共查询到20条相似文献,搜索用时 0 毫秒
1.
Ana Depetris-Chauvin ágata Fernández-Gamba E. Axel Gorostiza Anastasia Herrero Eduardo M. Casta?o M. Fernanda Ceriani 《PLoS genetics》2014,10(10)
In the Drosophila brain, the neuropeptide PIGMENT DISPERSING FACTOR (PDF) is expressed in the small and large Lateral ventral neurons (LNvs) and regulates circadian locomotor behavior. Interestingly, PDF immunoreactivity at the dorsal terminals changes across the day as synaptic contacts do as a result of a remarkable remodeling of sLNv projections. Despite the relevance of this phenomenon to circuit plasticity and behavior, the underlying mechanisms remain poorly understood. In this work we provide evidence that PDF along with matrix metalloproteinases (Mmp1 and 2) are key in the control of circadian structural remodeling. Adult-specific downregulation of PDF levels per se hampers circadian axonal remodeling, as it does altering Mmp1 or Mmp2 levels within PDF neurons post-developmentally. However, only Mmp1 affects PDF immunoreactivity at the dorsal terminals and exerts a clear effect on overt behavior. In vitro analysis demonstrated that PDF is hydrolyzed by Mmp1, thereby suggesting that Mmp1 could directly terminate its biological activity. These data demonstrate that Mmp1 modulates PDF processing, which leads to daily structural remodeling and circadian behavior. 相似文献
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
Strigolactone Acts Downstream of Auxin to Regulate Bud Outgrowth in Pea and Arabidopsis 总被引:2,自引:0,他引:2
下载免费PDF全文

Philip B. Brewer Elizabeth A. Dun Brett J. Ferguson Catherine Rameau Christine A. Beveridge 《Plant physiology》2009,150(1):482-493
During the last century, two key hypotheses have been proposed to explain apical dominance in plants: auxin promotes the production of a second messenger that moves up into buds to repress their outgrowth, and auxin saturation in the stem inhibits auxin transport from buds, thereby inhibiting bud outgrowth. The recent discovery of strigolactone as the novel shoot-branching inhibitor allowed us to test its mode of action in relation to these hypotheses. We found that exogenously applied strigolactone inhibited bud outgrowth in pea (Pisum sativum) even when auxin was depleted after decapitation. We also found that strigolactone application reduced branching in Arabidopsis (Arabidopsis thaliana) auxin response mutants, suggesting that auxin may act through strigolactones to facilitate apical dominance. Moreover, strigolactone application to tiny buds of mutant or decapitated pea plants rapidly stopped outgrowth, in contrast to applying N-1-naphthylphthalamic acid (NPA), an auxin transport inhibitor, which significantly slowed growth only after several days. Whereas strigolactone or NPA applied to growing buds reduced bud length, only NPA blocked auxin transport in the bud. Wild-type and strigolactone biosynthesis mutant pea and Arabidopsis shoots were capable of instantly transporting additional amounts of auxin in excess of endogenous levels, contrary to predictions of auxin transport models. These data suggest that strigolactone does not act primarily by affecting auxin transport from buds. Rather, the primary repressor of bud outgrowth appears to be the auxin-dependent production of strigolactones. 相似文献
13.
14.
Barbara O. Alving 《The Journal of general physiology》1969,54(4):512-531
The responses of pacemaker and nonpacemaker Aplysia neurons to voltage clamp commands of less than 200 msec duration are essentially identical. For moderate depolarizing commands there is an early inward transient current followed by a late outward current and an outward tail current when the membrane is clamped back to resting potential. On long (1–2 sec) commands in pacemakers there is a marked sag in the late current and an inward tail current. Etail, the potential of the membrane at which there is no net current flow under the conditions prevailing at the end of the clamp, shifts from about -9.0 mv on short commands to +5.0 mv on long commands. In contrast there is no marked sag of the late current or inward tail current on long commands in nonpacemakers, and Etail is near -9.0 mv for both short and long commands. The current sag and shift in Etail can be ascribed to a decreased conductance (presumably to K+) at the end of the long as compared to the short command in half of the pacemaker neurons. In the remaining cells the essential difference from nonpacemakers appears to be either a greater restricted extracellular space or a more active potential-dependent electrogenic Na+ pump in pacemakers. 相似文献
15.
Movements in animals arise through concerted action of neurons and skeletal muscle. General anaesthetics prevent movement and cause loss of consciousness by blocking neural function. Anaesthetics of the amino amide-class are thought to act by blockade of voltage-gated sodium channels. In fish, the commonly used anaesthetic tricaine methanesulphonate, also known as 3-aminobenzoic acid ethyl ester, metacaine or MS-222, causes loss of consciousness. However, its role in blocking action potentials in distinct excitable cells is unclear, raising the possibility that tricaine could act as a neuromuscular blocking agent directly causing paralysis. Here we use evoked electrical stimulation to show that tricaine efficiently blocks neural action potentials, but does not prevent directly evoked muscle contraction. Nifedipine-sensitive L-type Cav channels affecting movement are also primarily neural, suggesting that muscle Nav channels are relatively insensitive to tricaine. These findings show that tricaine used at standard concentrations in zebrafish larvae does not paralyse muscle, thereby diminishing concern that a direct action on muscle could mask a lack of general anaesthesia. 相似文献
16.
