首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RAC/ROP proteins (ρ-related GTPases of plants) are plant-specific small G proteins that function as molecular switches within elementary signal transduction pathways, including the regulation of reactive oxygen species (ROS) generation during early microbial infection via the activation of NADPH oxidase homologs of plants termed RBOH (for respiratory burst oxidase homolog). We investigated the role of Medicago truncatula Jemalong A17 small GTPase MtROP9, orthologous to Medicago sativa Rac1, via an RNA interference silencing approach. Composite M. truncatula plants (MtROP9i) whose roots have been transformed by Agrobacterium rhizogenes carrying the RNA interference vector were generated and infected with the symbiotic arbuscular mycorrhiza fungus Glomus intraradices and the rhizobial bacterium Sinorhizobium meliloti as well as with the pathogenic oomycete Aphanomyces euteiches. MtROP9i transgenic lines showed a clear growth-reduced phenotype and revealed neither ROS generation nor MtROP9 and MtRBOH gene expression after microbial infection. Coincidently, antioxidative compounds were not induced in infected MtROP9i roots, as documented by differential proteomics (two-dimensional differential gel electrophoresis). Furthermore, MtROP9 knockdown clearly promoted mycorrhizal and A. euteiches early hyphal root colonization, while rhizobial infection was clearly impaired. Infected MtROP9i roots showed, in part, extremely swollen noninfected root hairs and reduced numbers of deformed nodules. S. meliloti nodulation factor treatments of MtROP9i led to deformed root hairs showing progressed swelling of its upper regions or even of the entire root hair and spontaneous constrictions but reduced branching effects occurring only at swollen root hairs. These results suggest a key role of Rac1 GTPase MtROP9 in ROS-mediated early infection signaling.  相似文献   

2.
3.
We have examined the response of the hormone-resistant mutants axr1 and axr2 of Arabidopsis thaliana to inoculation by Agrobacterium tumefaciens and Agrobacterium rhizogenes. Our results indicate that recessive mutations in the axr1 gene affect the frequency of tumor formation after inoculation with either Agrobacterium strain. In addition, tumors produced on axr1 plants were smaller than those growing on wild-type plants. These results indicate that the product of the AXR1 gene is important for both crown gall and hairy root tumor formation. In contrast, the dominant axr2 mutation has a more severe effect on the development of crown gall tumors than on hairy root tumors. Crown gall tumors produced on axr2 plants had a different morphology than wild-type tumors and did not grow when they were removed from the explant. In contrast, a large number of hairy root tumors were produced on wild-type and axr2 plants, and both types of tumors grew when they were removed from the explant. Like the roots of axr2 plants, roots produced on axr2 explants lacked root hairs.  相似文献   

4.
The final stage of map-based gene isolation is complementation of the mutant phenotype with wild-type DNA to determine the exact location of the gene of interest. This usually involves Agrobacterium tumefaciens-mediated transformation, which is reliable and produces stable transformants. However, the process of Agrobacterium transformation may take up to three months to complete. If the mutant phenotype can be seen in a single cell, and the wild-type copy of the gene can act cell autonomously, then complementation of the whole plant is not strictly necessary. We have developed a technique for the biolistic transformation of Arabidopsis thaliana root hairs, and used this to test large insert clones for complementation of two recessive mutant phenotypes, a procedure that takes less than a day. Our results show that biolistic transformation can be used with transient assays to conduct rapid tests for complementation by large insert clones.  相似文献   

5.
Hwang HH  Gelvin SB 《The Plant cell》2004,16(11):3148-3167
Agrobacterium tumefaciens uses a type IV secretion system (T4SS) to transfer T-DNA and virulence proteins to plants. The T4SS is composed of two major structural components: the T-pilus and a membrane-associated complex that is responsible for translocating substrates across both bacterial membranes. VirB2 protein is the major component of the T-pilus. We used the C-terminal-processed portion of VirB2 protein as a bait to screen an Arabidopsis thaliana cDNA library for proteins that interact with VirB2 in yeast. We identified three related plant proteins, VirB2-interacting protein (BTI) 1 (BTI1), BTI2, and BTI3 with unknown functions, and a membrane-associated GTPase, AtRAB8. The three BTI proteins also interacted with VirB2 in vitro. Preincubation of Agrobacterium with GST-BTI1 protein decreased the transformation efficiency of Arabidopsis suspension cells by Agrobacterium. Transgenic BTI and AtRAB8 antisense and RNA interference Arabidopsis plants are less susceptible to transformation by Agrobacterium than are wild-type plants. The level of BTI1 protein is transiently increased immediately after Agrobacterium infection. In addition, overexpression of BTI1 protein in transgenic Arabidopsis results in plants that are hypersusceptible to Agrobacterium-mediated transformation. Confocal microscopic data indicate that GFP-BTI proteins preferentially localize to the periphery of root cells in transgenic Arabidopsis plants, suggesting that BTI proteins may contact the Agrobacterium T-pilus. We propose that the three BTI proteins and AtRAB8 are involved in the initial interaction of Agrobacterium with plant cells.  相似文献   

