首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
We investigated the physiological and biochemical bases for salt tolerance in two rice (Oryza sativa L.) cultivars — relatively salt-tolerant ‘Dongjin’ and salt-sensitive ‘Kumnam’. Salinized hydroponic cultures were studied at the germination and seedling stages. NaCI inhibited germination more severely in ‘Kumnam’ than in ‘Dongjin’. Increasing the salt concentration also deterred growth to a larger extent in the former. Moreover, the leaves of ‘Kumnam’ exhibited greater increases in lipid peroxidation and Na+ accumulation than those of ‘Dongjin’ under stress. The activities of constitutive and salt-induced superoxide dismutase (SOD, EC 1.15.1.1) and ascorbate peroxidase (AP, EC 1.11.1.11) were also higher in ‘Kumnam’, while only catalase (CAT, EC 1.11.1.6) activity was slightly higher in stressed plants of ‘Dongjin’. The positive correlation between leaf proline levels and NaCI concentration was more evident in ‘Kumnam’. However, ‘Dongjin’ seeds, which had higher germinability in the presence of NaCI, also contained more proline. These results suggest that the higher salt tolerance in ‘Dongjin’ seedlings could be ascribed to their lower NaCI accumulations in the leaves. This presumably is due to reductions in the uptake or transport rates of saline ions to the shoots from the roots. Finally, we believe that the higher germination rate by ‘Dongjin’ is caused by its higher seed proline content.  相似文献   

2.
The purpose of the study was to examine water stress-induced changes in the ABA and proline contents in roots and leaves of a potentially more resistant wild accession of Hordeum spontaneum and the modern cultivar Maresi (Hordeum vulgare). Leaves of H. spontaneum had higher contents of constitutive ABA and proline in comparison to those of ‘Maresi’. A moderate water deficit resulted only in root dehydration, which was higher in ‘Maresi’. Increases of water deficit in roots coincided with an increase of ABA content in roots, followed by that in leaves. The level of proline increased only in leaves and only in the case of H. spontaneum. Under conditions of severe water stress, the root dehydration levels were similar in the both genotypes, whereas leaf dehydration was higher in ‘Maresi’. H. spontaneum, as compared to ‘Maresi’ showed an earlier increase of ABA content in the roots and accumulated more ABA in the leaves. Free proline levels in the roots increased in both genotypes but H. spontaneum exhibited a 2-fold higher proline accumulation than ‘Maresi’. In H. spontaneum the accumulation of proline in the leaves occurred noticeably earlier and to a higher extent than in ‘Maresi’. A possible connection of these modifications with water stress resistance of the investigated genotypes is discussed in this paper.  相似文献   

3.
In vitro-grown cells of Sesuvium portulacastrum L., an important ‘salt accumulator’ mangrove associate, were incubated on a medium containing different levels of salt, including 0, 100, 200, or 400 mM NaCl, in order to evaluate biochemical, physiological, and growth responses. A significant decrease in callus growth, water status, and cell membrane damage was observed under salt stress. Osmotic adjustment was revealed by the accumulation of inorganic ions, such as sodium (Na+), and organic osmolytes (proline, glycine betaine, and total soluble sugars) in NaCl-treated calli compared to control. However, accretion of osmolytes and inorganic ions did not support growth of calli under NaCl stress conditions. The observed reduced growth rate in calli subjected to stress, up to 200 mM NaCl, was coupled with lower catalase and ascorbate peroxidase activities and with a significantly higher superoxide dismutase activity. These findings suggested that S. portulacastrum cell cultures exhibited higher osmotic adjustment to salt stress.  相似文献   

4.
Summary The patterns of hyoscyamine and proline accumulation were studied in Agrobacterium-transformed ‘hairy root’ cultures of Hyoscyamus muticus to determine if proline is a metabolic precursor of hyoscyamine. Root cultures were stressed osmotically with mannitol and the subsequent growth, hyoscyamine levels, and proline levels were measured after each transfer to fresh experimental medium for a total of four transfers. H. muticus ‘hairy roots’ were also treated with [U-14C] proline or [1,4-14C] putrescine and analyzed for radioactive hyoscyamine. Growth of ‘hairy root’ cultures was reduced by up to 90% in 0.4 M mannitol, and this inhibition persisted for at least four transfers. ‘Hairy root’ cultures of H. muticus accumulated hyoscyamine and free proline (up to 6-fold and 25-fold, respectively) when osmotically stressed with mannitol, and this effect also persisted for four transfers when grown in the same mannitol concentration. Because the total production of hyoscyamine was also increased by twofold, we conclude that the elevated hyoscyamine concentration results from increased hyoscyamine synthesis and not from reduced growth. H. muticus ‘hairy roots’ incorporated radioactivity from [1,4-14C] putrescine efficiently into hyoscyamine in both treatments, but failed to convert [U-14C] proline into hyoscyamine. We thus conclude that accumulated proline does not serve as a precursor for hyoscyamine.  相似文献   

