首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In vitro actions of purified plerocercoid growth factor (PGF) were compared with those of insulin and human growth hormone (hGH) in adipose tissue from normal male rats. Insulin-like effects were measured by the ability of PGF, insulin, or hGH to stimulate oxidation of [U-14C]glucose to 14CO2, to stimulate lipogenesis, and to inhibit epinephrine-induced lipolysis. PGF and insulin stimulated significant increases in glucose oxidation and lipogenesis in adipose tissue that had not been preincubated as well as in tissue that had been preincubated. hGH stimulated insulin-like effects only in tissue that had been preincubated for 3 hr. Insulin, hGH, and PGF inhibited epinephrine-induced lipolysis of preincubated (3 hr) adipose tissue. hGH produced a dramatic lipolytic response in tissue freshly removed from normal rats but no dose of PGF was lipolytic. PGF did not displace 125I-insulin from its receptors on adipocytes but did competitively inhibit 125I-hGH binding to adipocytes. These results suggest that PGF has direct insulin-like actions which are initiated by binding a GH receptor, but PGF had no anti-insulin action and the insulin-like activity of PGF was unaffected by refractoriness of adipose tissue to GH.  相似文献   

3.
The mechanisms by which insulin inhibits catecholamine-induced lipolysis in fat cells are unknown. In this study the possible role of an interaction between insulin and the adrenoceptors on human fat cells was investigated. Insulin inhibited, in a dose-dependent fashion, the specific binding of hydrophobic as well as hydrophilic nonselective beta-receptor radioligands but had no effect on the binding of alpha 2-selective radioligands. The results of saturation experiments and competition-inhibition experiments under both equilibrium conditions and nonequilibrium conditions revealed that insulin reduced the total number of beta-adrenergic binding sites (maximum effect 25%) without changing the beta-adrenoceptor affinity. This insulin effect was rapid and reversible; one-third of the effect occurred within 1 min of incubation and it was completely reversed within 30 min after withdrawal of insulin. It could be mimicked by a polyclonal rabbit insulin receptor antibody but not by insulin mimickers acting distal to the initial interaction between the hormone and its specific insulin-receptor binding site. The beta-adrenoceptor binding to a plasma membrane-enriched fraction decreased at the same time as it increased to a microsomal enriched fraction after insulin treatment, indicating a redistribution of beta-adrenoceptors in the cell. In lipolysis experiments performed under conditions like those in the binding experiments, insulin inhibited the rate of lipolysis with a lag period of 3 min. Furthermore, the hormone caused a dose-dependent maximum 10-fold shift to the right of the dose-response curve for isoprenaline-induced lipolysis without changing the amplitude of the curve. This effect of insulin was specific for the beta-adrenergic receptors system, since insulin markedly decreased the amplitude of the dose-response curve for parathyroid hormone-induced lipolysis. In addition, the effect of insulin on isoprenaline-induced lipolysis could be mimicked by long-lasting fractional inactivation of the beta-adrenoceptors. The dose-response relationships for the inhibitory effects of insulin on beta-adrenoceptor binding and the lipolytic sensitivity to isoprenaline were almost identical. Half-maximum and maximum effects occurred at about 5 and 100 microunits/ml of insulin, respectively. In conclusion, the exposure of human fat cells to physiological insulin doses is followed by a rapid and dose-dependent translocation of beta-adrenoceptors from the exterior to the interior of the cell and a subsequent dose-dependent decrease in the lipolytic sensitivity to beta-adrenergic agonists, without a change in maximum lipolysis.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
We obtained 20 mouse monoclonal antibodies specific for human type I insulin-like growth factor (IGF) receptors, using transfected cells expressing high levels of receptors (IGF-1R/3T3 cells) as immunogen. The antibodies immunoprecipitated receptor.125I-IGF-I complexes and biosynthetically labeled receptors from IGF-1R/3T3 cells but did not react with human insulin receptors or rat type I IGF receptors. Several antibodies stimulated DNA synthesis in IGF-1R/3T3 cells, but the maximum stimulation was only 25% of that produced by IGF-I. The antibodies fell into seven groups recognizing distinct epitopes and with different effects on receptor function. All the antibodies reacted with the extracellular portion of the receptor, and epitopes were localized to specific domains by investigating their reaction with a series of chimeric IGF/insulin receptor constructs. Binding of IGF-I was inhibited up to 90% by antibody 24-60 reacting in the region 184-283, and by antibody 24-57 reacting in the region 440-586. IGF-I binding was stimulated up to 2.5-fold by antibodies 4-52 and 16-13 reacting in the region 62-184, and by antibody 26-3 reacting downstream of 283. The latter two groups of antibodies also dramatically stimulated insulin binding to intact IGF-1R/3T3 cells (by up to 50-fold), and potentiated insulin stimulation of DNA synthesis. Scatchard analysis indicated that in the presence of these antibodies, the affinity of the type I IGF receptor for insulin was comparable with that of the insulin receptor. These data indicate that regions both within and outside the cysteine-rich domain of the receptor alpha-subunit are important in determining the affinity and specificity of ligand binding. These antibodies promise to be valuable tools in resolving issues of IGF-I receptor heterogeneity and in studying the structure and function of classical type I receptors and insulin/IGF receptor hybrids.  相似文献   

