, EC 2.5.1.18) isolated from brain stem, hippocampus and parietal cortex of pig brain were determined. The effect of serotonin, its precursors (Try, 5-HTry), physiologically active derivative (melatonin) and final metabolite (5-HIAA) on the activity of this form was examined. Investigation indicated that serotonin did not affect the activity of GST in all studied regions of brain. The inhibitory effect of Try was stronger than that of 5-HTry, but weaker than the one expressed by melatonin and especially by 5-HIAA. Studies on the type of inhibition showed that Try, melatonin and 5-HIAA can compete for the active site with the electrophilic substrate but not with glutathione. Therefore precursors and endogenous derivatives of serotonin but not serotonin itself may affect the detoxification function of brain glutathione-S-transferase and increase the exposure of brain to toxic electrophiles.  相似文献   

14.
5-day morning injections to pubertal male rats of polypeptide epithalamin preparation obtained from cattle epiphysis, in dose of 0.25 mg/100 g body mass induced the increase of serotonin epiphyseal concentration night peak, N-acetylserotonin and melatonin and didn't produce any essential influence on 5-methoxytryptamine, 5-oxy- and 5-methoxyindoleacetic acid level. It has been concluded, that epiphyseal peptides and indoles interact according to ultrashort connection, epiphyseal peptides point of application is the reaction of tryptophan transformation into serotonin and its further metabolism in N-acetylserotonin and melatonin. It has been suggested that the increase of epiphyseal melatonin production is on the basis of epithalamin therapeutic action.  相似文献   

15.
We investigated the effect of light spectra on circadian rhythm by exogenous prolactin (PRL) using light-emitting diodes (LEDs): red, green and purple. We injected PRL into live fish or treated cultured brain cells with PRL. We measured changes in the expressions of period 2 (Per2), cryptochrome 1 (Cry1), melatonin receptor 1 (MT1) mRNAs, and MT1 proteins, and in the plasma PRL, serotonin and melatonin levels. After PRL injection and exposure to green light, MT1 expression and plasma melatonin levels were significantly lower, but the expressions of Per2 and Cry1 were significantly higher than the others. Plasma serotonin after PRL injection and exposure to red light was significantly lower than others. These results indicate that injection of high concentration PRL inhibits melatonin, and inhibited melatonin regulates circadian rhythm via clock genes and serotonin. Thus, exogenous PRL regulates the circadian rhythm and light spectra influence the effect of PRL in goldfish.  相似文献   

16.
The Harderian gland is considered as being an extrapineal source of melatonin. In most rodents, the Harderian gland contains two epithelial cell types (I and II). The aim of this study has been to define which cell type is involved in indoleamine synthesis. The presence and localization of serotonin (melatonin precursor) and tryptophan hydroxylase (the rate-limiting enzyme for serotonin synthesis) have been investigated by immunohistochemistry in male Wistar rats, Syrian hamsters and Djungarian hamsters. The results of the present study show that immunoreactivity for tryptophan hydroxylase and serotonin is confined to the type I cell, suggesting that this cell type is involved in indoleamine synthesis in the rodent Harderian gland.  相似文献   

17.
The stimulatory effect of serotonin and the inhibitory effect of melatonin on iodine incorporation by thyroid follicular cells are both inhibited by the serotonin antagonists methysergid and cyphroheptadine. Serotonin and melatonin can mutually prevent each other's action. A collaboration of melatonin and serotonin in the regulation of thyroid function is implied from the experimental observations.  相似文献   

18.
Indoleamines regulate a variety of physiological functions during the growth, morphogenesis and stress‐induced responses in plants. Present investigations report the effect of NaCl stress on endogenous serotonin and melatonin accumulation and their differential spatial distribution in sunflower (Helianthus annuus) seedling roots and cotyledons using HPLC and immunohistochemical techniques, respectively. Exogenous serotonin and melatonin treatments lead to variable effect on hypocotyl elongation and root growth under NaCl stress. NaCl stress for 48 h increases endogenous serotonin and melatonin content in roots and cotyledons, thus indicating their involvement in salt‐induced long distance signaling from roots to cotyledons. Salt stress‐induced accumulation of serotonin and melatonin exhibits differential distribution in the vascular bundles and cortex in the differentiating zones of the primary roots, suggesting their compartmentalization in the growing region of roots. Serotonin and melatonin accumulation in oil body rich cells of salt‐treated seedling cotyledons correlates with longer retention of oil bodies in the cotyledons. Present investigations indicate the possible role of serotonin and melatonin in regulating root growth during salt stress in sunflower. Effect of exogenous serotonin and melatonin treatments (15 μM) on sunflower seedlings grown in the absence or presence of 120 mM NaCl substantiates their role on seedling growth. Auxin and serotonin biosynthesis are coupled to the common precursor tryptophan. Salt stress‐induced root growth inhibition, thus pertains to partial impairment of auxin functions caused by increased serotonin biosynthesis. In seedling cotyledons, NaCl stress modulates the activity of N‐acetylserotonin O‐methyltransferase (HIOMT; EC 2.1.1.4), the enzyme responsible for melatonin biosynthesis from N‐acetylserotonin.  相似文献   

19.
To determine if exogenously administered alpha-melanocyte stimulating hormone (alpha-MSH) affects nighttime pineal N-acetyltransferase activity, pineal levels of 5-hydroxytryptophan, serotonin and melatonin, and plasma prolactin levels, adult male hamsters were injected at 1900 hr (lights out 2000-0600 hr) with two doses of the peptide and killed at 0300 hr. The low dose of alpha-MSH (200 ng) produced a significant fall in pineal serotonin, pineal NAT activity and plasma prolactin values. The high dose of the peptide (20 micrograms) increased circulating prolactin titers and pineal serotonin levels and caused a concomitant decrease in pineal melatonin levels.  相似文献   

20.
The biosynthesis of serotonin into melatonin was decreased in old (18-20-month) in comparison to young (4-5-month) male Wistar rats. 5-day morning injections to young and old rats with polypeptide pineal preparation (epithalamin) in a dose of 2.5 mg/kg of body weight induced the increase in the night peak of serotonin, N-acetylserotonin and melatonin in young and melatonin alone in old rats and did not influence 5-methoxytryptamine, 5-oxy- and 5-methoxyindoleacetic acids level. These data support suggestion of ultrashort loop between pineal peptides and indoles and that epithalamin increases the metabolism of serotonin into melatonin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号