首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Norman Owen‐Smith 《Oikos》2008,117(4):602-610
The consequences of predation for prey population dynamics depend on the extent to which this mortality is predisposed by malnutrition or senescence, or additive in the sense that animals that would otherwise not have died at that time were killed. In places lacking effective predators, few adult ungulates die during the summer or wet season months when food is plentifully available. Hence the seasonal distribution of predator kills as well as the age and sex classes of the prey indicates the extent to which malnutrition contributes to mortality as well as other influences on vulnerability. Using records of animal deaths assembled over 35 years in South Africa's Kruger National Park, these patterns were investigated for 12 ungulate species forming the prey of lions, and for three other large predators with respect to one prey species. Buffalo, kudu and giraffe were more strongly represented in kills made during the late dry season, while wildebeest and zebra made relatively greater contributions during the wet season. Impala, waterbuck, warthog and rarer antelope species became more prominent in kills during transitional periods between seasons. Five prey species showed an elevation in representation of males in lion kills during the mating season, as well as impala for all predator species. Females were more prominently represented in kills during the time of late gestation and parturition for three prey species. Hence reproductive activities as well as changing vegetation cover and food resources affected vulnerability to predation. Shifts in susceptibility to predation over the seasonal cycle corresponded with rainfall‐related variation in the annual representation of these ungulate species in lion kills. The availability of vulnerable prey species, age and sex classes at different stages of the seasonal cycle helps maintain a high abundance of lions. These factors contribute to the strong additive impact that predation has had on the abundance of some of these ungulate populations.  相似文献   

2.
以西南喀斯特地区常见的出露基岩生境为研究对象,针对该类生境典型乔木类植物菜豆树和圆叶乌桕,应用TDP热扩散探针技术,结合遮雨试验,分析了植物树干液流对自然降水和连续干旱的响应特征.结果表明:在生长季不同时期,降水后2树种液流密度较降水前均有一定程度的升高,但始终呈现落叶乔木圆叶乌桕高于半落叶乔木菜豆树的特征;连续2个月遮雨条件下,2树种液流密度均无明显降低的趋势,表明2树种均不依赖受近期降水主导的水源;通过对降水前后及连续干旱条件下2树种液流密度与环境因子的拟合关系研究发现,气象因素差异对水分环境变化条件下植物蒸腾耗水的影响较小.自然降水和短时期的连续干旱并未显著改变2树种的蒸腾耗水特征,这可能与出露基岩生境特殊的水分蓄持环境和乔木类植物依赖相对稳定的深层水源有关.  相似文献   

3.
Abstract. Floristic data collected from permanent plots during 14 consecutive years are used to model the frequency of the 62 most abundant species in relation to post-ploughing succession, topography and rainfall in annual Mediterranean grasslands located in a Quercus rotundifolia dehesa. The interannual dynamics of species richness are also analysed. From 1980 to 1993, presence/absence data of grassland species were noted in five 20 cm X 20 cm permanent quadrats placed at random in 1980 in 14 permanent plots on a south-facing slope along the topographic gradient. Weekly autumn rainfall data over the 14 years were analysed using a profile attributes index and Hybrid Multidimensional Scaling to arrange the years according to their autumn rainfall pattern. Generalized Linear Models were used to fit the species richness and species frequency according to topographic position, age since the last ploughing episode, total rainfall in the growing season and autumn rainfall pattern using a forward stepwise procedure. The richness model includes all of these variables, and reveals a relatively high goodness-of-fit (71 %). The fact that the meteorological factors play a key role in modelling richness forces us to include them if we wish to use richness as an indicator of the degree of disturbance in these highly fluctuating annual pastures. Models of species dynamics show that although roughly 33 % of the species have a successional behaviour, the majority are more dependent on temporal heterogeneity associated with rainfall or spatial heterogeneity linked to the topographic gradient.  相似文献   

