首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Short glides of less than 20 m seem energy inefficient for the Siberian flying squirrel Pteromys volans as with the northern flying squirrel Glaucomys sabrinus. However, Siberian flying squirrels in low-canopy forests frequently use short glides. Therefore, we sought to clarify the gliding patterns of Siberian flying squirrels for energy-efficient gliding transport in low-canopy forests (mean tree height, 15.3 m) in Hokkaido, Japan, based on records of 66 glides and 35 launch and landing trees. Mean launch height, landing height, and horizontal glide distance were 14.4, 2.7, and 21.4 m, respectively. For short distances, horizontal glide distance was strongly correlated with launch heights but not with launch tree height. For glides of more than 20 m, horizontal glide distance was significantly correlated with both launch height and launch tree height. The mean heights of launch and landing trees for short glides were 15.6 and 19.5 m, respectively. For long glides, these heights were 22.7 and 19.2 m. For short glides, mean launch tree height did not differ from overall mean tree height. However, for long glides, the mean launch tree height was greater than the overall mean tree height. Also, for short glides, the height of the landing tree was greater than that of the launch tree. Launch trees used for long glides were as high as the landing trees used in short glides. From these results, we conclude that Siberian flying squirrels in low-canopy forests save energy by gliding initially from a tree with sufficient height to permit a glide to a taller tree. This taller tree then permits long-distance glides that are energetically more efficient.  相似文献   

2.
We assess locomotor performance by northern flying squirrelsGlaucomys sabrinus Shaw, 1801 and test the hypothesis that gliding locomotion is energetically cheaper than quadrupedal locomotion. We measured 168 glides by 82 northern flying squirrels in Alaska. Mean glide distances varied from 12.46 m to 14.39 m, with a maximum observed glide distance of 65 m. Mean glide angles varied from 41.31° to 36.31°, and mean air speed ranged from 6.26 m/s to 8.11 m/s. There were no differences in the performance of male and female flying squirrels. We used models of transport cost to provide an initial assessment of the hypothesis that gliding locomotion is energetically less expensive than quadrupedal locomotion. For glides of average length, cost of gliding was less than cost of quadrupedal locomotion except when the animals climbed to the launch point very slowly or ran quickly. Thus the hypothesis that gliding is less expensive than quadrupedal locomotion is supported.  相似文献   

3.
Arboreal animals negotiate a highly three-dimensional world that is discontinuous on many spatial scales. As the scale of substrate discontinuity increases, many arboreal animals rely on leaping or gliding locomotion between distant supports. In order to successfully move through their habitat, gliding animals must actively modulate both propulsive and aerodynamic forces. Here we examined the take-off and landing kinetics of a free-ranging gliding mammal, the Malayan colugo (Galeopterus variegatus) using a custom-designed three-dimensional accelerometry system. We found that colugos increase the propulsive impulse to affect longer glides. However, we also found that landing forces are negatively associated with glide distance. Landing forces decrease rapidly as glide distance increases from the shortest glides, then level off, suggesting that the ability to reorient the aerodynamic forces prior to landing is an important mechanism to reduce velocity and thus landing forces. This ability to substantially alter the aerodynamic forces acting on the patagial wing in order to reorient the body is a key to the transition between leaping and gliding and allows gliding mammals to travel long distances between trees with reduced risk of injury. Longer glides may increase the access to distributed resources and reduce the exposure to predators in the canopy or on the forest floor.  相似文献   

4.