5.
We have demonstrated the formation of hybrid insulin/insulin-like growth factor-I(IGF-I) receptors in transfected rodent fibroblasts, which overexpress human receptors, by examining reactivity with species- and receptor-specific monoclonal antibodies. In NIH 3T3 and Rat 1 fibroblasts, endogenous IGF-I receptors were unreactive with anti-(human insulin receptor)monoclonal antibodies (47-9, 25-49, 83-14, 83-7, 18-44). However, in transfected cells expressing high levels of insulin receptors, 60-80% of high-affinity IGF-I receptors reacted with these antibodies, as assessed either by inhibition of ligand binding in intact cells or by precipitation of solubilized receptors. Conversely, endogenous insulin receptors in NIH 3T3 cells were unreactive with anti-(IGF-I receptor) antibodies alpha IR-3 and 16-13. However, approx. 50% of high-affinity insulin receptors reacted with these antibodies in cells expressing high levels of human IGF-I receptors. The hybrid receptors in transfected cells bound insulin or IGF-I with high affinity. However, responses to these ligands were asymmetrical, in that binding of IGF-I inhibited subsequent binding of insulin, but prior binding of insulin did not affect the affinity for IGF-I. The existence of hybrid receptors in normal tissues could have important implications for metabolic regulation by insulin and IGF-I.  相似文献   

6.
R M O''''Brien  M A Soos    K Siddle 《The EMBO journal》1987,6(13):4003-4010
The effect of monoclonal anti-insulin receptor antibodies on the intrinsic kinase activity of solubilized receptor was investigated. Antibodies for six distinct epitopes stimulated receptor autophosphorylation and kinase activity towards exogenous substrates. This effect of antibodies was seen only within a narrow concentration range and monovalent antibody fragments were ineffective. Evidence was obtained by sucrose density-gradient centrifugation for the formation of antibody-receptor complexes which involved both inter- and intra-molecular cross-linking, although stimulation of autophosphorylation appeared to be preferentially associated with the latter. There was partial additivity between the effects of insulin and antibodies in stimulating autophosphorylation, although the sites of phosphorylation appeared identical on two-dimensional peptide maps. Antibodies for two further epitopes failed to activate receptor kinase, but inhibited its stimulation by insulin. The effects of antibodies on kinase activity paralleled their metabolic effects on adipocytes, except for one antibody which was potently insulin-like in its metabolic effects, but which antagonized insulin stimulation of kinase activity. It is concluded that antibodies activate the receptor by cross-linking subunits rather than by reacting at specific epitopes. The ability of some antibodies to activate receptor may depend on receptor environment as well as the disposition of epitopes.  相似文献   

