首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies were conducted to determine effects of the benzodiazepine anticonvulsant diazepam on soman induced brain neuronal RNA depletion and lethality in rats. Quantitative azure B-RNA cytophotometry was used to monitor RNA responses of cerebrocortical (layer V) and striatal neurons following dosages of 0.5, 0.9 and 1.5 LD50 soman (LD50 = 135 micrograms/kg, sc), whereas mean time of death and 24-h survival following 0.8, 1.2 and 1.5 LD50 were used to assess the antidotal efficacy of diazepam (2.2 mg/kg, im) pretreatment. Soman produced dose-dependent RNA depletion in both brain regions. This RNA impairment was almost completely prevented by diazepam, although neuronal RNA contents were generally slightly lower than corresponding control values. However, diazepam pretreatment was not associated with any change in mean time of death or in 24-h survival. The overall data suggest that excessive neural activity per se may underlie the genesis of soman-induced central metabolic impairments, but also appear to effectively dissociate epileptiform activity from lethal actions of soman.  相似文献   

2.
Effects of various antidotal treatments on neuronal RNA contents and on soman induced RNA and acetylcholinesterase (AChE) depletion were monitored using quantitative cytochemical techniques. In rats treated only with antidotes, atropine depressed whereas pralidoxime (2-PAM) elevated RNA contents of both caudate and cerebrocortical (Layer V) neurons. Soman produced a virtually complete inhibition of AChE activity and a moderate decline in neuronal RNA contents. Atropine pretreatment partially restored neuronal RNA levels. Atropine+2-PAM prophylaxis eventuated in a complete restoration of RNA levels but no reactivation of AChE. Addition of physostigmine to the atropine +2-PAM treatment regimen resulted in appreciable AChE reactivation but reduced RNA levels. The overall data indicate that: (1) soman-induced neuronal RNA depletion can be completely reversed by antidotal pretreatment; (2) no precise relationship exists between the extents of antidote-induced restoration of RNA and AChE levels; and (3) 2-PAM exerts marked effects on the brain neuronal network which are unrelated to AChE reactivation. It is postulated that effects of soman and antidotes on neuronal RNA metabolism may signify alterations in acetylcholine (ACh) sensitivity and that pharmacologic manipulation of ACh responsiveness during organophosphate cholinesterase poisoning may be a mechanism for additional therapeutic intervention.  相似文献   

3.
Studies were conducted to investigate relationships among soman (pinacolyl methylphosphonofluoridate) induced seizure activity, central metabolic impairments and lethality in normal vs thyroid-deficient rats. Quantitative cytophotometric measurements of individual cerebrocortical (layer V) and striatal neuron RNA contents were made following dosages of 0.5, 0.9 and 1.5 LD50 soman (LD50 = 135 μg/kg, sc). Hypothyroidism was associated with a marked diminution of overt convulsive activity and reduced susceptibility to lethal actions of soman as indicated by enhanced 24- and 48-h survival rates at 0.9, 1.2 and 1.5 LD50. Hypothyroidism per se produced RNA depletion in both cortical and striatal neurons. Soman treatment diminished cortical RNA to essentially the same extent in thyroid-deficient rats as in euthyroids, whereas there was no further reduction of striatal neuron RNA. It was found that amelioration of convulsive activity and lethal- ity in hypothyroid rats was accompanied by reduced cerebral acetylcholinesterase (AChE, EC 3.1.1.7) inactivation, and that plasma cholinesterase (EC 3.1.1.8) and aliesterase (EC 3.1.1.1) levels were significantly higher in hypothyroid than in euthyroid saline-control rats. The overall data indicate that soman- induced central metabolic impairments can occur independent of paroxysmal neural activity and lethal actions of the agent. Resistance to soman observed with thyroid deficiency may be due in large part to increased binding to plasma enzymes and diminished delivery of soman to AChE in vital cholinergic sites.  相似文献   

4.
5.
Quantitative azure B-RNA cytophotometry was used to monitor metabolic responses of individual neurons within the ventrobasal nuclear complex (VBC) and nucleus reticularis (NR) of the rat thalamus following administration of soman (0.5, 0.9 or 1.5 LD50, sc). A dose-dependent depression in brain acetylcholinesterase (AChE) was evidenced. With respect to thalamic RNA responses, a complex pattern of RNA alterations was evidenced, with these two regions generally exhibiting opposite patterns of dose-related RNA changes. With sub-lethal dosages of soman, RNA accumulation was evidenced in the acetylcholine (ACh) mediated excitatory VBC region and RNA depletion in the ACh mediated inhibitory NR neurons. With a lethal dose, an opposite RNA response pattern observed in both thalamic regions. It is postulated that the observed RNA response pattern with sub-lethal dosages of soman is what one would anticipate with cholinergic brainstem reticular formation activation. The absence of such a response with lethal doses strongly suggests some disruption of functional excitatory cholinergic activity and perhaps also an impairment of inhibitory cholinergic synaptic activity.  相似文献   