4.
Cyclic population dynamics is relatively common among populations of small mammals in high latitudes but is not yet established among African savanna ungulates. However, oscillations may be expected in large mammal populations subject to quasi‐periodic oscillations in regional rainfall. We evaluated evidence for environmentally entrained oscillations in a large‐mammal predator–prey system in Kruger National Park (KNP), South Africa, where rainfall exhibits quasi‐periodic oscillations. The evaluation is based on analysis of comparative changes in the abundance of twelve ungulate species throughout South Africa's KNP using population counts over the period 1965–1996. We present evidence suggesting that (i) twelve ungulate populations display cyclic variability with half‐periods ranging between 10 and 18 years, (ii) this variability was associated with lagged rainfall between 3 and 10 years back in the past for different ungulate species, and (iii) the ungulate species respond in contrasting ways to rainfall, with some reaching highest abundance during periods of low rainfall and others under conditions of high rainfall. These findings are not consistent with the response pattern we would expect if the population oscillations were driven directly by the rainfall influence on food availability. Instead they seem to be an outcome of predator–prey interactions, which are entrained by the effect of rainfall on habitat conditions affecting the relative susceptibility of the different ungulate species to predation.  相似文献   

5.
Climatic variation associated with the North Atlantic Oscillation (NAO) and El Niño‐Southern Oscillation (ENSO) has a widespread influence on the population dynamics of many organisms worldwide. While previous analyses have related the dynamics of northern ungulates to the NAO, there has been no comparable assessment for the species rich assemblages of tropical and subtropical Africa. Census records for 11 ungulate species in South Africa's Kruger National Park over 1977–96 reveal severe population declines by seven species, which were inadequately explained by indices of ENSO or its effects on annual rainfall totals. An additional influence was an extreme reduction in dry season rainfall, concurrent with and perhaps related to a regional temperature rise, possibly a signal of global warming. Boundary fencing now restricts range shifts by such large mammals in response to climatic variation. Our models project near extirpation of three ungulate species from the park's fauna should these climatic conditions recur.  相似文献   

6.
In high temperate latitudes, ungulates generally give birth within a narrow time window when conditions are optimal for offspring survival in spring or early summer, and use changing photoperiod to time conceptions so as to anticipate these conditions. However, in low tropical latitudes day length variation is minimal, and rainfall variation makes the seasonal cycle less predictable. Nevertheless, several ungulate species retain narrow birth peaks under such conditions, while others show births spread quite widely through the year. We investigated how within-year and between-year variation in rainfall influenced the reproductive timing of four ungulate species showing these contrasting patterns in the Masai Mara region of Kenya. All four species exhibited birth peaks during the putative optimal period in the early wet season. For hartebeest and impala, the birth peak was diffuse and offspring were born throughout the year. In contrast, topi and warthog showed a narrow seasonal concentration of births, with conceptions suppressed once monthly rainfall fell below a threshold level. High rainfall in the previous season and high early rains in the current year enhanced survival into the juvenile stage for all the species except impala. Our findings reveal how rainfall variation affecting grass growth and hence herbivore nutrition can govern the reproductive phenology of ungulates in tropical latitudes where day length variation is minimal. The underlying mechanism seems to be the suppression of conceptions once nutritional gains become insufficient. Through responding proximally to within-year variation in rainfall, tropical savanna ungulates are less likely to be affected adversely by the consequences of global warming for vegetation phenology than northern ungulates showing more rigid photoperiodic control over reproductive timing.  相似文献   

7.
S. Imperio  S. Focardi  G. Santini  A. Provenzale 《Oikos》2012,121(10):1613-1626
Population fluctuations in ungulates are driven by both intrinsic and extrinsic factors. Available information, however, mainly refers to arctic, temperate and African ungulate populations, while the dynamics of Mediterranean species, exposed to a milder climate, is known to a much lesser extent. Here we studied the population dynamics of four wild ungulate species in the Castelporziano Preserve near Rome, Italy, as obtained from detailed bag counts from hunting drives during the period 1878–1986: the Italian roe deer Capreolus capreolus italicus, the Maremma wild boar Sus scrofa majori (both endemic to Italy), the native red deer Cervus elaphus, and the alien fallow deer Dama dama. We also considered the effects of the presence of another alien ungulate, the nilgai Boselaphus tragocamelus. This ungulate community experienced an accidental ‘removal experiment’ when, during World War II, red deer and nilgai were exterminated. This event and the length of the time series allowed us to test two main hypotheses: 1) that the complexity level of the ungulate community affects the strength of intra‐ and inter‐specific competition; and 2) that in Mediterranean environments intra‐ and inter‐specific interactions are stronger than climate forcing. Statistical methods ranged from state‐space‐modelling, GLM analysis and structural equation models. The results indicated that direct intra‐specific density dependence played a relevant role for all species, and was stronger after the removal. A complex pattern of species interactions was however revealed; fallow deer had a negative effect on roe deer population, while roe deer had an apparent positive effect on red deer and wild boar, possibly mediated by environmental factors. Nilgai appeared to facilitate all deer species. The results of the analysis also confirmed that at present climate appears to play a minor role with respect to density dependence; however, the increasing aridity of the Mediterranean area could change this picture in coming decades.  相似文献   