Paramyine ischyromyids are one of the first ancestral rodent groups to appear in North America. Studying ecological indicators of these extinct animals enables us to better understand how they integrated into North American mammalian communities. In this study we reassess the locomotor behavior of a nearly complete skeleton of a paramyine, Paramys delicatus (AMNH FM 12506), using functional limb indices and living squirrels as extant analogues. We then used the results of the functional limb index study to select an appropriate locomotor group for body mass estimations of Paramys delicatus and other early North American (Wasatchian-Bridgerian) paramyines. This was done because body mass is strongly tied to locomotor patterns and more reliable body mass estimates can be generated from an extant sample that functionally resembles the fossils being studied. Functional limb indices were calculated for three locomotor groups (arboreal, semifossorial, and gliding) of living sciurids. Comparisons among arboreal, semifossorial, and gliding sciurids show that the functional indices related to mechanical advantage of muscles and limb robusticity enable distinction among locomotor groups; however, there is considerable overlap between arboreal and semifossorial taxa. Paramys delicatus was found to have generally greater mechanical advantages and limb robusticity than most living squirrels, including semifossorial taxa. As these traits are associated with semifossorial squirrels that frequently use scratch-digging, this suggests that Paramys delicatus and perhaps other early paramyines were likely proficient scratch-diggers. However, indices reflecting limb proportions of paramyines suggest that these early rodents may have used more hind limb dominated locomotion than do living squirrels. Body mass estimations for early paramyines were therefore derived from a semifossorial squirrel sample. Statistical comparisons suggest that many of the most reliable estimators for body mass in Paramys delicatus and other paramyines are those derived from humeral dimensions, with the most reliable estimate being humeral head superoinferior breadth. Using these estimators, individual body mass estimates of early paramyines range from 3391 to 4005 g for Paramys delicatus, 1137–1329 g for Paramys copei, 1291 g for Paramys taurus, and 3357 g for Notoparamys costilloi. All body mass estimations derived from postcranial elements are substantially larger than previously published estimates derived from the dentition, which may be because postcranial elements play a larger role in supporting body weight.

  相似文献   

5.
Locomotion on complex substrata can be expressed in a plane by two geometric components of body movement: linear locomotion and rotational locomotion. This study examined pure rotation by analysing the geometry of leg movements and stepping patterns during the courtship turns of male Blattella germanica. Strict rotation or translation by an insect requires that each side of the body cover equal distance with respect to the substrate. There are three mechanisms by which the legs can maintain this equality: frequency of stepping, magnitude of the leg arcs relative to the body and the degree to which legs flex and extend during locomotion. During the courtship behaviour of Blattella germanica selected males executed turns involving body rotation along with leg movements in which the legs on the outside of the turn swung through greater average arcs than those on the inside of the turn. This difference should have resulted in a translation component. However, legs on the inside of the turn compensated by flexion and extension movements which were greater than those of opposing legs. The net effect was that both sides of the body covered equal average ground. These cockroaches used a wide variety of stepping combinations to effect rotation. The frequency of these combinations was compared to an expected frequency distribution of stepping combinations and further to an expected frequency of these stepping combinations used for straight walking. These comparisons demonstrated a similarity between interleg coordination during straight walking and that during turning in place.  相似文献   

6.
Tethered cockroaches turn from unilateral antennal contact using asymmetrical movements of mesothoracic (T2) legs (Mu and Ritzmannin J Comp Physiol A 191:1037–1054, 2005). During the turn, the leg on the inside of the turn (the inside T2 leg) has distinctly different motor patterns from those in straight walking. The transformation from walking to inside leg turning could be triggered by descending commands that alter a few critical reflexes that start a cascade of physical changes in leg movement or posture, leading to further alterations. This hypothesis has two implications: First, the descending activities must be able to influence thoracic reflexes. Second, one should be able to initiate the turning motor pattern in the absence of descending signals by mimicking a point farther down in the reflex cascade. We addressed the first implication in the companion paper. To examine the second implication, we compared kinematics and motor activities of the T2 leg during searching with that of inside leg turning. The reaching movements made during searching were found to be similar to the movements made by the inside leg during turning. Moreover, even after disconnecting the brain from the thoracic ganglia the reaching movements were similar. This observation is consistent with the second implication from the hypothesis.  相似文献   

7.
Steller sea lions are highly maneuverable marine mammals (expressed as minimum turning radius). Video recordings of turns ( n = 195) are analyzed from kinematic measurements for three captive animals. Speed-time plots of 180° turns have a typical "V-shape." The sea lions decelerated during the first half of the turn, reached a minimum speed in the middle of the curved trajectory and reaccelerated by adduction of the pectoral flippers. The initial deceleration was greater than that for passive gliding due to pectoral flipper braking and/or change in body contour from a stiff, straight streamlined form. Centripetal force and thrust were determined from the body acceleration. Most thrust was produced during the power phase of the pectoral flipper stroke cycle. Contrary to previous findings on otariids, little or no thrust was generated during initial abduction of the pectoral flippers and during the final drag-based paddling phase of the stroke cycle. Peak thrust force at the center of gravity occurs halfway through the power phase and the centripetal force is maximal at the beginning of the power stroke. Performance is modulated by changes in the duration and intensity of movements without changing their sequence. Turning radius, maximum velocity, maximum acceleration and turning duration were 0.3 body lengths, 3.5 m/s, 5 m/s2, and 1.6 s, respectively. The relative maneuverability based on velocity and length specific minimum turning radius is comparable to other otariids, superior to cetaceans but inferior to many fish.  相似文献   

