首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The relationship between the accumulation of Chl and the apoproteinsof the light-harvesting Chl a/b-protein complex of PS II (LHCII)during the greening of cucumber cotyledons was studied. LHCIIapoproteins were not detected in etiolated cotyledons. Uponillumination, Chl a was formed as a result of photoconversionof protochlorophyllide (Pchlide) which had accumulated in thedark. During the lag period that preceded the accumulation ofChl, a small amount of LHCII apoproteins appeared. The amountof LHCII apoproteins increased with increases in levels of Chlb, though somewhat more rapidly during the first 10 h of greening.Treatment with benzyladenine (BA) or levulinic acid (LA) wasused to vary the supply of Chl a for apoproteins by promotingor inhibiting the synthesis of Chl a, respectively. LA decreasedbut BA increased the rate of accumulation of Chl b and LHCIIapoproteins. Only small amounts of Chl b and LHCII apoproteinswere formed under intermittent illumination. However, in thepresence of chloramphenicol (CAP), which inhibits the synthesisof plastome-coded proteins including apoproteins of the P700-Chla-protein complex (CP1) and a Chl a-protein complex of PS II(CPa), we observed the accumulation of Chl b and LHCII apoproteins,both of which are of nuclear origin. During incubation in thedark after intermittent exposure to light, CAP alone allowedneither destruction nor accumulation of Chl b and LHCII apoproteins,but it did enhance the effect of CaCl2 in inducing both Chlb and these apoproteins. These results can be explained by assumingthat apoproteins of CP1 and CPa have a higher affinity for Chla than do LHCII apoproteins. When the availability of Chl ais limited, these apoproteins compete with one another for Chla, with the resultant preferential formation of CP1 and CPa.However, when the supply of Chl a becomes large enough for saturationof apoproteins of CP1 and CPa, some of the Chl a is incorporatedinto LHCII apoproteins either directly or after conversion toChl b. Thus, the formation of different Chl-protein complexes(CPs) is regulated by the relative rates of synthesis of Chla and apoproteins and by differential affinities of the apoproteinsfor Chl a. 4Present address: Kyowa Hakko Co., Ltd., 4041, Ami-machi, Inashiki,Ibaraki, 300-03 Japan (Received September 14, 1989; Accepted April 26, 1990)  相似文献   

2.
The effects were examined of 5-aminolevulinic acid (ALA) onthe accumulation of Chl and apoproteins of light-harvestingChl a/b-protein complex of photosystem II (LHCII) in cucumbercotyledons under intermittent light. A supply of ALA preferentiallyincreased the accumulation of Chl a during intermittent illumination.However, when cotyledons were pretreated with a brief exposureto light or benzyladenine (BA), the stimulatory effect of ALAon the increase in the level of Chl b was greater than thatin the level of Chl a, resulting in decreased ratios of Chla/b. Time-course experiments with preilluminated cotyledonsrevealed that LHCII apoproteins accumulated rapidly within thefirst 30 min of intermittent illumination with a decline duringsubsequent incubation in darkness. A supply of ALA did not affectthe accumulation of LHCII apoproteins during the intermittentlight period, but it efficiently inhibited the decline in theirlevels during the subsequent darkness. After exposure to a singlepulse of light of BA-treated cotyledons, the prompt increasein levels of LHCII apoproteins was not accompanied by the formationof Ch b, which began to accumulate later. The pattern of changesin levels of LHCII apoproteins was quite similar to that inlevels of Chl a. These results suggest that LHCII apoproteinsare first stabilized by binding with Chl a and that an increasedsupply of Chl a and the accumulation of LHCII apoproteins areprerequisites for the formation of Chl b. 1Present address: Department of Chemistry, Faculty of Scienceand Technology, Meijo University, Aichi, 468 Japan.  相似文献   