5.
The ecology of dryland rivers is driven by their highly variable hydrology, particularly flooding regimes, whereby intermittent floods typically generate ‘booms’ of primary and secondary productivity, including massive fish production. We tested these concepts in the Moonie River, Australia, using the percichthyid, Macquaria ambigua, a dryland river species known to display pronounced ‘boom and bust’ abundance patterns in response to floodplain inundation followed by extended periods of low to no channel flow. We expected that body condition (as measured by whole body lipid content) and biomass of M. ambigua would be related to prey biomass, and that these factors would all ‘spike’ following widespread flooding. Instead we found more subtle responses. There were ‘booms’ in biomass of Macrobrachium and zooplankton, two important food items, whereas M. ambigua maintained relatively low but sustained lipid and biomass levels following flooding. It appears that instead of a ‘boom’ in fish biomass, abundant invertebrate food resources and sustained lipid levels contributed to high survivorship of this species during the ‘bust’ period over cool dry months.  相似文献   

6.
Eight native Iranian almond species from three sections, ‘Euamygdalus’ (Prunus communis; Prunus eleagnifolia and Prunus orientalis); ‘Lycioides’ (Prunus lycioides and Prunus reuteri) and ‘Spartioides’ (Prunus arabica, Prunus glauca and Prunus scoparia) were in vitro screened for drought tolerance using sorbitol and polyethylene glycol (PEG) as an osmoticum. Different levels of water stress were induced using five concentrations of either sorbitol or polyethylene glycol in Woody Plant Medium (WPM). Water potential of various media ranged from −0.80 to −2.05 MPa and water stress in culture medium adversely affected plantlet growth. Wild species from ‘Spartioides’ were less affected than ‘Lycioides’ and ‘Euamygdalus’. At the same level of water potential, sorbitol had lower adverse effects than PEG; the latter being severe. Prunus × sorbitol and Prunus × PEG interactions were significant. At 0.2 M sorbitol and 0.003 M PEG, ‘Spartioides’ produced significantly more roots with higher total root length and root volume, as well as root-dry weight than those of ‘Lycioides’ and ‘Euamygdalus.’ It is concluded that in vitro screening of native Iranian almond species under specific and limited water-stress conditions may provide a system for effectively differentiating the wild species of almond for their expected root mass production under field conditions.  相似文献   

7.
Waldren  R. P.  Teare  I. D. 《Plant and Soil》1974,40(3):689-692
Summary Free proline accumulation was measured in leaves of intact sorghum (Sorghum bicolor L. cv. Pioneer 846) and soybean (Glycine max. L. cv. Calland) grown in growth chambers and subjected to ‘normal’ drought stress. Stomatal diffusive resistance and leaf water potential were used to determine the degree of stress at the time of proline analysis. Free proline did not accumulate markedly in either species until each was severely stressed, indicating that proline is not a sensitive indicator of drought stress. Free proline accumulated under less stress in soybean than in sorghum. Since soybean is less drought resistant than sorghum, proline accumulation may be an indicator of drought resistance or susceptibility. re]19731003  相似文献   

8.
The effect of salicylic acid on barley response to water deficit   总被引:2,自引:0,他引:2  
The effect of a moderate (PEG −0.75 MPa) and severe (PEG −1.5 MPa) water deficit on SA content in leaves and roots as well as the effect of pre-treatment with SA on reaction to water stress were evaluated in two barley genotypes — the modern cv. Maresi and a wild form of Hordeum spontaneum. Water deficit increased SA content in roots, whereas SA content in leaves did not change. The level of SA in the roots of control plants was about twofold higher in ‘Maresi’ than in H. spontaneum. After 6 hours of a moderate stress the level of SA increased about twofold in H. spontaneum and about two and a half-fold in ‘Maresi’. Under severe stress conditions the level of SA increased about twofold in the both genotypes, but not before 24 hrs of the stress. Plant treatment with SA before stress reduced a damaging action of water deficit on cell membrane in leaves. A protective effect was more noticeable in H. spontaneum than in ‘Maresi’. SA treatment increased ABA content in the leaves of the studied genotypes. An increase of proline level was observed only in H. spontaneum. The obtained results suggest that ABA and proline can contribute to the development of antistress reactions induced by SA.  相似文献   