8.
Dynamic perturbations of reaching movements are an important technique for studying motor learning and adaptation. Adaptation to non-contacting, velocity-dependent inertial Coriolis forces generated by arm movements during passive body rotation is very rapid, and when complete the Coriolis forces are no longer sensed. Adaptation to velocity-dependent forces delivered by a robotic manipulandum takes longer and the perturbations continue to be perceived even when adaptation is complete. These differences reflect adaptive self-calibration of motor control versus learning the behavior of an external object or 'tool'. Velocity-dependent inertial Coriolis forces also arise in everyday behavior during voluntary turn and reach movements but because of anticipatory feedforward motor compensations do not affect movement accuracy despite being larger than the velocity-dependent forces typically used in experimental studies. Progress has been made in understanding: the common features that determine adaptive responses to velocity-dependent perturbations of jaw and limb movements; the transfer of adaptation to mechanical perturbations across different contact sites on a limb; and the parcellation and separate representation of the static and dynamic components of multiforce perturbations.  相似文献   

9.
The woolly flying squirrelEupetaurus cinereus! Thomas, 1888 is the longest sciurid and most massive mammalian glider in the world. Because of this, there has been some question about the squirrel’s gliding ability. I document three glide events performed by this species. These glide events, coupled with comparisons of glide ratios, ponderal ratios, and a log-log plot of head + body length versus body mass with other flying squirrels, demonstrates that the woolly flying squirrel, despite its size, is a capable glider and is no more robust than other flying squirrels. Predation attempts that were observed during glide events are discussed within an evolutionary context.  相似文献   

10.
To better understand how elephant seals (Mirounga angustirostris) use negative buoyancy to reduce energy metabolism and prolong dive duration, we modelled the energetic cost of transit and deep foraging dives in an elephant seal. A numerical integration technique was used to model the effects of swim speed, descent and ascent angles, and modes of locomotion (i.e. stroking and gliding) on diving metabolic rate, aerobic dive limit, vertical displacement (maximum dive depth) and horizontal displacement (maximum horizontal distance along a straight line between the beginning and end locations of the dive) for aerobic transit and foraging dives. Realistic values of the various parameters were taken from previous experimental data. Our results indicate that there is little energetic advantage to transit dives with gliding descent compared with horizontal swimming beneath the surface. Other factors such as feeding and predator avoidance may favour diving to depth during migration. Gliding descent showed variable energy savings for foraging dives. Deep mid-water foraging dives showed the greatest energy savings (approx. 18%) as a result of gliding during descent. In contrast, flat-bottom foraging dives with horizontal swimming at a depth of 400m showed less of an energetic advantage with gliding descent, primarily because more of the dive involved stroking. Additional data are needed before the advantages of gliding descent can be fully understood for male and female elephant seals of different age and body composition. This type of data will require animal-borne instruments that can record the behaviour, three-dimensional movements and locomotory performance of free-ranging animals at depth.  相似文献   

11.
Understanding the kinetic strategies of turning as expressed in ground reaction forces (GRFs) and impulses (GRIs) is necessary to design therapies and technologies to enable patients with ambulatory difficulties perform daily activities. Previous studies have reported data only for one step of the turn and expressed the data in terms of a global reference frame making it difficult to understand how the forces act on the body to cause a change in heading and orientation during a turn. This study is the first to report GRF and GRI data for three steps of a turn and express that data in terms of a body reference frame. Motion and GRF data were collected from 10 subjects walking at self-selected speeds along a straight path and performing 90 degrees left and right turns. During the left turn, turn initiation and apex steps were collected. During the right turn, turn termination steps were collected. GRF data were rotated to a reference frame whose origin was the body center of mass (COM) and aligned to the COM trajectory and then integrated to find the GRIs. In the medial-lateral direction, straight steps were characterized by a brief medial impulse at heel strike followed by a prolonged lateral impulse. Turn initiation and termination steps were both characterized by medial impulses spanning the entire stance phase while apex steps were characterized by a large lateral impulse. In the anterior-posterior direction, initiation steps had larger braking and smaller propulsive impulses than straight steps. Apex steps had larger propulsive impulses than straight steps, and termination steps had smaller braking and larger propulsive impulses than straight steps.  相似文献   