3.
In order to study the coordinate accumulation of chlorophyll (Chl) and apoproteins of Chl-protein complexes (CPs) during chloroplast development, we examined changes in the accumulation of the apoproteins in barley (Hordeum vulgare L.) leaves when the rate of Chl synthesis was altered by feeding 5-aminolevulinic acid (ALA), a precursor of Chl biosynthesis. Pretreatment with ALA increased the accumulation of Chl a and Chl b 1.5- and 2.3-fold, respectively, after 12 cycles of intermittent light (2 min light followed by 28 min darkness). Apoproteins of the light-harvesting Chl a/b-protein complex of photosystem II (LHCII) were increased 2.4-fold with ALA treatment. However, apoproteins of the P700-Chl a-protein complex (CP1) and the 43-kDa apoprotein of a Chl a-protein complex of photosystem II (CPa) were not increased by ALA application. With respect to CPs themselves, LHCII was increased when Chl synthesis was raised by ALA feeding, whereas CP1 exhibited no remarkable increase. These results indicate that LHCII serves a role in maintaining the stoichiometry of Chl to apoproteins by acting as a temporary pool for Chl molecules.Abbreviations ALA 5-aminolevulinic acid - Chl chlorophyll - CP chlorophyll-protein complex - CPa chlorophyll a-protein complex of PSII - CP1 P700-chlorophyll a-protein complex - LDS lithium dodecyl sulfate - LHCII light-harvesting chlorophyll a/b-protein complex of PSII This work was supported by the Grants-in-Aid for Scientific Research (04304004) from the Ministry of Education, Science and Culture, Japan.  相似文献   

4.
Dark-grown cells of the mutant C-2A' of Scenedesmus obliquus,which lack chlorophyll and photosynthetic activities, developa fully functional photosynthetic apparatus after transfer tolight (Bishop and Senger. 1972, Senger and Bishop 1972). Afteronset of illumination PS II-activity increases rapidly. Simultaneouslythe apoproteins of the two PS II chlorophyll -protein complexesCP-a11–1 and CP-a11–2 (48 and 44 kDa) are formedat high rates, as shown by fluorography after 35S-label duringdifferent periods of development. Polypeptides with apparentmolecular weights of 32.5 (probably the manganese-binding polypeptideof the oxygen-evolving system), 19.5, 18, 17and 16.5 kDa aresynthesized with kinetics comparable to those of the 48 and44 kDa polypeptides. Whereas the apoproteins of CP-a11–1and CP-11–2 are already present in etioplasts and areheavily formed immediately after onset of illumination, thepolypeptides related to the light-harvesting complex CP-a/bcannot be detected in dark-grown cells and show high rates ofbiosynthesis only after a delay of about 1 hour. An asynchronousfashion of formation is also reported for the correspondingchlorophyll-protein complexes of PS II. Our findings prove astep-wise assembly of PS II during chloroplast development inC-2A', starting with small PS II-units composed of the core-complexes,which increase their amount of light-harvesting complexes duringfurther illumination. High values for PS II-activity/chlorophylland for the half-rise time of fluorescence-induction in earlystages of greening, which decrease rapidly during prolongedillumination, also indicate the change from a small to a largePS Il-unit. Furthermore, investigation of the formation of thylakoidmembrane polypeptides under the influence of different protein-biosynthesisinhibitors of 70 S- or 80 S-ribosomes by means of 35S-labeland subsequent fluorography revealed that most of these polypeptidesare coded by nuclear genes. Only bands at 68, 65.5, 53, 52,48, 44, 32.5, 16.5, 15 and 14.5 kDa were labelled in the presenceof 80 S-inhibitors indicating their chloroplast origin. 1Present address: Fachbereich Biologie-Botanik, Philipps-Universit?t,I.ahnberge, 3550 Marburg, Federal Republic of Germany. (Received April 14, 1986; Accepted August 13, 1986)  相似文献   

5.
SDS-solubilized thylakoid membranes of Bryopsis maxima showeda similar pattern to those of higher plants in SDS-poIyacrylamidegel electrophoresis. Absorption spectra and pigment compositionof both CP1 and CPa bands were similar to those of higher plantsand other algae. Five bands containing chlorophyll (Chl) b weredivided into three categories; a group of major light-harvestingChl a/b-protein complexes (LHCP 1, LHCP 2 and LHCP 3), a minorLHCP (LHCP 3') and a photosystem I complex (CP1a). LHCP 1, thehigh molecular form, showed the lowest Chl a/b ratio among theLHCPs, and contained only xanthophylls as carotenoids. LHCP2, LHCP 3 and LHCP 3' bands contained xanthophylls and carotene.Carotenoid composition of LHCP 3' was different from that ofthe major LHCPs. CP1a band contained a considerable amount ofsiphonaxanthin and siphonein. (Received May 24, 1985; Accepted December 13, 1985)  相似文献   