7.
The insulin-like properties of anti-insulin receptor antibodies (P95 Ab) that have been characterized as being directed against the receptor beta-subunit, were studied as probes to assess the interrelationship between insulin action and receptor phosphorylation. When tested on intact cells, P95 Ab mimicked insulin effects. On isolated fat cells, they stimulated 2-deoxyglucose (2-DG) transport and lipogenesis and the P95 antibody maximal effects (173 and 232% of the control values, respectively) represented about 50% of the maximal effects elicited by insulin (317 and 475% of the control values). On cultured Zajdela hepatoma cells (ZHC cells), P95 Ab also mimicked insulin action on the incorporation of [U-14C]glucose into glycogen (158 and 207% of the control value for antibody- and insulin-treated cells, respectively). In all cases the antibody effects were dose-dependent, specific and, when maximal, were not additive with those elicited by insulin. When tested in a cell-free system, P95 Ab faithfully reproduced insulin action on the phosphorylation of the receptor beta-subunit. The maximal antibody and insulin effects (317 and 328% of the control value, respectively) were not additive. P95 Ab were also equally potent as insulin to stimulate the receptor-mediated phosphorylation of an exogenous substrate (365 and 379% of the control value in P95 antibody- and insulin-treated receptors, respectively). As well, P95 Ab proved as able as insulin in stimulating the tyrosine kinase activity of the receptor (89% of the hormone effect) when the activation was carried out in vivo. Taken together, these results are consistent with a role for the kinase activity of the insulin receptor in mediating the action of insulin.  相似文献   

8.
Growth hormone (GH) exerts acute insulin-like effects, such as increased lipogenesis and inhibition of catecholamine-induced lipolysis, in rat adipocytes that have not been exposed to GH during the preceding three hours. We found that OPC3911, a highly specific inhibitor of the cGMP-inhibited cAMP phosphodiesterase, completely blocked the antilipolytic but not the lipogenic effect of GH. This indicates that the antilipolytic effect of GH is mediated through activation of this phosphodiesterase leading to reduction of cAMP levels in the same manner as has been shown for insulin.  相似文献   

9.
Antibodies to synthetic peptides were employed in order to map domains on the alpha-subunit of the acetylcholine receptor to which several monoclonal antibodies are directed. Five peptides corresponding to residues 1-20, 126-143, 169-181, 330-340 and 351-368 of the receptor alpha-subunit were synthesized and antibodies against them were elicited. The anti-peptide antibodies were employed along with the monoclonal antibodies to identify fragments of S. aureus V8 protease digested- alpha-subunit in immunoblotting experiments. Our results demonstrate that a highly immunogenic region of the alpha-subunit is located on a carboxy-terminal 14 kDa portion of the alpha-subunit. This region also seems to undergo antigenic changes during muscle development. A monoclonal antibody directed against the cholinergic binding site of the acetylcholine receptor reacted with an 18 kDa segment of the alpha-subunit which bound alpha-bungarotoxin as well as antibodies directed against peptide 169-181.  相似文献   

10.
Affinity-purified insulin receptor was photoaffinity labeled with a cleavable radioactive insulin photoprobe. Exhaustive digestion of the labeled alpha-subunit with endoproteinase Glu-C produced a major radioactive fragment of 23 kDa as a part of the putative insulin-binding domain. This fragment could contain either residues 205-316 or 518-633 of the alpha-subunit. Rat hepatoma cells and Chinese hamster ovary cells were transfected with cDNA encoding a human insulin receptor mutant with a deletion of the cysteine-rich region spanning amino acid residues 124-319. Insulin binding by these cells was not increased in spite of high numbers of the mutant insulin receptors being expressed. A panel of monoclonal antibodies which was specific for the receptor alpha-subunit and inhibited insulin binding immunoprecipitated the photolabeled 23-kDa receptor fragment but not the receptor mutant. A synthetic peptide containing residues 243-251 was specifically bound by agarose-insulin beads. We therefore suggest that the 23-kDa fragment contains residues 205-316, and that insulin binding occurs, in part, in the cysteine-rich region of the alpha-subunit.  相似文献   