6.
Quantitative azure B cytophotometry was used to monitor ribonucleic acid (RNA) responses of individual neurons within the nucleus cuneiformis (NC) and ventrotegmental nucleus (VTN) of the rat mesencephalic reticular formation following single subcutaneous soman (pinacolyl methylphosphonofluoridate) injections (0.5, 0.9 or 1.5 LD50). The sub-lethal (0.5 LD50) dosage of soman produced RNA accumulation in NC neurons, but VTN-RNA levels were not significantly altered. In contrast, both reticular nuclei exhibited prominent RNA depletion with higher soman dosages, the severity of which was greater with lethal (1.5 LD50) than near-lethal (0.9 LD50) dosages. These data indicate that metabolic correlates of enhanced activation of cholinergic reticular nuclei are present only with sub-lethal dosages, and that higher dosages produce characteristics of impaired activation of ascending cholinergic pathways. At present, mechanisms underlying soman-induced metabolic and neurologic deficits remain speculative.  相似文献   

7.
Male Sprague-Dawley rats (200 g) were injected subcutaneously with soman, a potent neuronal acetylcholinesterase (AChE) inhibitor, at doses of 0.5, 0.8 and 1.0 LD50 (1 LD50=135 g/kg) before decapitation at 1 and 24 h post-exposure. Correlative data were obtained on the severity of brain AChE inactivation and physicochemical changes in nuclear chromatin of cerebrocortical (layer V) and striatal neurons using Feulgen-DNA (F-DNA) cytophotometry and ocular filar micrometry. Decreased lability of neurons to F-DNA acid hydrolysis (reduced F-DNA yield), nuclear shrinkage and chromatin aggregation (decreased chromophore area) were used as indices of suppression of genomic template activity; conversely, increases in F-DNA yield and chromophore area signify enhanced neuroexcitation. At 1 hr post-soman there was a dose-dependent inactivation of AChE with a moderate increase in chromatin activation, i.e., nuclear hypertrophy and chromatin dispersion. At 24 hr post-soman there was a partial restoration of AChE activity, notably in striatal neurons, with a suppression in chromatin template activity. These data indicate that actions of soman on neuronal functioning are time-dependent. The absence of any dose-related neuronal chromatin changes may signify existence of non-cholinergic mediated events.  相似文献   

8.
The chemical warfare nerve agent (CWNA) soman irreversibly inhibits acetylcholinesterase (AChE) causing seizure, neuropathology and neurobehavioral deficits. Pyridostigmine bromide (PB), the currently approved pretreatment for soman, is a reversible AChE inhibitor that does not cross the blood–brain barrier (BBB) to protect against central nervous system damage. [−]-Huperzine A, a natural reversible AChE inhibitor, rapidly passes through the BBB and has numerous neuroprotective properties that are beneficial for protection against soman. However, [−]-Huperzine A is toxic at higher doses due to potent AChE inhibition which limits the utilization of its neuroprotective properties. [+]-Huperzine A, a synthetic stereoisomer of [−]-Huperzine A and a weak inhibitor of AChE, is non-toxic. In this study, we evaluated the efficacy of [+]-Huperzine A for protection against soman toxicity in guinea pigs. Pretreatments with [+]-Huperzine A, i.m., significantly increased the survival rate in a dose-dependent manner against 1.2× LD50 soman exposures. Behavioral signs of soman toxicity were significantly reduced in 20 and 40 mg/kg [+]-Huperzine A treated animals at 4 and 24 h compared to vehicle and PB controls. Electroencephalogram (EEG) power spectral analysis showed that [+]-Huperzine A significantly reduces soman-induced seizure compared to PB. [+]-Huperzine A (40 mg/kg) preserved higher blood and brain AChE activity compared to PB in soman exposed animals. These data suggest that [+]-Huperzine A protects against soman toxicity stronger than PB and warrant further development as a potent medical countermeasure against CWNA poisoning.  相似文献   