6.
A water-soluble Chl a/b-protein complex, CP668, from Chenopodiumalbum converts to another form of protein complex, CP743, uponlight illumination. Structural changes of pigments and proteinsupon photoconversion were studied using resonance Raman (RR)and Fourier transform infrared (FTIR) spectroscopies. RR spectraof CP668 and CP743 and a light-induced FTIR difference spectrumshowed that the macrocyle C=C bands of Chl a in CP668 considerablychanged upon conversion to the pigment (not chemically identifiedyet) in CP743. The C=C band pattern of the RR spectrum of CP743was similar to that of bacteriochlorophyll a, suggesting thatthe conjugated system of the CP743 pigment resembles a bacteriochlorinring. Judging from the C=O frequencies, the 131-keto C=O groupsof Chl a and b in CP668 are free from hydrogen bonding, whereasthe 132-ester C=O groups of both Chl a and b and the 7-formylC=O of Chl b in CP668 are hydrogen bonded. Upon conversion toCP743, interactions of the 131-keto and 132-ester C=O groupswere basically unaffected, demonstrating no drastic changesaround these C=O groups. FTIR spectra in the amide I' regionof CP668 and CP743 in D2O buffer showed a peak at 1,633 cm–1,which represents a major component of ß-sheet conformation.Second-derivative spectra of the amide I' bands as well as alight-induced FTIR difference spectrum suggested that drasticchange in the protein conformation does not occur upon photoconversion. (Received November 1, 1998; Accepted December 24, 1998)  相似文献   

7.
The sequential appearance of chlorophyll-protein complexes (CP)in greening barley leaves was studied by an improved methodof SDS-polyacrylamide gel electrophoresis (PAGE). Solubilizedthylakoid membranes were purified using a sucrose step gradientand CPs were separated by PAGE with low concentrations of SDSin solubilizing and reservoir buffers. At 10 min after the onsetof illumination, a chlorophyll-protein complex (CPX) was detected.It was a labile CP, its chlorophyll (Chl) being easily releasedfrom the apoprotein during electrophoresis. The P700-chlorophylla/b-protein complex (CPl) appeared after 45–60 min ofillumination together with P700 activity. Light-harvesting chlorophylla/b-protein complex (LHCP) began to accumulate at 2.5 h withthe beginning of Chl b synthesis. In some cases a small amountof CPa could be detected after 6 h of greening. The time-differencespectrum between homogenates of leaves illuminated for 30 and60 min had an absorbance maximum at 677 nm, showing that a redshift indicative of CPl formation began soon after completionof the Shibata shift. The time-difference spectrum between 3.5-hand 4.0-h illuminated leaves resembled the absolute spectrumof fully greened leaves, indicating that at this stage, spectralcomponents were being synthesized at the same ratio at whichthey exist in fully greened tissues. Both absolute and time-differencespectral data supported the SDS-PAGE results. (Received February 27, 1985; Accepted May 8, 1985)  相似文献   

8.
Compositions of pigments and polypeptides of pale green membranesthat had been isolated from dark-grown cells of a chlorophyll-deficientmutant of Chlorella kessleri were investigated. They containedChl a in a level corresponding to about 1% of that present inthe thylakoid membranes isolated from autotrophically grownwild-type cells and a trace amount of chlorophyllide a, butneither Chl b nor carotenoids. The polypeptide profile of themutant membranes was similar to that of membranes isolated fromwild-type cells that were grown in the dark. Neither the chlorophyll-bindingsubunits of PSI nor the apoproteins of LHCP were detected bySDS-PAGE and immunoblot analysis. However, the light-minus-darkdifference spectrum of the mutant membranes revealed the presenceof the reaction-center chlorophyll of PSI (P700) at a molarratio of 190 chlorophyll (Chl a plus Chlide a) per P700. P700was more stable than Chl a and Chlide a in the light so thatprolonged illumination led to a decline in the Chl/P700 ratioto 24. The initial rate of P700 photooxidation in the mutantmembranes was comparable to that in CP1 isolated from the dark-grownwild-type cells. Under illumination with strong light, the initialrate was decreased in parallel to the decrease in Chl/P700 ratio.The results suggest that most of Chi present in the mutant membranescan transfer excitation energy to P700. (Received March 13, 1998; Accepted August 7, 1998)  相似文献   