11.
The natural 20 kDa-variant of human growth hormone (hGH) binds with high affinity to IM-9 human lymphocyte receptors, in agreement with its potency in biological assays for growth promoting and lactogenic activities. In contrast, 20 kDa-hGH has only 3% of the potency of 22 kDa-hGH in binding to the receptors of normal and hypophysectomized rat adipocytes. In agreement with the binding potency, 20 kDa-hGH is only 3% as potent as 22 kDa-hGH in stimulating lipogenesis in normal rat adipocytes preincubated for a few hours in hGH-free medium. The 20 kDa-hGH is also much weaker than 22 kDa-hGH in stimulating lipogenesis in adipocytes from hypophysectomized rats. These data strongly support the concept that the rat adipocyte receptor, which mediates the insulin-like effects of growth hormone, is different from the receptor found on human IM-9 lymphocytes. Preincubation of rat adipocytes with hGH induces a refractoriness to subsequent activation of lipogenesis by hGH but does not abolish the response to insulin, while preincubation with insulin slightly potentiates the hGH response and does not change the insulin response. Additivity studies and a detailed comparison of the lipogenic effects of insulin and hGH suggest that hGH shares only a subset of the metabolic pathways activated by insulin.  相似文献   

12.
To delineate the structural determinants of the insulin receptor (IR) and insulin-like growth factor I receptor (IGFIR) which affect hormone binding specificity we have constructed seven chimeric receptor cDNAs and stably expressed them in Chinese hamster ovary cells. Clonal cell lines expressing high levels of each receptor chimera were analyzed for insulin and insulin-like growth factor I (IGFI) binding activity. Measurements of hormone binding and immunoprecipitation of metabolically labeled receptors showed that all chimeras were properly processed and expressed at the cell surface. The binding data indicate that 56 amino acids of the IR and 52 amino acids of the IGFIR located in corresponding regions of the cysteine-rich domains are the primary determinants of hormone binding specificity. These regions are located between amino acids Asn-230 and Ile-285 on the IR and between His-223 and Met-274 on the IGFIR. In addition, the alpha IR-3 antibody, which competes for IGFI binding, was found to interact with the same 52 amino acids of the IGFIR which determines hormone specificity. Other antibodies which interfere with insulin binding (5D9, MC51, and MA20) interact with epitopes in the COOH-terminal 288 amino acids of the alpha-subunit. We conclude that 56 and 52 amino acids of the cysteine-rich domains of the IR and IGFIR contain the major determinants of hormone binding specificity although other more COOH-terminal regions of both receptors contribute to hormone binding.  相似文献   

13.
Three major functional characteristics of the insulin receptor are negative cooperativity, down-regulation, and beta-subunit tyrosine kinase activity. To investigate the inter-relationships among these functions we studied four antibodies to the insulin receptor alpha-subunit. These monoclonal antibodies competitively inhibited 125I-insulin binding to the insulin receptor of human IM-9 and HEP-G2 cells. When the antibodies were radiolabeled, insulin competed strongly with two antibodies (MA-10 and MA-51) for binding to the insulin receptor, but competed weakly with the two others (MA-5 and MA-20). Antibodies MA-10 and MA-51, like insulin, accelerated the dissociation of bound 125I-insulin from receptors; in contrast, MA-5 and MA-20 strongly inhibited 125I-insulin dissociation. Antibodies MA-10 and MA-51 induced down-regulation of insulin receptors with a potency similar to that of insulin. In contrast, MA-5 and MA-20 were more potent than insulin. None of the antibodies either alone or in combination influenced autophosphorylation of the insulin receptor beta-subunit. These data indicate, therefore, that two major epitopes can be identified on the alpha-subunit of the insulin receptor by the use of monoclonal antibodies. One epitope, recognized by antibodies MA-10 and MA-51, is close to or near the insulin-binding site and mimics insulin-induced negative cooperatively and down-regulation. The other epitope, recognized by antibodies MA-5 and MA-20, is at some distance from the insulin-binding site, and only mimics down-regulation. These data suggest, therefore, that: negative cooperativity and down-regulation may not be inter-related and both processes are independent of insulin receptor tyrosine kinase activity.  相似文献   