9.
In this study, we compared the efficacy of defense mechanisms against severe water deficit in the leaves of two olive (Olea europaea L.) cultivars, ‘Chemlali’ and ‘Meski’, reputed drought resistant and drought sensitive, respectively. Two-year old plants growing in sand filled 10-dm3 pots were not watered for 2 months. Changes in chlorophyll fluorescence parameters and malondialdehyde content as leaf relative water content (RWC) decreased showed that ‘Chemlali’ was able to maintain functional and structural cell integrity longer than ‘Meski’. Mannitol started to accumulate later in the leaves of ‘Chemlali’ but reached higher levels than in the leaves of ‘Meski’. The latter accumulated several soluble sugars at lower dehydration. ‘Chemlali’ leaves also accumulated larger quantities of phenolic compounds which can improve its antioxidant response. Furthermore, the activity of three antioxidant enzymes catalase (CAT), peroxidase (POD) and ascorbate peroxidase (APX) increased as leaf RWC decreased. However, differences were observed between the two cultivars for CAT and POD but not for APX. The activity of the first two enzymes increased earlier in ‘Meski’, but reached higher levels in ‘Chemlali’. At low leaf hydration levels, ‘Chemlali’ leaves accumulated mannitol and phenolic compounds and had increased CAT and POD activities. These observations suggest that ‘Chemlali’ was more capable of maintaining its leaf cell integrity under severe water stress because of more efficient osmoprotection and antioxidation mechanisms.  相似文献   

10.
Summary A field experiment was designed to determine the salt tolerance of three varieties of sweet pepper for paprika, studying the effects of four increasing levels of sodium chloride in the irrigation water (5, 10, 29 and 42 meq/l) on soil salinity, yields, and quality of the fruits. EC5:1 and the soluble sodium and chloride contents increased with increasing salinity. The yields were reduced by 5 per cent for variety ‘Ramillete’, 19 per cent for ‘Tres cascos’, and 40 per cent for ‘Bola’ at the highest level. The fruit quality variables studied (colour index and chloride contents) differed with the variety. re]19750925  相似文献   

11.
The contributions of cadmium (Cd) accumulation in cell walls, antioxidative enzymes and induction of phytochelatins (PCs) to Cd tolerance were investigated in two distinctive genotypes of black oat (Avena strigosa Schreb.). One cultivar of black oat ‘New oat’ accumulated Cd in the leaves at the highest concentration compared to another black oat cultivar ‘Soil saver’ and other major graminaceous crops. The shoot:root Cd ratio also demonstrated that ‘New oat’ was the high Cd-accumulating cultivar, whereas ‘Soil saver’ was the low Cd-accumulating cultivar. Varied levels of Cd exposure demonstrated the strong Cd tolerance of ‘New oat’. By contrast, low Cd-accumulating cultivar ‘Soil saver’ suffered Cd toxicity such as growth defects and increased lipid peroxidation, even though it accumulated less Cd in shoots than ‘New oat’. Higher activities of ascorbate peroxidase (EC 1.11.1.11) and superoxide dismutase (EC 1. 15. 1. 1) were observed in the leaves of ‘New oat’ than in ‘Soil saver’. No advantage of ‘New oat’ in PCs induction was observed in comparison to Cd-sensitive cultivar ‘Soil saver’, although Cd exposure increased the concentration of total PCs in both cultivars. Higher and increased Cd accumulation in cell wall fraction was observed in shoots of ‘New oat’. On the other hand, in ‘Soil saver’, apoplasmic Cd accumulation showed saturation under higher Cd exposure. Overall, the present results suggest that cell wall Cd accumulation and antioxidative activities function in the tolerance against Cd stress possibly in combination with vacuolar Cd compartmentation.  相似文献   

12.
The early responses of leafy stem cuttings of Prunus and Castanea species with differing rooting abilities were assessed in a fog system using fluorescence measurements. Different types of cuttings of each species were used: cherry Prunus (‘GiSelA 5’, Prunus cerasus × Prunus canescens—148/2) and chestnut Castanea (‘Marsol’ and ‘Maraval’, Castanea crenata × Castanea sativa). The physiological status of cuttings in the early initiation phase was compared to the rooting results. For all cuttings, fluorescence measurements revealed a close-to-optimum photochemical efficiency, indicating that physiological stress (severance, water, etc.) was minimal. In cherry, the potential photochemical efficiency (Fv/Fm) differed slightly between terminal and basal cherry cuttings, being lower in the basal ones at the time of severance. Later in the propagation process, the differences were smaller. The photochemical efficiency did not differ between two ‘difficult-to-root’ Castanea clones, nor was it dependent on the length of the cuttings. The high rooting capacity of long Castanea cuttings (50 cm) indicated that physiological stress could be minimized under a fogging system. An erratum to this article can be found at  相似文献   