9.
A water-soluble Chl a/b-protein (CP673) was isolated and purifiedfrom Brussels sprouts (Brassica oleracea L. var. gemmifera DC).The protein had a molecular mass of 78 kDa and an isoelectricpoint of 4.7, consisted of three or four subunits of 22 kDaand was extremely heat-stable. Although CP673 contained aboutone Chl a per protein, the blue and red absorption bands ofChl a that consisted of three or four Chl a forms with differentabsorption maxima suggested that there are several differentmodes or sites of binding for Chl a. Chl a/b ratio of largerthan 10 also indicated that Chl b is present only in a smallfraction of CP673. The heterogeneity of CP673 in terms of compositionand binding of Chl suggests that Chl is not an intrinsic componentof the Chl-protein. Homology search showed that the N-terminalamino acid sequence of CP673 is highly homologous with thatof a 22 kDa protein that accumulates in water-stressed leavesof two Brassicaceae plants, rapeseed and radish, but not withthose of the light-harvesting Chl a/b-proteins of photosynthesis.A possible function of the water-soluble Chl-protein was discussed. (Received September 17, 1996; Accepted November 18, 1996)  相似文献   

10.
Greening of etiolated seedlings of wild and Chl b-less barley(Hordeum vulgare L.) genotypes in the presence of D-threochloramphenicol(CAP) led to macrogranal arrangements accompanying the inhibitionof Chl synthesis and an enhancement of the total protein contentin differentiated etiochloroplasts. In treated mutant plastids,protein/Chl ratio reached up to 100. No light-dependent O2 evolution was detected in CAP-treatedplastids which had deficiency in polypeptides belonging to thephotosystem II (PSII) centres. On the other hand, plastids displayeda high photosystem I (PSI) activity despite the absence of the92 kDa polypeptide linked to the PSI centre. The accumulationof polypeptides ranging from 16 to 20 kDa suggest that theycould originate from primary complexes consisting of few Chlmolecules, but they were sufficient to allow the activity ofthe reaction centres. No accumulation of the 25–27 kDapolypeptides linked to the PSII antenna was detected. The increase in the proportion of trans-3hexadecenoic acid (16:1tr) in phosphatidylglycerol (PG) of etiochloroplasts from bothtypes after CAP treatment could indicate an alteration of theregulation process of 16:1 tr biosynthesis occurring in plastids.The formation of macrograna could optimize the energy transferin altered thylakoid membranes. The accumulation of PG-16:1tr molecules could be related to the formation of active primarycomplexes in thylakoid when Chl synthesis is altered. (Received March 30, 1988; Accepted June 1, 1988)  相似文献   

11.
The effect of SO2 fumigation (2 ppm, v/v) on photosynthesisin spinach leaves in vivo was investigated by measuring Chla fluorescence (OIDP transient) and the electron paramagneticresonance (EPR) signal I. SO2 fumigation raised the I levelto yield the ID dip and suppressed the DP transient before anyvisible damage occurred in the leaf. In SO2-fumigated leaves,the time course of EPR signal I indicates that reduction ofP700 by white light illumination was inhibited but dark reductionof P700 was not significantly affected. Photosynthetic O2 evolutionwas also inhibited by SO2 fumigation. All of these effects werereversible after removal of SO2. The variable part of the fluorescencein the presence of DCMU was only slightly affected and decreasedas the fumigation time increased. We concluded that SO2 fumigationreversibly inhibits the photosynthetic water-splitting enzymesystem and it injures the reaction center of PS II in vivo whenthe fumigation time is prolonged. We discussed the role of possible toxicants derived from SO2within the leaf on the basis of the SO2 action on Chl a fluorescence. (Received December 8, 1983; Accepted May 7, 1984)  相似文献   