14.
Dimethylaminopurine (DMAP) has previously been used as an inhibitor of phosphorylation in studies of meiotic events, and more recently to investigate TNFalpha signaling, because of its potential to inhibit activation of c-jun N-terminal kinase (JNK). Here we have addressed the effects of DMAP on metabolic insulin responses in adipocytes and on intracellular insulin signaling molecules. At 100 micromol/L, DMAP completely inhibited the ability of insulin to counteract lipolysis in isolated adipocytes. Insulin-induced lipogenesis and glucose uptake was inhibited to a lesser degree in a concentration-dependent manner starting at 10 micromol/L DMAP. Insulin-induced tyrosine phosphorylation of the insulin receptor was not affected by DMAP. Insulin-induced activation of protein kinase B, a known mediator of insulin action, was not inhibited by 100 micromol/L, but to a low extent by 1 mmol/L DMAP in intact cells. This inhibition was not sufficient to affect activation of the downstream protein kinase B substrate phosphodiesterase 3B. The inhibition of activation of JNK as a possible mechanism whereby DMAP affects insulin-induced antilipolysis, lipogenesis, and glucose uptake, was investigated using the JNK inhibitor SP600125. At 100 micromol/L, SP600125 completely reversed the antilipolytic effect of insulin, as well as partially inhibited insulin-induced lipogenesis and glucose-uptake, indicating that JNK may be involved in mediating these actions of insulin. Inhibition of JNK by DMAP may therefore partly explain the negative impact of DMAP on insulin action in adipocytes.  相似文献   

15.
Mechanisms of nutritional and hormonal regulation of lipogenesis   总被引:6,自引:0,他引:6       下载免费PDF全文
Kersten S 《EMBO reports》2001,2(4):282-286
  相似文献   

16.
The first step in insulin action consists in binding of the hormone to specific cell surface receptors. This receptor displays two functional domains: an extracellular alpha-subunit containing the majority or the totality of the hormone binding site and an intracellular beta-subunit possessing insulin-stimulated tyrosine kinase activity. A general consensus has been reached in favour of the idea that this receptor enzymic function is essential for generation of the metabolic and growth-promoting effects of insulin. Concerning the mechanism of transmembrane signalling, we like to think that interaction of insulin with the receptor alpha-subunit triggers a conformational change, which is propagated to the beta-subunit and activates it. The active receptor kinase leads then to the phosphorylation of cellular protein substrates, which are likely to belong to two broad categories, those generating metabolic effects of insulin and those resulting in growth-promoting effects. The phosphorylated and active substrates then generate the final effects of insulin.  相似文献   

17.
A modified insulin, in which the A chain moiety has been extended at the C-terminus with the “D region” of the insulin-like growth factor II, has been synthesized essentially by the procedures employed in this laboratory for the synthesis of insulin and analogues. This hybrid molecule displayed reduced insulin-like activities, 34.5% receptor binding, and 40.4% stimulation of lipogenesis relative to natural insulin. These findings suggest that the extension sequence (“D region”) attached at the C-terminus of the A chain may partially cover the putative receptor binding region of insulin, in support of speculations based on computer-generated models. These same models indicate that the extension peptide may interfere with one of the two regions implicated in insulin antibody recognition. In this regard, radioimmunoassay of the hybrid revealed potency even more reduced than biological activity: 18% relative to insulin. Growth factor assays of the hybrid (this laboratory, unpublished data) suggest that the “D region” of insulin-like growth factor II is not in itself the determinant of growth-promoting activity.  相似文献   