8.
In view of the substantial vegetation changes in Tsavo National Park and their possible effects on the herbivore fauna, this study was undertaken to obtain quantitative information on densities of several ungulate species and their biomass. Road strip counts (belt transects) constituted the main method used, supplemented by aerial counts in parts of the study area. Densities of most ungulate species are rather low, the maximum of 2–25 per km2 being attained by zebra in the southern poition of the study area. There are significant differences between two parts of the study area, related to differences in vegetation types. Mean biomass density is around 4000 kg/km2, of which ?-¾ is made up of elephants. Total biomass density compares well with that in areas of similar climatic conditions but is much lower than that in moist savannas of western Uganda and Zaire with higher rainfall.  相似文献   

9.
Global climate change is predicted to alter growing season rainfall patterns, potentially reducing total amounts of growing season precipitation and redistributing rainfall into fewer but larger individual events. Such changes may affect numerous soil, plant, and ecosystem properties in grasslands and ultimately impact their productivity and biological diversity. Rainout shelters are useful tools for experimental manipulations of rainfall patterns, and permanent fixed-location shelters were established in 1997 to conduct the Rainfall Manipulation Plot study in a mesic tallgrass prairie ecosystem in northeastern Kansas. Twelve 9 x 14–m fixed-location rainfall manipulation shelters were constructed to impose factorial combinations of 30% reduced rainfall quantity and 50% greater interrainfall dry periods on 6 x 6–m plots, to examine how altered rainfall regimes may affect plant species composition, nutrient cycling, and above- and belowground plant growth dynamics. The shelters provided complete control of growing season rainfall patterns, whereas effects on photosynthetic photon flux density, nighttime net radiation, and soil temperature generally were comparable to other similar shelter designs. Soil and plant responses to the first growing season of rainfall manipulations (1998) suggested that the interval between rainfall events may be a primary driver in grassland ecosystem responses to altered rainfall patterns. Aboveground net primary productivity, soil CO2 flux, and flowering duration were reduced by the increased interrainfall intervals and were mostly unaffected by reduced rainfall quantity. The timing of rainfall events and resulting temporal patterns of soil moisture relative to critical times for microbial activity, biomass accumulation, plant life histories, and other ecological properties may regulate longer-term responses to altered rainfall patterns.  相似文献   

10.
Question: What are the main driving factors in 70 years of natural dynamics in tree recruitment in the Bia?owie?a National Park? Location: Bia?owie?a National Park, Poland, is one of the least disturbed temperate, lowland forest systems in Europe. Methods: We tested whether fluctuations in large herbivore populations, changes in climate and openness of the forest explained compositional dynamics. Tree recruitment (to size class DBH≥5 cm) was measured on permanent transects (in total, 14.9 ha) six times between 1936‐2002. These data were related to existing data on ungulate density, climatic parameters and estimates of forest openness collected during the same period. Results: Total recruitment of all tree species combined was negatively correlated with total ungulate density and red deer density. The variation in response between species was related to the preferences of herbivores; the more preferred forage species (especially Carpinus betulus) were positively and the less preferred species negatively related to herbivore density. Total tree recruitment rates were not related to climatic parameters and openness of the forest. Only Alnus glutinosa recruitment was significantly related to climatic parameters, and Ulmus glabra related to forest openness, but there were no predictable patterns in recruitment among species in relation to these factors. Conclusion: The present study indicated that changes in large herbivore density have played an important role in driving patterns in tree recruitment and species composition during the last 70 years in Bia?owie?a National Park. In contrast to other studies, increasing herbivore numbers were associated with higher recruitment of preferred and browsing‐tolerant species. Periodical crashes in ungulate numbers, whether human‐induced or caused by natural factors, may offer windows of opportunity for regeneration of a range of tree species and facilitate more diverse and dynamic forest development.  相似文献   