12.
Given sufficient space, it is possible for gliding animals to reach an equilibrium state with no net forces acting on the body. In contrast, every gliding trajectory must begin with a non-steady component, and the relative importance of this phase is not well understood. Of any terrestrial animal glider, snakes exhibit the greatest active movements, which may affect their trajectory dynamics. Our primary aim was to determine the characteristics of snake gliding during the transition to equilibrium, quantifying changes in velocity, acceleration, and body orientation in the late phase of a glide sequence. We launched 'flying' snakes (Chrysopelea paradisi) from a 15 m tower and recorded the mid-to-end portion of trajectories with four videocameras to reconstruct the snake's body position with mm to cm accuracy. Additionally, we developed a simple analytical model of gliding assuming only steady-state forces of lift, drag and weight acting on the body and used it to explore effects of wing loading, lift-to-drag ratio, and initial velocity on trajectory dynamics. Despite the vertical space provided to transition to steady-state gliding, snakes did not exhibit equilibrium gliding and in fact displayed a net positive acceleration in the vertical axis, an effect also predicted by the analytical model.  相似文献   

13.
Mammalian locomotion is characterized by the frequent use of in-phase gaits in which the footfalls of the left and right fore- or hindlimbs are unevenly spaced in time. Although previous studies have identified a functional differentiation between the first limb (trailing limb) and the second limb (leading limb) to touch the ground during terrestrial locomotion, the influence of a horizontal branch on limb function has never been explored. To determine the functional differences between trailing and leading forelimbs during locomotion on the ground and on a horizontal branch, X-ray motion analysis and force measurements were carried out in two European red squirrels (Sciurus vulgaris, Rodentia). The differences observed between trailing and leading forelimbs were minimal during terrestrial locomotion, where both limbs fulfill two functions and go through a shock-absorbing phase followed by a generating phase. During locomotion on a horizontal branch, European red squirrels reduce speed and all substrate reaction forces transmitted may be due to the reduction of vertical oscillation of the center of mass. Further adjustments during locomotion on a horizontal branch differ significantly between trailing and leading forelimbs and include limb flexion, lead intervals, limb protraction and vertical displacement of the scapular pivot. Consequently, trailing and leading forelimbs perform different functions. Trailing forelimbs function primarily as shock-absorbing elements, whereas leading forelimbs are characterized by a high level of stiffness. This functional differentiation indicates that European red squirrels ‘test’ the substrate for stability with the trailing forelimb, while the leading forelimb responds to or counteracts swinging or snapping branches.  相似文献   

14.
Turns are essential maneuvers that sharks employ when foraging, feeding, and migrating. How well any individual performs in turning is determined, in part, by the static form and postural reconfiguration of its body. Since the importance of postural reconfiguration in determining turning performance is not well understood, our goal was to examine how body form and posture correlate with turning performance in juvenile leopard sharks, Triakis semifasciata. From videos of sharks turning laterally in yaw, performance was measured as turning radius, turning angle, angular speed of the head, and translational speed of the body along its path. Body form variables included the body's length, mass, width, second moment of area, and mass moment of inertia. Postural variables included body-bending coefficient, body flexion at different longitudinal positions, and lag time between body flexion and turning of the center of rotation. Using step-wise linear regression followed by multiple regression, each performance variable was regressed onto three pools of independent variables: (i) all form variables alone, (ii) all postural variables alone, and (iii) a combination of all form and postural variables. From these correlations, it appears that turning performance may be controlled primarily by the magnitude and timing of the flexion of the body. In other words, sharks alter how they turn by changing the pattern in which they bend their bodies; the body acts as a dynamically reconfiguring rudder.  相似文献   

15.
When insects turn from walking straight, their legs have to follow different motor patterns. In order to examine such pattern change precisely, we stimulated single antenna of an insect, thereby initiating its turning behavior, tethered over a lightly oiled glass plate. The resulting behavior included asymmetrical movements of prothoracic and mesothoracic legs. The mesothoracic leg on the inside of the turn (in the apparent direction of turning) extended the coxa-trochanter and femur-tibia joints during swing rather than during stance as in walking, while the outside mesothoracic leg kept a slow walking pattern. Electromyograms in mesothoracic legs revealed consistent changes in the motor neuron activity controlling extension of the coxa-trochanter and femur-tibia joints. In tethered walking, depressor trochanter activity consistently preceded slow extensor tibia activity. This pattern was reversed in the inside mesothoracic leg during turning. Also for turning, extensor and depressor motor neurons of the inside legs were activated in swing phase instead of stance. Turning was also examined in free ranging animals. Although more variable, some trials resembled the pattern generated by tethered animals. The distinct inter-joint and inter-leg coordination between tethered turning and walking, therefore, provides a good model to further study the neural control of changing locomotion patterns.  相似文献   