18.
Monoclonal antibodies for the human insulin receptor were produced following immunization of mice with IM-9 lymphocytes and/or purified placental receptor. Four separate fusions yielded 28 antibodies, all of which reacted with receptor from human placenta, liver and IM-9 cells. Some antibodies cross-reacted to varying degrees with receptor from rabbit, cow, pig and sheep, but none reacted with rat receptor. At least 10 distinct epitopes were recognized as indicated by species specificity and binding competition experiments. All of these epitopes appeared to be on extracellular domains of the receptor as shown by binding of antibodies to intact cells. In some cases the epitopes were further localized to alpha or beta subunits by immunoblotting. Several antibodies inhibited binding of 125I-insulin to the receptor, some had no effect on binding, and others enhanced the binding of 125I-insulin. It is concluded that these antibodies will be valuable probes of receptor structure and function.  相似文献   

19.
Antisera from rabbits injected with rat adipocyte plasma membranes or intrinsic proteins from such membranes, obtained by a dimethylmaleic anhydride extraction step, mimicked the action of insulin on both glucose transport and lipolysis in intact adipocytes. Biological activity in both types of antisera was mediated by immunoglobulin binding to one or more intrinsic proteins of the adipocyte plasma membrane since fat cells were unresponsive to all antisera absorbed with dimethylmaleic anhydride-extracted membranes. Acid treatment of immunoprecipitates released antibodies which activated glucose uptake and reacted with solubilized adipocyte membranes on immunodiffusion plates. The biologically active immunoglobulin preparations failed to form immunoprecipitin lines when tested against membranes from brain, liver, lung, muscle, kidney, and spleen. Insulin-sensitive glucose uptake in rat soleus muscle did not respond to the antisera. The antibodies activated hexose uptake into fat cells and reacted with solubilized adipocyte membranes on immunodiffusion plates when rat or mouse adipocytes were studied, but not when monkey fat cells were used. The anti-membrane antibody preparations readily activated hexose uptake in trypsinized fat cells which had lost the capacity to bind or respond to insulin. These data are consistent with the concept previously proposed (Pillion, D.J., and Czech, M.P. (1978) J. Biol. Chem. 253, 3761-3764) that the anti-membrane immunoglobulins do not interact with the insulin binding site of the insulin receptor. Monovalent Fab fragments of the biologically active antisera, prepared by papain digestion of the native anti-membrane immunoglobulins, were ineffective in enhancing glucose uptake in adipocytes. However, biological activity of the anti-membrane Fab fragments was restored by the addition of goat anti-rabbit Fab antisera to cells treated with the Fab fraction. Anti-rabbit Fab antisera alone or in combination with Fab fragments prepared from control rabbit sera exhibited no biological activity. These results demonstrate that the ability of anti-membrane antisera to mimic the biological activity of insulin on isolated fat cells is critically dependent on immunoglobulin binding to one or more intrinsic plasma membrane proteins and the multivalent nature of immunoglobulin structure.  相似文献   

20.
1. Regulation of lipogenesis and lipolysis by insulin was studied on adipocytes isolated from 100 kg Large white male pigs. Two adipose tissues were studied: subcutaneous and perirenal. Animals were fed either a control low fat diet or a diet containing 14.7% sunflower seed oil. 2. The cell diameter was higher in the group fed the sunflower diet. 3. De novo lipogenesis was decreased for each adipose tissue in the group fed the sunflower diet. The perirenal site had a higher lipogenic activity than subcutaneous site whatever the diet. 4. Insulin did not significantly stimulate lipogenesis but had an important antilipolytic effect on stimulated lipolysis by isoproterenol. 5. The antilipolytic action of insulin was higher in perirenal adipocytes with the control diet. With the sunflower diet, the decrease was about 54.4% for subcutaneous adipocytes, whereas the inhibition was decreased in perirenal adipocytes. Addition of theophylline reversed the antilipolytic action of insulin. 6. Insulin binding was not affected neither by the dietary fat nor by the adipose tissue location. 7. Absence of de novo lipogenesis stimulation by insulin was not due to an impairment in insulin binding. 8. The different effects of dietary fat and adipose tissue location on the antilipolytic action of insulin could not be explained by a modification of insulin binding but rather by a latter event, probably at a post-insulin binding stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号