Kieran P. M. Normoyle William M. Brieher 《The Journal of biological chemistry》2012,287(42):35722-35732
Fast actin depolymerization is necessary for cells to rapidly reorganize actin filament networks. Utilizing a Listeria fluorescent actin comet tail assay to monitor actin disassembly rates, we observed that although a mixture of actin disassembly factors (cofilin, coronin, and actin-interacting protein 1 is sufficient to disassemble actin comet tails in the presence of physiological G-actin concentrations this mixture was insufficient to disassemble actin comet tails in the presence of physiological F-actin concentrations. Using biochemical complementation, we purified cyclase-associated protein (CAP) from thymus extracts as a factor that protects against the inhibition of excess F-actin. CAP has been shown to participate in actin dynamics but has been thought to act by liberating cofilin from ADP·G-actin monomers to restore cofilin activity. However, we found that CAP augments cofilin-mediated disassembly by accelerating the rate of cofilin-mediated severing. We also demonstrated that CAP acts directly on F-actin and severs actin filaments at acidic, but not neutral, pH. At the neutral pH characteristic of cytosol in most mammalian cells, we demonstrated that neither CAP nor cofilin are capable of severing actin filaments. However, the combination of CAP and cofilin rapidly severed actin at all pH values across the physiological range. Therefore, our results reveal a new function for CAP in accelerating cofilin-mediated actin filament severing and provide a mechanism through which cells can maintain high actin turnover rates without having to alkalinize cytosol, which would affect many biochemical reactions beyond actin depolymerization. 相似文献
17.
Folic Acid Acts Through DNA Methyltransferases to Induce the Differentiation of Neural Stem Cells into Neurons 总被引:1,自引:0,他引:1
Suhui Luo Xumei Zhang Min Yu Hai Yan Huan Liu John X. Wilson Guowei Huang 《Cell biochemistry and biophysics》2013,66(3):559-566
The present study investigated the roles of folic acid and DNA methyltransferases (DNMTs) in the differentiation of neural stem cells (NSCs). Neonatal rat NSCs were grown in suspended neurosphere cultures and identified by their expression of SOX2 protein and capacity for self-renewal. Then NSCs were assigned to five treatment groups for cell differentiation: control (folic acid-free differentiation medium), low folic acid (8 μg/mL), high folic acid (32 μg/mL), low folic acid and DNMT inhibitor zebularine (8 μg/mL folic acid and 150 nmol/mL zebularine), and high folic acid and zebularine (32 μg/mL folic acid and 150 nmol/mL zebularine). After 6 days of cell differentiation, immunocytochemistry and western blot analyses were performed to identify neurons by β-tubulin III protein expression and astrocytes by GFAP expression. We observed that folic acid increased DNMT activity which may be regulated by the cellular S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH), and the abundance of neurons but decreased the number of astrocytes. Zebularine blocked these effects of folic acid. In conclusion, folic acid acts through elevation of DNMT activity to increase neuronal differentiation and decrease astrocytic differentiation in NSCs. 相似文献
18.
Susan X. Jiang Shawn Whitehead Amy Aylsworth Jacqueline Slinn Bogdan Zurakowski Kenneth Chan Jianjun Li Sheng T. Hou 《The Journal of biological chemistry》2010,285(13):9908-9918
Neuropilins (NRPs) are receptors for the major chemorepulsive axonal guidance cue semaphorins (Sema). The interaction of Sema3A/NRP1 during development leads to the collapse of growth cones. Here we show that Sema3A also induces death of cultured cortical neurons through NRP1. A specific NRP1 inhibitory peptide ameliorated Sema3A-evoked cortical axonal retraction and neuronal death. Moreover, Sema3A was also involved in cerebral ischemia-induced neuronal death. Expression levels of Sema3A and NRP1, but not NRP2, were significantly increased early during brain reperfusion following transient focal cerebral ischemia. NRP1 inhibitory peptide delivered to the ischemic brain was potently neuroprotective and prevented the loss of motor functions in mice. The integrity of the injected NRP1 inhibitory peptide into the brain remained unchanged, and the intact peptide permeated the ischemic hemisphere of the brain as determined using MALDI-MS-based imaging. Mechanistically, NRP1-mediated axonal collapse and neuronal death is through direct and selective interaction with the cytoplasmic tyrosine kinase Fer. Fer RNA interference effectively attenuated Sema3A-induced neurite retraction and neuronal death in cortical neurons. More importantly, down-regulation of Fer expression using Fer-specific RNA interference attenuated cerebral ischemia-induced brain damage. Together, these studies revealed a previously unknown function of NRP1 in signaling Sema3A-evoked neuronal death through Fer in cortical neurons. 相似文献
19.
20.
One of the most widely studied circadian rhythms in invertebrates is that of light responsiveness whose underlying mechanisms seem to involve different groups of oscillators which act as pacemakers. Although, in crayfish, there are clear circadian rhythms in the electroretinogram (ERG) amplitude, the precise location of the pacemaker system driving this rhythm is uncertain. Some data suggest that the circadian pacemaker could be located in a group of neurosecretory cells of the supraesophageal ganglion (the cerebroid ganglion or brain) and that the sinus gland plays a determinant role in the generation and expression of this rhythm through periodic release of pigment-dispersing hormone (PDH). The aim of this work is to examine the role of the brain in the expression of the ERG circadian activity. The hypothesis we test is that the electrical activity at the brain level has a circadian behavior in the firing pattern of spontaneous multiunit activity (MUA) and in visual evoked potentials (VEPs). The results indicate that there are robust circadian rhythms in both MUA, recorded from several regions of the brain, and in the averaged VEPs recorded from the protocerebrum area. These rhythms are 180° out of phase to one another. The rhythm of VEPs showed a main peak at midnight which was in close phase relationship with the ERG amplitude rhythm. 相似文献