16.
Turning is a common locomotor task essential to daily activity; however, very little is known about the forces and moments responsible for the kinematic adaptations occurring relative to straight-line gait in typically developing children. Thus, the aims of this study were to analyse ground reaction forces (GRFs), ground reaction free vertical torque (TZ), and the lower-limb joint kinetics of 90° outside (step) and inside (spin) limb turns. Step, spin, and straight walking trials from fifty-four typically developing children were analysed. All children were fit with the Plug-in Gait and Oxford Foot Model marker sets while walking over force plates embedded in the walkway. Net internal joint moments and power were computed via a standard inverse dynamics approach. All dependent variables were statistically analysed over the entire curves using the mean difference 95% bootstrap confidence band approach. GRFs were directed medially for step turns and laterally for spin turns during the turning phase. Directions were reversed and magnitudes decreased during the approach phase. Step turns showed reduced ankle power generation, while spin turns showed large TZ. Both strategies required large knee and hip coronal and transverse plane moments during swing. These kinetic differences highlight adaptations required to maintain stability and reorient the body towards the new walking direction during turning. From a clinical perspective, turning gait may better reveal weaknesses and motor control deficits than straight walking in pathological populations, such as children with cerebral palsy, and could potentially be implemented in standard gait analysis sessions.  相似文献   

17.
Aerodynamics of Pteranodon   总被引:1,自引:0,他引:1  
A computer program originally designed to test glider performance was adapted and used to study the flight behaviour of Pteranodon. A drag polar was determined for the membranous wing, giving a cambered plate profile. Results of the program described the straight flight performance, the turning ability and circling within thermals. Pteranodon was found to have a very low sinking speed, a similar lift/drag ratio to gliding birds, to be capable of staying aloft at extremely low speeds and a very small turning circle. The stress involved while turning was calculated and found to be low. It is suggested that a change from settled light-wind weather to more turbulent conditions could have brought about the extinction of this highly specialized animal.  相似文献   

18.
The turning movement of a bug, Mesocerus marginatus, is observed when it walks upside-down below a horizontal beam and, at the end of the beam, performs a sharp turn by 180 degrees . The turn at the end of the beam is accomplished in three to five steps, without strong temporal coordination among legs. During the stance, leg endpoints (tarsi) run through rounded trajectories, rotating to the same side in all legs. During certain phases of the turn, a leg is strongly depressed and the tarsus crosses the midline. Swing movements rotate to the same side as do leg endpoints in stance, in strong contrast to the typical swing movements found in turns or straight walk on a flat surface. Terminal location is found after the search through a trajectory that first moves away from the body and then loops back to find substrate. When a leg during stance has crossed the midline, in the following swing movement the leg may move even stronger on the contralateral side, i.e. is stronger depressed, in contrast to swing movements in normal walking, where the leg is elevated. These results suggest that the animals apply a different control strategy compared to walking and turning on a flat surface.  相似文献   

19.
Balancing requirements for stability and maneuverability in cetaceans   总被引:1,自引:0,他引:1  
The morphological designs of animals represent a balance betweenstability for efficient locomotion and instability associatedwith maneuverability. Morphologies that deviate from designsassociated with stability are highly maneuverable. Major featuresaffecting maneuverability are positions of control surfacesand flexibility of the body. Within odontocete cetaceans (i.e.,toothed whales), variation in body design affects stabilityand turning performance. Position of control surfaces (i.e.,flippers, fin, flukes, peduncle) provides a generally stabledesign with respect to an arrow model. Destabilizing forcesgenerated during swimming are balanced by dynamic stabilizationdue to the phase relationships of various body components. Cetaceanswith flexible bodies and mobile flippers are able to turn tightlyat low turning rates, whereas fast-swimming cetaceans with lessflexibility and relatively immobile flippers sacrifice smallturn radii for higher turning rates. In cetaceans, body andcontrol surface mobility and placement appear to be associatedwith prey type and habitat. Flexibility and slow, precise maneuveringare found in cetaceans that inhabit more complex habitats, whereashigh-speed maneuvers are used by cetaceans in the pelagic environment.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号