12.
Effects of irradiance on changes in the amounts of chlorophyll(Chl) and light-harvesting chlorophyll a/b protein of PS II(LHCII) were examined in senescing leaves of rice (Oryza sativaL.). Results of treatments at two irradiances (100% and 20%natural sunlight) were examined after the full expansion ofthe 13th leaf throughout the course of senescence. With 20%sunlight, the Chl content decreased only a little during leafsenescence, while with 100% sunlight it decreased appreciably.Similarly, the amount of LHCII protein during treatment with20% sunlight remained almost constant. However, the ratio ofChl a/b during the shade treatment decreased significantly andthe rate of decrease was greater than during the full-sunlighttreatment. The ratio of Chl a/b for Chl a and b bound to LHCIIwas about 1.2, irrespective of leaf age or irradiance treatment.When the amounts of Chl bound to LHCII were calculated fromthe total leaf content of Chl and the ratio of Chl a/b, assuminga ratio of Chl a/b bound to LHCII of 1.2, they were well correlatedwith the amounts of LHCII protein. Changes in the amounts of LHCII synthesized during the two irradiancetreatments were examined using an 15 tracer. Incorporation of15N into LHCII declined dramatically during both treatmentsfrom full expansion through senescence, suggesting that therewas little synthesis of LHCII protein during that time. In addition,the amount of LHCII synthesized during senescence was lowerduring the shade treatment than during the 100% sunlight treatment.These results indicate that the absence of an apparent changein levels of LHCII with shade treatment during senescence wascaused by the very low rate of turnover of LHCII protein. (Received June 17, 1992; Accepted September 28, 1992)  相似文献   

13.
The size of the complex that is essential for the electron-transferactivity from the oxygen-evolving center to the secondary electronacceptor, QB, is about 250 kDa, as determined by target-sizeanalysis after the radiation inactivation of functions of photosystemII (PS II). Inter-Chl tranfer of excitation energy was insensitiveto the radiation inactivation indicating that the masses ofCP47, CP43, and light-harvesting Chi a/b proteins are not includedin the functional size of the oxygen-evolving PS II complex.The transfer of electrons from the secondary electron donor,Z, to QB was catalyzed by a unit of only 65 kDa. The sizes ofthe complexes involved in these light-induced functions of PSII were dependent on the intensity of actinic light. Under saturatingintensities of light, the functional size of the complex fortransfer of electrons from Z to QB was 38 kDa, with a correspondingdecrease in the size of the oxygen-evolving PS II from 250 kDato 125 kDa [Takahashi, Mano and Asada (1985) Plant Cell Physiol.26: 383]. The protein of about 30 kDa functions in the photoreductionof the pheophytin molecule, as well as in the electron transferfrom Z to QA. Under low-intensity light, complexes having thesame sizes as those of the basal functional complexes undersaturating-intensity light are further required, probably tostabilize separated charges in the PS II reaction center andthe oxygen-evolving center. (Received June 20, 1990; Accepted September 18, 1990)  相似文献   

14.
J. P. Slovin  E. M. Tobin 《Planta》1982,154(5):465-472
Lemna gibba L. G-3 plants grown heterotrophically in the dark with intermittent red light (2 min every 8 h) contain a substantial amount of translatable mRNA encoding the light-harvesting chlorophyll (Chl)a/b-protein. However, very little [35S]methionine is incorporated into the apoproteins during a 1-h labeling period in the dark in these plants compared to plants grown in continuous white light. The Chla/b-protein mRNA is found to be associated with functioning polysomes in plants grown in the dark with intermittent red illumination (R plants). The small amounts of the apoproteins which are synthesized by these plants are found in the membrane fraction; neither the mature apoproteins nor their precursor(s) can be detected immunologically in the soluble fraction. The protein does not accumulate in these plants. Pulse-chase experiments with the R plants demonstrate that the newly synthesized apoproteins have a half-life of about 10 h in the dark. This turnover is not sufficient to explain the observed 20-fold difference in [35S]methionine incorporation into the apoprotein between white-light-grown and R plants. We therefore suggest that the synthesis of the Chla/b-apoproteins can be regulated by a light-dependent step at the level of translation, and that this regulation occurs after the initiation of translation.Abbreviations Chl chlorophyll - W Lemna plants grown in continuous white light - R plants grown heterotrophically in the dark with intermittent red light (2 min/8 h)  相似文献   