9.
The aim of this study was to compare changes in activity of acetylcholinesterase (AChE) in the brain and motor endplates of rat after administration of soman and tabun. We took brain and diaphragm from laboratory rats administered a median lethal dose (LD(50)) of soman or tabun. Enzyme activity of AChE was studied in selected structures of brain and in motor endplates in the diaphragm. Histochemical detection of AChE by Karnovski and Roots with simultaneous histochemical detection of alkaline phosphatase in case of brain sections was used. The highest activity of AChE in the control group was found in the striatum, amygdaloid nuclei, substantia nigra, superior colliculi, and motor nuclei of cranial nerves V, X a XII. LD(50) of both nerve agents dramatically decreased the activity of AChE in the structures studied--both brain and diaphragm. After intoxication by either agent, activity in above mentioned nuclei was characterized as low or focally moderate. Very low activity was seen in some structures (CA3 field of hippocampus, some nuclei of the tegmentum and cerebellar cortex). We found minimal differences in the histochemical picture of soman or tabun intoxication, apart from the striatum and the superior colliculi which showed stronger inhibition by tabun.  相似文献   

10.
Quantitative azure B-RNA cytophotometry was used to monitor metabolic responses of cholinergic elements of the rat brain during sustained low-level administration of soman (0.25-0.50 LD50, sc). RNA contents of caudate and cerebrocortical (Layers III and V) neurons were measured 60 min following 1-5 soman dosages given at 24 h intervals. Marked and progressive RNA depletion was evidenced after 1-4 soman injections, whereas partial or complete restitution of RNA levels was observed following the fifth injection. These data indicate that repetitive soman toxication is associated with metabolic correlates of impaired rather than accentuated activation of CNS cholinergic systems, and that tolerance is developed to CNS actions of the agent. It is postulated that impaired neuronal activation is related to soman or ACh-induced transmission block, and that the same adaptive processes responsible for recovery during acute poisoning may underlie the development of tolerance during repetitive administration of organophosphates.  相似文献   

11.
Quantitative azure B cytophotometry was employed to monitor neuronal ribonucleic acid (RNA) metabolism within cholinergic and noncholinergic brain compartments following single sc injections of either 0.5, 0.9 or 1.5 LD50 soman (pinacolyl methylphosphonofluoridate). Dose-dependent losses in neuronal RNA were observed within the cholinergic caudate-putamen (CP) and dopaminergic substantia nigra pars compacta (SNPC), whereas levels of RNA were generally maintained or elevated within the gabaergic substantia nigra pars reticulata (SNPR). CP acetylcholinesterase was inhibited in a dose-dependent fashion. These neuronal RNA changes are perhaps related to seizure activity. The overall data lend support to the hypothesis that alterations in noncholinergic activity contribute to certain manifestations of soman neurotoxicity, such as seizures, which probably stem from an impairment in the functional integrity of both excitatory and inhibitory neuronal elements.  相似文献   

12.
Synopsis Oxygen uptake (VO2) during graded hypoxia, rate of hypoxia acclimation, breathing frequency (fR), breath volume (VS, R) and gill ventilation (VG) were measured in Hoplias malabaricus. Normoxia and hypoxia acclimated fish had similar and constant VO2 and VG in a range of water PO2 from 150 to 25 mmHg. Hypoxia acclimated fish showed significantly higher VO2 in severe hypoxia (PO2 <15 mmHg). Normoxia acclimated fish showed symptoms similar to hypoxic coma after 1 h of exposure to water PO2 of 10 mmHg whereas the same symptoms were observed only at PO2 of 5 mmHg for fish acclimated to hypoxia. Fish required 14 days to achieve full acclimation to hypoxia (PO2 ≥25 mmHg). Lowering of water PO2 from 150 to 25 mmHg resulted in normoxic fish showing a 3–2 fold increase in VG. The increase was the result of an elevation in VS, R rather than fR. Among normoxia acclimated specimens, small fish showed a higher VG per unit weight than the large ones in both normoxia (PO2 =150 mmHg) and hypoxia (PO2 = 15 mmHg). A decrease in the ventilatory requirement (VG/VO2) with increased body weight was recorded in hypoxia (PO2 = 15 mmHg).  相似文献   

13.
The severity of poisoning following acetylcholinesterase (AChE) inhibition correlates weakly with total AChE activity. This may be partly due to the existence of functional and non-functional pools of AChE. AChE consists of several molecular forms. The aim of the present study was to investigate which of these forms will correlate best with neuromuscular transmission (NMT) remaining after partial inhibition of this enzyme. Following sublethal intoxication of rats with the irreversible AChE inhibitor soman, diaphragms were isolated after 0.5 or 3 h. It appeared that at 3 h after soman poisoning the percentage of G1 increased, while those of G4 and A12 decreased. NMT was inhibited more strongly than in preparations obtained from the 0.5 h rats with the same level of AChE inhibition, but with a normal ratio of molecular forms. NMT correlated positively with G4 as well as with A12, but inversely with G1. In vitro inhibition with the charged inhibitors DEMP and echothiophate resulted in higher levels of total AChE, relatively less G1 and more G4 and A12 than after incubation with soman, but led to less NMT. Treatment of soman-intoxicated rats with the reactivating compound HI-6 resulted in preferential reactivation of A12, persisting low levels of G1 and concurrent recovery of NMT as compared with saline-treated soman controls with equal total AChE activity. Apparently, in rat diaphragm G4 and A12 are the functional AChE forms.  相似文献   