13.
Hänninen  K.  Ohtonen  R.  Huttunen  S. 《Plant and Soil》1999,216(1-2):129-138
Legumes as ground cover are regularly planted to increase nitrogen economy of crops and to improve soil. In the present study various clover species were evaluated as vegetative ground cover in nursery field production of micropropagated red birch (Betula pubescensEhrh. f. rubraUlvinen f. nova) in two 2-year experiments. The clover species and cultivars, Trifolium pratenseL. ‘Bjursele’, T. repens L. ‘Jogeva’, T. repens L. ‘Sonja’, T. hybridum L. ‘Frida’, T. incarnatum L. ‘Opolska’, T. resupinatum L. and T. subterraneum L. were compared to grass sod Festuca rubra L. ‘Ensylva’ and to a coverless ground (control). The last one was kept weed free by hand hoeing. Birch (leaves, stems, branches and roots) and soil nutrient concentrations (N, P, K, Ca, Mg and Fe) were analysed and nutrient ratios in birch determined. The annual clovers, T. incarnatumL., T. resupinatumL. and T. subterraneumL., provided about the same nutrient status in birch as did the control. Perennial clovers and grass were strong competitors with trees. High levels of P and Mg in birch leaves relative to N concentration were typical for poorly growing seedlings. Neither annual nor perennial clovers did generally improve soil nutrient status. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
15.
Summary Turfgrass, like other major crop species, is recalcitrant to manipulation in vitro. To perform efficient genetic transformation of turfgrass, it is necessary to optimize tissue culture conditions. In most reports, plant tissue culture techniques have been applied to propagate a single cultivar or several cultivars in one species of turfgrass. In this experiment, four turfgrass genera were used, namely common bermudagrass, Cynodon dactylon [L.] Pers. (California origin); red fescue, Festuca rubra L. var. rubra ‘Shadow’; perennial ryegrass, Lolium perenne L. ‘Barbal’; and Kentucky bluegrass, Poa pratensis L. ‘Merion.’ Mature seeds were surface-sterilized and cultured on basal Murashige and Skoog (MS) media supplemented with 30–250 μM 2,4-dichlorophenoxyacetic acid (2,4-D) for callus induction. Regeneration media consisted of MS supplemented with 5–10 μM 6-benzyladenine (BA). Among the genera, Poa had the higest callus induction percentage (CIP) regardless of 2,4-D concentration, followed by Cynodon, Lolium, and Festuca, respectively. Cynodon and Lolium had the highest callus regeneration percentage (CRP) and overall regeneration rate (ORR). Festuca had a poor CIP, CRP, and ORR compared to other studied genera. Cynodon produced the highest shoot number per explant. Based on the results of the present study, MS medium supplemented with 60 μM 2,4-D (for callus induction) and 7.5 μM BA (for regeneration) can be used in multi-generic transformation studies with the genera used.  相似文献   

16.
High levels of naturally occurring selenium (Se) are often found in conjunction with different forms of salinity in central California. Plants considered for use in phytoremediation of high Se levels must therefore be salt tolerant. Selenium accumulation was evaluated for the following species under increasing salt (NaCl and CaCl) conditions:Brassica napus L. (canola),Hibiscus cannibinus L. (kenaf),Festuca arundinacea L. (tall fescue), andLotus tenuis L. (birdsfoot trefoil). The experimental design was a complete randomized block with four salt treatments of <1, 5, 10, and 20 dS m-1, four plant species, three blocks, and six replicates per treatment. Ninety days after growing in the respective salt treated soil with a Se concentration of 2 mg Se kg-1 soil, added as Na2SeO4, all plant species were completely harvested. Among the species tested, shoot and root dry matter yield of kenaf was most significantly (p<0.001) affected by the highest salt treatment and tall fescue and canola were the least affected species. Generally there was a decrease in tissue accumulation of Se with increasing salt levels, except that low levels of salinity stimulated Se accumulation in canola. Canola leaf and root tissue accumulated the highest concentrations of Se (315 and 80 mg Se kg-1 DM) and tall fescue the least (35 and 7 mg Se kg-1 DM). Total soil Se concentrations all harvest were significantly (p<0.05) lower for all species at all salt treatments. Removal of Se from soil was greatest by canola followed by birdsfoot trefoil, kenaf and tall fescue. Among the four species, canola was the best candidate for removing Se under the tested salinity conditions. Kenaf may be effective because of its large biomass production, while tall fescue and birdsfoot trefoil may be effective because they can be repeatedly clipped as perennial crops.  相似文献   