15.
In etiolated cotyledons of cucumber (Cucumis sativus L. cv.Aonagajibai), preillumination with a short pulse of red lighteliminated the lag phase and stimulated Chl formation in thelinear phase during subsequent continuous illumination. Thistwofold effect was clearly distinguishable by varying the lengthsof the dark periods after preillumination. Pretreatment of excisedcotyledons with BA, GA3 ethylene, or IAA stimulated Chl formationduring subsequent illumination. The effects of BA and GA3 seemedindependent of both kinds of red light effects. However, ethyleneand IAA interacted with red light in increasing the rate ofChl formation during the linear phase. This may provide someclue to the red light action on Chl formation through its probablestimulation of ethylene production. (Received June 7, 1978; )  相似文献   

16.
Allen KD  Staehelin LA 《Plant physiology》1992,100(3):1517-1526
The photosystem (PS) II antenna system comprises several biochemically and spectroscopically distinct complexes, including light-harvesting complex II (LHCII), chlorophyll-protein complex (CP) 29, CP26, and CP24. LHCII, the most abundant of these, is both structurally and functionally diverse. The photosynthetic apparatus is laterally segregated within the thylakoid membrane into PSI-rich and PSII-rich domains, and the distribution of antenna complexes between these domains has implications for antenna function. We report a detailed analysis of the differences in the polypeptide composition of LHCII, CP29, and CP26 complexes associated with grana and stroma thylakoid fractions from spinach (Spinacia oleracea L.), making use of a very high-resolution denaturing gel system, coupled with immunoblots using monospecific antibodies to identify specific antenna components. We first show that the polypeptide composition of the PSII antenna system is more complex than previously thought. We resolved at least five type I LHCII apoproteins and two to three type II LHCII apoproteins. We also resolved at least two apoproteins each for CP29 and CP26. In state 1-adapted grana and stroma thylakoid membranes, the spectrum of LHCII apoproteins is surprisingly similar. However, in addition to overall quantitative differences, we saw subtle but reproducible qualitative differences in the spectrum of LHCII apoproteins in grana and stroma membrane domains, including two forms of the major type II apoprotein. The implications of these findings for models of PSII antenna function in spinach are discussed.  相似文献   

17.
Pea plants were grown under intermittent illumination (ImL)conditions. The low dosage of light given to ImL plastids limitedthe rate of chlorophyll (Chl) a and Chl b biosynthesis and,therefore, it retarded the rate of photosynthetic unit formationand thylakoid membrane development. Depending on the developmentalstage of the photosynthetic unit, ImL plastids had variableChl a/Chl b ratios (2.7 <Chl a/Chlb<20) and showed distinctintermediates in the assembly of the chlorophyll a–b light-harvestingcomplex (LHC) of photosystem-II (PSII). The results are consistentwith a step-wise increment in the PSII antenna size involvingthree distinct forms of the PSII unit: (i) a PSII-core formwith about 37 Chl a molecules; (ii) a PSILß form containingthe PSII-core and the LHC-II-inner antenna with a total of about130 Chl (a + b) molecules, and (iii) the mature PSIIa form containingPSIIß and the LHC-II-peripheral antenna with a totalof 210–300 Chl (a + b) molecules. The thylakoid membranecontained polypeptide subunits b, c and d (the Lhcb1, 2 and3 gene products, respectively) when only the LHC-II-inner waspresent. Polypeptide subunit a, (the apoprotein of the chlorophyll-proteinknown as CP29), along with increased amounts of b and c appearedlater in the development of thylakoids, concomitant with theassembly of the LHC-II-peripheral. The results suggest thatpolypeptide subunit d has priority of assembly over subunita. It is implied that, of all LHC-II constituent proteins, subunitd is most proximal to the PSII-core complex and that it servesas a linker in the transfer of excitation energy from the bulkLHC-II (subunits b and c) to the PSII-core. The work also addressesthe origin of low-molecular-weight proteins (Mr = 19, 17.5 and13.4 kDa) which co-isolate with intact developing plastids andwhose abundance decreases during plastid development. Aminoacid compositional and immunoblot analyses show a nuclear histoneorigin for these low-molecular-weight proteins and suggest co-isolationof histone-containing nuclear vesicles along with intact developingplastids. 1Present address: Plant Physiology Research Group, The Universityof Calgary, Department of Biological Sciences, 2500 UniversityDrive N.W., Calgary, Alberta CANADA T2N 1N4.  相似文献   