11.
为探讨环境水分条件变化对亚热带森林林下乔木幼苗动态的影响,以及木材密度和幼苗在干旱中死亡率的关系,研究了哀牢山常绿阔叶林2005—2011年的总体和主要树种幼苗(黄心树、多果新木姜子、多花山矾、鸭公树和大花八角)的死亡率,并分析了幼苗死亡率和旱季幼苗根系所在土层土壤质量含水量、旱季降水量、旱季降水日数以及木材密度的关系。结果表明:1)幼苗死亡率与旱季降水日数、旱季浅层土壤平均质量含水量有显著的负相关关系,和旱季降水量无显著相关性;2)总幼苗及5种乔木幼苗的死亡率均在2010年(西南干旱)达到有观测以来最高,是2009年的2—10倍,其中多花山矾、黄心树幼苗的死亡率最高,大花八角幼苗的死亡率最低;3)在种间,幼苗2010年干旱中的死亡率和木材密度显著正相关,即木材密度较大的物种幼苗死亡率更高。研究表明林下幼苗由于根系较浅,对降雨变化较为敏感,因而受到了这次干旱的较大影响。由于木材密度较低的树种在干旱中有较低的死亡率,干旱频度和强度的增加可能使低木材密度幼苗的丰富度增加,森林的组成也将受到影响。  相似文献   

12.
Old field secondary succession of tropical dry forests (TDFs) is poorly understood, particularly regarding the dynamics of seedlings, saplings, and sprouts (regenerative communities). We used chronosequence and dynamic approaches to: (1) document successional trajectories of regenerative communities during the first dozen years of regeneration in abandoned pastures at Chamela, Mexico; (2) test the usefulness of chronosequences to predict the dynamics of regenerative communities along time; and (3) assess the influence of surrounding forest matrix, stand density, and understory light availability (in the rainy season) as driving factors of such dynamics. More than 1000 plants and 95 species of shrubs and trees 10–100 cm tall were monitored between 2004 and 2007 in nine abandoned pastures (0–12 yr since abandonment) and two old‐growth forest (OGF) sites; gain and loss rates of plants, species, and plant cover were obtained. Chronosequence predicted a rapid and asymptotic increase of plant density, species density, and plant cover toward the OGF values. Such prediction did not match with dynamic data that showed negative or neutral net community rates of change, independently of fallow age. Recruitment and species gain rates increased with the amount surrounding forest matrix. No other effect of the explored factors was detected. Strong rainfall shortenings could be responsible for the high loss and low gain rates of plants and species recorded in most sites. We highlight the critical role of supra‐annual rainfall variability on the dynamics of TDF regenerative communities and the poor predictive value of chronosequences in forest systems subjected to strong environmental temporal variation. Abstract in Spanish is available at http://www.blackwell‐synergy.com/loi/btp .  相似文献   

13.
In tropical regions, rainfall gradients often explain the abundance and distribution of plant species. For example, many tree and liana species adapted to seasonal drought are more abundant and diverse in seasonally-dry forests, characterized by long periods of seasonal water deficit. Mean annual precipitation (MAP) is commonly used to explain plant distributions across climate gradients. However, the relationship between MAP and plant distribution is often weak, raising the question of whether other seasonal precipitation patterns better explain plant distributions in seasonally-dry forests. In this study, we examine the relationship between liana abundance and multiple metrics of seasonal and annual rainfall distribution to test the hypothesis that liana density and diversity increase with increasing seasonal drought along a rainfall gradient across the isthmus of Panama. We found that a normalized seasonality index, which combines MAP and the variability of monthly rainfall throughout the year, was a significant predictor of both liana density and species richness, whereas MAP, rainfall seasonality and the mean dry season precipitation (MDP) were far weaker predictors. The strong response of lianas to the normalized seasonality index indicates that, in addition to the total annual amount of rainfall, how rainfall is distributed throughout the year is an important determinant of the hydrological conditions that favor liana proliferation. Our findings imply that changes in annual rainfall and rainfall seasonality will determine the future distribution and abundance of lianas. Models that aim to predict future plant diversity, distribution, and abundance may need to move beyond MAP to a more detailed understanding of rainfall variability at sub-annual timescales.  相似文献   