14.
: Acetylcholinesterase (AChE) in guinea pig iris was inhibited by methylisocyclopentylfluorophosphate (soman) administered topically or parenterally, and enzyme activity was correlated to pupillary diameter by infrared pupillography. After a single topical soman instillation into the conjunctival sac there was an almost linear relationship between the reduction in AChE activity and pupillary diameter. Topical administration of soman at 24-h intervals in doses capable of almost complete inhibition of AChE in iris was accompanied by a reduced miotic effect of this drug. This was indicated by a reduced rate of the soman-induced pupillary constriction, a less pronounced reduction in pupillary diameter, and a more rapid return of the pupillary diameter to normal size. The change in pupillary diameter occurred after three daily administrations and remained constant during 31 days of treatment. These observations were seen irrespective of inhibition of blood AChE. The decrease in response to repeated administration could not be explained by a reduced inhibitory effect of soman on AChE, by a more rapid de novo synthesis of AChE, or by a change in the number of the muscarinic receptors as determined by quinuclidinyl benzilate binding. When soman or DFP was administered subcutaneously in high doses a severe AChE inhibition was obtained in iris without any concomitant miosis.  相似文献   

15.
The main objective of this study was to determine whether the excitotoxic cholinesterase inhibitor soman increases the catabolism of phospholipids in rat brain. Injections of soman (70 micrograms/kg, s.c.), at a dose that produced toxic effects, increased the levels of both free fatty acids (175-250% of control) and free choline (250% of control) in rat cerebrum 1 h after administration. All fatty acids contained in brain phosphatidylcholine were elevated significantly including palmitic (16:0), stearic (18:0), oleic (18:1), arachidonic (20:4), and docosahexaenoic (22:6) acids. The changes observed were consistent with those reported to occur following ischemia and the administration of other convulsants. Pretreatment of rats with the anticonvulsant diazepam (4 mg/kg, i.p.) prevented both the signs of soman toxicity and the soman-induced increase of choline and free fatty acids. Diazepam alone did not affect the levels of choline or free fatty acids, cholinesterase activity, or soman-induced cholinesterase inhibition, suggesting that soman toxicity involves a convulsant-mediated increase in phosphatidylcholine catabolism. In addition, administration of the convulsant bicuculline, at a dose that produces seizures and increases the levels of free fatty acids in brain, significantly increased the levels of choline. Results suggest that excitotoxic events enhance the hydrolysis of phosphatidylcholine in brain as evidenced by a concomitant increase in the levels of choline and free fatty acids.  相似文献   

16.
Many reports have suggested that gamma-aminobutyric acid (GABA) may play a role in organophosphate-induced convulsions. The balance between GABA and acetylcholine (ACh) in the brain also has been suggested by some investigators to be related to brain excitability. We examined these questions by studying the levels of GABA and ACh and the ratios of GABA to ACh in rat striata and cerebella (two major motor control areas in the CNS) after the administration of soman, an organophosphate acetylcholinesterase inhibitor also known as nerve gas. Male Sprague-Dawley rats weighing 250-300 g were injected subcutaneously with three different doses of soman: a subconvulsive dose of 40 micrograms/kg (approximately 30% of the ED50 for convulsions in rats), a convulsive dose of 120 micrograms/kg (approximately one ED50 for convulsions), and a higher convulsive dose of 150 micrograms/kg (approximately 120% of the ED50 for convulsions). The incidence and severity of convulsions were monitored in individual rats until they were sacrificed by focused microwave irradiation of the head at the following time points after soman administration: 4 min, a time prior to the onset of convulsions; 10 min, the time of onset of convulsions; 1 h, the time of peak convulsive activity; and 6 h, a time at which rats were recovering from convulsions. Results showed that in rat striata and cerebella, neither changes in levels of GABA and ACh nor changes in ratios of GABA to ACh were related to soman-induced convulsions, i.e., none of the changes in either levels or ratios of these two neurotransmitters were related to the initiation of, maintenance of, or recovery from soman-induced convulsions.  相似文献   

17.