18.
H.Y. Nakatani  B. Ke  E. Dolan  C.J. Arntzen 《BBA》1984,765(3):347-352
A Photosystem-II (PS-II)-enriched chloroplast submembrane fraction has been subjected to non-denaturing gel-electrophoresis. Two chlorophyll a (Chl a)-binding proteins associated with the core complex were isolated and spectrally characterized. The Chl protein with apparent apoprotein mass of 47 kDa (CP47) displayed a 695 nm fluorescence emission maximum (77 K) and light-induced absorption characteristics indicating the presence of the reaction center Chl, P-680, and its primary electron acceptor, pheophytin. A Chl protein of apparent apoprotein mass of 43 kDa (CP43) displayed a fluorescence emission maximum at 685 nm. We conclude that CP43 serves as an antenna Chl protein and the PS II reaction center is located in CP47.  相似文献   

19.
Six chlorophyll (Chl)-protein complexes associated with photosystemI (CPla), and the PS I reaction center complex (CPl) were isolatedfrom the thylakoid membranes of the green alga, Bryopsis maxima,by SDS-polyacrylamide gel electrophoresis. CPla had four polypeptides(22, 24, 25, 26 kDa) in addition to the 67 kDa polypeptide ofCPl. These complexes may thus possibly be a combination of CPland antenna complexes for PS I. Six CPla showed almost the sameoptical properties, with absorption maxima at 650 and 677 nmand contained carotene and a small amount of xanthophylls. TheChl a/b ratios of these CPla were about 2, while that of CPlwas 14. CPla showed a fluorescence emission maximum at 695 nm;its excitation spectrum had peaks at 438, 470 and 540 nm, correspondingto the absorption maxima of Chl a, Chl b, xanthophylls, respectively.An antenna complex free of CPl has been detected in some plantsbut was not found in the present alga. 1Present address: Department of Botany, The University of Adelaide,Adelaide, S.A. 5001, Australia (Received April 17, 1986; Accepted June 26, 1986)  相似文献   

20.
PS II-enriched particles of the wild type, of three mutantsand of two double mutants of Chlamydomonas reinhardtii wereanalyzed by lithium dodecylsulfate polyacrylamide gel electrophoresisat 4°C. The mutant Pg 27 was devoid of light-harvestingChl-protein complex (CP) CP II, but had normal cytochrome b-559and displayed all wild type photochemical activities. The mutantFl 50 lacked a pool of cytochrome b-559 photooxidizable at 77K but was able to photooxidize a second pool at 293 K in thepresence of FCCP; it showed some weak PS II activity. The mutantFl 39 lacked both these cytochrome b-559 pools and did not displayany PS II activity. The double mutants Fl 39 Pg 28 and Fl 50Pg 27 had defects similar to those of their respective parentsFl 39 or Fl 50 but, in addition, they were devoid of Chi b andof CP II. In these four mutants having impaired PS II function,five proteins of Mr=50,000, 47,000, 33,000, 27,000 and 19,000were totally (Fl 39, Fl 39 Pg 28) or partly (Fl 50, Fl 50 Pg27) missing. The first two of these proteins corresponded tothe apoproteins of CP III and IV. These results pointed out a strong correlation between thesefive proteins, cytochrome b-559 and PS II primary photochemistry.In mutation and cross experiments, these five PS II-associatedproteins and cytochrome b-559 appeared to be linked characterscontrolled by nuclear gene(s), but they behaved independentlyof CP II. (Received January 24, 1983; Accepted July 20, 1983)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号