14.
1. Rainfall is the prime climatic factor underpinning the dynamics of African savanna ungulates, but no study has analysed its influence on the abundance of these ungulates at monthly to multiannual time scales. 2. We report relationships between rainfall and changes in age- and sex-structured abundances of seven ungulate species monitored monthly for 15 years using vehicle ground counts in the Maasai Mara National Reserve, Kenya. 3. Abundance showed strong and curvilinear relationships with current and cumulative rainfall, with older topi, Damaliscus korrigum (Ogilby); warthog, Phacochoerus aethiopicus (Pallas); waterbuck, Kobus ellipsyprimnus (Ogilby); and impala, Aepyceros melampus (Lichtenstein) responding to longer lags than younger animals, portraying carryover effects of prior habitat conditions. 4. The abundances of newborn calves were best correlated with monthly rainfall averaged over the preceding 5-6 months for topi, waterbuck, warthog, and 2 months for the migratory zebra Equus burchelli (Gray), but with seasonal rainfall averaged over 2-5 years for giraffe, Giraffa camelopardalis (L.); impala; and kongoni, Alcelaphus busephalus (Pallas). The cumulative late wet-season rainfall was the best predictor of abundance for quarter- to full-grown animals for most species. Monthly rainfall exerted both negative and positive effects on the abundances of zebra, impala and waterbuck. Ignoring age, both sexes responded similarly to rainfall. 5. Births were strongly seasonal only for warthog and topi, but peaked between August and December for most species. Hence abundance was strongly seasonal for young topi and warthog and the migratory zebra. Pronounced seasonality in births for warthog and topi obliterated otherwise strong relationships between abundance and rainfall when both month and rainfall were included in the same model. Aggregated density produced relationships with rainfall similar to those for fully grown animals, emphasizing the necessity of demographic monitoring to reliably reveal rainfall influences on ungulate abundance in the Mara. 6. Strong relationships between abundance and rainfall suggest that rainfall underpins the dynamics of African savanna ungulates, and that changes in rainfall due to global warming may markedly alter the abundance and diversity of these mammals. Ungulates respond to rainfall fluctuations through movements, reproduction or survival, and the responses appear independent of breeding phenology and synchrony, dietary guild, or degree of water dependence. Newborns and adults have contrasting responses to rainfall. Males and females respond similarly to rainfall when age is ignored.  相似文献   

15.
We have little knowledge of how climatic variation (and by proxy, habitat variation) influences the phylogenetic structure of tropical communities. Here, we quantified the phylogenetic structure of mammal communities in Africa to investigate how community structure varies with respect to climate and species richness variation across the continent. In addition, we investigated how phylogenetic patterns vary across carnivores, primates, and ungulates. We predicted that climate would differentially affect the structure of communities from different clades due to between-clade biological variation. We examined 203 communities using two metrics, the net relatedness (NRI) and nearest taxon (NTI) indices. We used simultaneous autoregressive models to predict community phylogenetic structure from climate variables and species richness. We found that most individual communities exhibited a phylogenetic structure consistent with a null model, but both climate and species richness significantly predicted variation in community phylogenetic metrics. Using NTI, species rich communities were composed of more distantly related taxa for all mammal communities, as well as for communities of carnivorans or ungulates. Temperature seasonality predicted the phylogenetic structure of mammal, carnivoran, and ungulate communities, and annual rainfall predicted primate community structure. Additional climate variables related to temperature and rainfall also predicted the phylogenetic structure of ungulate communities. We suggest that both past interspecific competition and habitat filtering have shaped variation in tropical mammal communities. The significant effect of climatic factors on community structure has important implications for the diversity of mammal communities given current models of future climate change.  相似文献   

16.
Based on simulation modelling, Kaitala and Ranta (2001 Proc. R. Soc. Lond. B 268, 1769-1774) have argued that detecting the statistical relationships between environmental variability and population fluctuations will be difficult. However, their study was limited in that only one pattern of density dependence and one detection method were used. Here, we show that their conclusion is in part a consequence of their choice of population model and in part a consequence of using relatively weak or inappropriate statistical methods. Other patterns of density dependence respond differently to environmental fluctuations, and the impact of the disturbance on these is clearly visible using their methods. For some patterns of population dynamics, environmental impacts are more readily detectable by correlating running-average environmental conditions with the population time-series or by correlating the first differences of the population time-series with environmental noise. When more appropriate statistical methods are used, environmental forcing is detectable in the majority of cases used by Kaitala and Ranta. The interplay between environmental stochasticity and density-dependent population growth means that there is no single best method to detect the influence of environmental forcing, even when population dynamics are approximately linear. But environmental forcing will often be detectable, contrary to Kaitala and Ranta's assertions.  相似文献   