17.
 Random amplified polymorphic DNA (RAPD) and genomic in situ hybridization (GISH) methods have been used to verify the hybridogenic origin and to identify the parental species of some ornamental cultivars in the subgenus Melanocrommyum of the genus Allium. The cultivars had been selected from seed obtained after uncontrolled pollination in breeders’ fields. The combination of GISH analysis with RAPD markers is very suitable for testing the hybridogenic origin of plants and to ascertain the parental species of the hybrids in such cases. As suspected, A. macleanii and A. cristophii are the parental species of ‘Globemaster’. The parental species of cultivar ‘Globus’ are A. karataviense and A. stipitatum, and not A. cristophii and A. giganteum as has been assumed on morphological grounds. Cultivars ‘Lucy Ball’ and ‘Gladiator’ are of hybrid origin, though only one of the parental species, A. hollandicum, could be confirmed. The cultivars ‘Purple Sensation’, ‘Mount Everest’, ‘White Giant’, ‘Michael H. Hoog’ and ‘Mars’ are not hybrids since neither GISH nor RAPD suggest the presence of a second genome. ‘Purple Sensation’ belongs to A. hollandicum, ‘Mount Everest’, ‘White Giant’ and ‘Mars’ to A. stipitatum,‘Michael H. Hoog’ to A. rosenorum. Received: 3 July 1997 / Accepted: 9 October 1997  相似文献   

18.
Phytophthora fragariae var. fragariae is the causal agent of red stele (red core) root rot in strawberry (Fragaria spp.). The inheritance of resistance to one isolate of this fungus was studied in 12 segregating populations of F.×ananassa derived from crosses between four resistant cultivars (‘Climax’, ‘Redgauntlet’, ‘Siletz’, and ‘Sparkle’) and three susceptible cultivars (‘Blakemore’, ‘Glasa’, and ‘Senga’ Sengana’). The analysis clearly supports the hypothesis of a single segregating dominant resistance gene. It is proposed that this gene be designated Rpf2. Received 12 November 1996 / Accepted: 22 November 1996  相似文献   

19.
Response of twenty eight cultivars of durum wheat (Triticum turgidum var. durum) to immature embryo culture, callus production and in vitro salt tolerance was evaluated. For assessment of cultivars to salt tolerance, growing morphogenic calli were exposed to different concentrations of NaCl (0, 0.3, 0.6, 0.9, 1.2, 1.5, 1.8 and 2.1% w/v) added to the culture medium during two subsequent subcultures (4 weeks each). Comparison of cultivars for callus induction from immature embryo was based on callus induction frequency and fresh weight growth of callus (FWG). While, for salt tolerance, the relative fresh weight growth (RFWG) and necrosis percent of callus were used. There were significant differences among cultivars for potential of regeneration from immature embryo, and ‘Shahivandi’ a native durum wheat cultivar originating from western Iran was superior among the cultivars tested. The FWG distinguished cultivars more than callus induction frequency did for callus induction evaluation. Hence, a range of FWG from 1.23 to 14.65 g was observed in ‘Mexical-75’ and ‘Omrabi-5’ cultivars, respectively. Growing calli derived from cultivars ‘PI 40100’ and ‘Dipper-6’ showed superiority for tolerating salinity under in vitro conditions. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
Summary We report a protocol for efficient plant regeneration of four tall fescue (Festuca arundinacea Schreb.) cultivars (‘Surpro’, ‘Coronado’, ‘Summer Lawn’, and ‘Fawn’) via somatic embryogenesis. Calli were initiated from mature seeds grown on modified Murashige and Skoog (MMS) medium supplemented with 7.0mgl−1 (31.7μM) 2,4-dichlorophenoxyacetic acid (2,4-D) and 0.05 mgl−1 (0.23 μM) kinetin (Kin). Calli were maintained and proliferated by subculture at monthly intervals on MMS medium containing 4.5 mgl−1 (20.4 μM) 2,4-D and 0.2mgl−1 (0.9 μM) Kin. Somatic embryos (SE) were induced from seed-derived calli on SE-induction medium (MMS supplemented with 2.0 mgl−1 2,4-D and 0.2mgl−1 Kin). Plantlets were regenerated from somatic embryogenic calli grown on modified SH medium supplemented with 2 mgl−1 Kin. Using this optimized protocol, 78.6–82.3% of mature seeds of all four cultivars produced SE clusters, of which 93.5–95.3% regenerated into plants within 10 wk. The regenerants showed no phenotypic abnormalities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号