Background-

Hypoxia during the first week of life can induce neuronal death in vulnerable brain regions usually associated with an impairment of cognitive function that can be detected later in life. The neurobiological changes mediated through neurotransmitters and other signaling molecules associated with neonatal hypoxia are an important aspect in establishing a proper neonatal care.

Methods-

The present study evaluated total GABA, GABAB receptor alterations, gene expression changes in GABAB receptor and glutamate decarboxylase in the cerebellum and brain stem of hypoxic neonatal rats and the resuscitation groups with glucose, oxygen and epinephrine. Radiolabelled GABA and baclofen were used for receptor studies of GABA and GABAB receptors respectively and Real Time PCR analysis using specific probes for GABAB receptor and GAD mRNA was done for gene expression studies.

Results-

The adaptive response of the body to hypoxic stress resulted in a reduction in total GABA and GABAB receptors along with decreased GABAB receptor and GAD gene expression in the cerebellum and brain stem. Hypoxic rats supplemented with glucose alone and with oxygen showed a reversal of the receptor alterations and changes in GAD. Resuscitation with oxygen alone and epinephrine was less effective in reversing the receptor alterations.

Conclusions-

Being a source of immediate energy, glucose can reduce the ATP-depletion-induced changes in GABA and oxygenation, which helps in encountering hypoxia. The present study suggests that reduction in the GABAB receptors functional regulation during hypoxia plays an important role in central nervous system damage. Resuscitation with glucose alone and glucose and oxygen to hypoxic neonatal rats helps in protecting the brain from severe hypoxic damage.  相似文献   

18.
《Journal of thermal biology》1999,24(5-6):433-437
The exposure to cold (6 h; 6°C) induced a significant decrease in both hypothalamic and brain stem CuZn-superoxide dismutase as well as an increase in Mn-superoxide dismutase and catalase activities in Wistar male rats, acclimated to 6±1°C as compared to those acclimated to 22±2°C. If the rats were administered with propranolol (15 mg/kg), which is a β-adrenoceptor blocker, there were no significant differences in the enzyme activities in any of the brain regions of the two groups studied. It was concluded that acute exposure to cold induces changes in the hypothalamic and brain stem antioxidant enzyme activities dependent on the previous acclimation to different ambient temperatures and propranolol administration.  相似文献   

19.
Carbamate pretreatment (45% inhibition, reversible), combined with therapy, protected rats from soman-induced lethality [The Pharmacologist 23, 224 (1981)]. The present study was done to see if less than 45% inhibition protects and to see if reversible acetylcholinesterase (AChE) inhibition and efficacy against soman lethality are correlated. At 30 min pre-soman, guinea pigs and rats received (im) either pyridostigmine (Py) or physostigmine (Ph) to inhibit whole blood AChE from 10 to 70%; at 1 min post-soman (sc), they received (im) atropine (16 mg/kg)/2-PAMCl (50 mg/kg) and mecamylamine (0.8 mg/kg)/atropine (16 mg/kg), respectively. Protective ratios (PRs) were computed and they ranged from 3.1 to 7.7 for guinea pigs and from 1.8 to 2.4 for rats. In guinea pigs the PRs for Py + therapy were roughly similar to those of Ph + therapy. In both species at 30 min after im injection of Py and Ph, a linear relationship was found between percentage of whole blood AChE inhibition and ln dosage of carbamate. Positive correlation (p less than 0.05) was found between the degree of reversible AChE inhibition by pretreatment, coupled with therapy, and efficacy against soman lethality. The present data indicate that inhibition levels as low as 10% may provide some protection.  相似文献   

20.
Survivorship of zebrafish, Danio rerio, was measured during lethal hypoxic stress after pretreatment in water at either ambient oxygen or at a lowered, but nonlethal, level of oxygen. Acclimation to nonlethal hypoxia (pO(2) congruent with 15 Torr; ca. 10% air-saturation) for 48 hr significantly extended survival time during more severe hypoxia (pO(2) congruent with 8 Torr; ca. 5% air-saturation) compared to survival of individuals with no prior hypoxic exposure. The magnitude of the acclimation effect depended upon the sex of the fish: hypoxia pretreatment increased the survival times of males by a factor of approximately 9 and that of females by a factor of 3 relative to controls. In addition, survival time of control and hypoxia acclimated fish depended upon when in the year experiments were conducted. Survival times were 2-3 times longer when measured in the late fall or winter compared to survival times measured during the spring or summer. These results demonstrate a direct survival benefit of short-term acclimation to hypoxia in this genetically tractable fish. The fact that the acclimation effect depended upon the sex of the fish and the season during which experiments were conducted demonstrates that other genetic and/or environmental factors affect hypoxia tolerance in this species. J. Exp. Zool. 289:266-272, 2001.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号