17.
Why species are found where they are is a central question in biogeography. The most widely used tool for understanding the controls on distribution is species distribution modelling. Species distribution modelling is now a well‐established method in both the theoretical and applied ecological literature. In this special issue we examine the current state of the art in species distribution modelling and explore avenues for including more biological processes in such models. In particular we focus on physiological, demographic, dispersal, competitive and ecological‐modulation processes. This overview highlights opportunities for new species distribution model concepts and developments, as well as a statistical agenda for implementing such models.  相似文献   

18.
Host-parasite dynamics can be strongly affected by seasonality and age-related host immune responses. We investigated how observed variation in the prevalence and intensity of parasite egg or oocyst shedding in four co-occurring ungulate species may reflect underlying seasonal variation in transmission and host immunity. This study was conducted July 2005-October 2006 in Etosha National Park, Namibia, using indices of parasitism recorded from 1,022 fecal samples collected from plains zebra (Equus quagga), springbok (Antidorcas marsupialis), blue wildebeest (Connochaetes taurinus), and gemsbok (Oryx gazella). The presence and intensity of strongyle nematodes, Strongyloides spp. and Eimeria spp. parasites, were strongly seasonal for most host-parasite combinations, with more hosts infected in the wet season than the dry season. Strongyle intensity in zebra was significantly lower in juveniles than adults, and in springbok hosts, Eimeria spp. intensity was significantly greater in juveniles than adults. These results provide evidence that acquired immunity is less protective against strongyle nematodes than Eimeria spp. infections. The seasonal patterns in parasitism further indicate that the long dry season may limit development and survival of parasite stages in the environment and, as a result, host contact and parasite transmission.  相似文献   

19.
Food searching in griffon vultures   总被引:1,自引:0,他引:1  
Observations are presented on food searching in griffon vultures. To locate food directly, griffon vultures do not use a sense of smell but rely on vision. However, most birds locate carcasses indirectly—by watching the activities of neighbouring birds. The method of food searching is described and the number of birds which arrive at a carcass is shown to depend on the amount of food that is available. Birds do not hold feeding ranges, but travel widely during food searching, one bird travelling 180 km in 6 days. The density of searching birds varies greatly according to the density of ungulates in an area, birds being most numerous over high ungulate concentrations. The altitude at which birds search also varies, birds flying at higher altitudes over areas of low ungulate density and at lower altitudes over ungulate concentrations. These variations in searching density and height are shown to affect the efficiency of food searching. Carcasses are located rapidly and the food consumed quickly in high ungulate density areas, while in low ungulate density conditions carcasses can take a long time to be located. It is concluded that griffon vultures are more likely to find food and are better able to compete with mammalian competitors by searching over migratory ungulate herds than over areas containing resident ungulate species. Their adaptations for gliding flight enable these birds to follow these migratory ungulates throughout the year.  相似文献   

20.
ABSTRACT To investigate the role of black-backed jackals (Canis mesomelas) as predators, we studied diet, prey selection, and predation impact of jackals on 2 game ranches in South Africa that differed in ungulate diversity and biomass. Results showed that large (>15 kg) ungulate species dominated jackal diets throughout the year on both the less diverse (range of ingested biomass across seasons = 39–78%) and more diverse (26–69%) game ranch. Other important food items included medium-sized mammals (1–3 kg; 1–26%) and fruit (2–69%), whereas small mammals comprised 3–11% of ingested biomass across seasons on both sites. Jackals were not random in consumption of ungulates, and consumption patterns suggested jackals actively hunted certain species rather than consumed them as carrion. During ungulate birthing periods, jackals consumed almost exclusively those ungulate species that were hiders (i.e., fawns were hidden in tall vegetation away from herd) regardless of ungulate densities, suggesting that primarily fawns were preyed upon. Among hiders, there was a negative relationship (P = 0.01) between body size and percent of population consumed by jackals, indicating smaller species were more susceptible than larger species to jackal predation. Consequently, springbok (Antidorcas marsupialis) were always selected over other ungulate species on both sites, and this species was the most impacted by jackal predation. In contrast, ungulate species that were followers (i.e., fawns immediately followed mothers within protection of the herd) were scarcely or not at all consumed by jackals, regardless of body size or density. Medium-sized mammals were selectively consumed over ungulates, and there was a negative relationship (P < 0.01) between consumption of berries and ungulates, indicating alternative food resources influenced consumption of ungulates on our study sites. Our results will help wildlife managers in Africa identify ungulate species susceptible to jackal predation, and can be used to develop management strategies for reducing jackal predation in areas where it is problematic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号