6.
7.
Successful transformation of plants by Agrobacterium tumefaciens requires that the bacterial T-complex actively escorts T-DNA into the host's nucleus. VirD2 and VirE2 are virulence proteins on the T-complex that have plant-functional nuclear localization signal sequences that may recruit importin alpha proteins of the plant for nuclear import. In this study, we evaluated the involvement of seven of the nine members of the Arabidopsis thaliana importin alpha family in Agrobacterium transformation. Yeast two-hybrid, plant bimolecular fluorescence complementation, and in vitro protein-protein interaction assays demonstrated that all tested Arabidopsis importin alpha members can interact with VirD2 and VirE2. However, only disruption of the importin IMPa-4 inhibited transformation and produced the rat (resistant to Agrobacterium transformation) phenotype. Overexpression of six importin alpha members, including IMPa-4, rescued the rat phenotype in the impa-4 mutant background. Roots of wild-type and impa-4 Arabidopsis plants expressing yellow fluorescent protein-VirD2 displayed nuclear localization of the fusion protein, indicating that nuclear import of VirD2 is not affected in the impa-4 mutant. Somewhat surprisingly, VirE2-yellow fluorescent protein mainly localized to the cytoplasm of both wild-type and impa-4 Arabidopsis cells and to the cytoplasm of wild-type tobacco (Nicotiana tabacum) cells. However, bimolecular fluorescence complementation assays indicated that VirE2 could localize to the nucleus when IMPa-4, but not when IMPa-1, was overexpressed.  相似文献   

8.
发根农杆菌Ri质粒可诱导植物产生毛状根体系,该体系具有遗传性状稳定且增殖速度快的特点,可用于药用植物次生代谢产物的生产研究,为利用生物反应器技术进行药用植物有效成分工业化水平的发酵培养开辟了新途径。本文主要综述了发根农杆菌Ri质粒介导的植物毛状根体系遗传转化机理,并对毛状根体系在药用植物次生代谢产物生产中的研究现状进行了深入分析,为从基因水平上调控植物次生代谢产物的合成提供新思路。  相似文献   

9.
Tomato plants ( Lycopersicon esculentum Mill. cv. Pera) were transformed via Agrobacterium tumefaciens with the binary vector pKYLX71 containing a tomato basic peroxidase (EC 1.11.1.7) gene, tpx1 , under the control of the cauliflower mosaic virus (CaMV35S) promoter. Transgenic plants showed a 2–5-fold increase in the activity of the peroxidase ionically bound to the cell wall, whereas soluble peroxidase activity remained similar or even lower than wild-type plants. Isoelectric focusing showed the presence of a new isoperoxidase of pI ca 9 in the ionically bound extract. Western blot also showed the presence of a new band at 41 kDa that was absent in the wild-type extract. A 40–220% increment of lignin content of the leaf was found in transgenic plants. Shoot phenotype of transgenic plants was similar to wild type, although under stress, the plants appeared wilted and the new leaves had a reduced area and were thicker than wild-type or older transgenic leaves. The root system was underdeveloped in transgenic plants, but the rooting ability of the stem was not affected by the overexpression of peroxidase. Finally, the morphogenetic response of cotyledon and hypocotyl explants from transgenic plants was evaluated. In the case of cotyledons, the percentage of explants with shoot was not different from wild-type plants. For hypocotyl, one of the transgenic lines showed a 30% reduction in the percentage of shoot organogenesis. The results are discussed in relation to the role of tpx1 in lignin synthesis.  相似文献   

10.
Plants defend themselves against potential pathogens via the recognition of pathogen-associated molecular patterns (PAMPs). However, the molecular mechanisms underlying this PAMP-triggered immunity (PTI) are largely unknown. In this study, we show that tomato HP1/DDB1, coding for a key component of the CUL4-based ubiquitin E3 ligase complex, is required for resistance to Agrobacterium tumefaciens. We found that the DDB1-deficient mutant (high pigment-1, hp1) is susceptible to nontumorigenic A. tumefaciens. The efficiency of callus generation from the hp1 cotyledons was extremely low as a result of the necrosis caused by Agrobacterium infection. On infiltration of nontumorigenic A. tumefaciens into leaves, the hp1 mutant moderately supported Agrobacterium growth and developed disease symptoms, but the expression of the pathogenesis-related gene SlPR1a1 and several PTI marker genes was compromised at different levels. Moreover, exogenous application of salicylic acid (SA) triggered SlPR1a1 gene expression and enhanced resistance to A. tumefaciens in wild-type tomato plants, whereas these SA-regulated defence responses were abolished in hp1 mutant plants. Thus, HP1/DDB1 may function through interaction with the SA-regulated PTI pathway in resistance against Agrobacterium infection.  相似文献   

11.
AtNHX1基因对草木樨状黄芪的转化和耐盐性表达研究   总被引:5,自引:0,他引:5  
应用RT-PCR技术从100mmol/LNaCl胁迫处理的拟南芥幼中克隆得到编码液泡膜Na /H 逆向转运蛋白的AtNHX1基因cDNA 编码ORF.并在该ORF上游分别插入CaMV 35启动子和TMV RNA5'UTR的Ω片段,而在下游插入NOS polyA构建真核表达盒,进而将该表达盒插入双元植物表达栽体pNT质粒的T-DNA区构建了携带AtNHX1 基因的植物表达载体质粒pNT-AtNHX1.将pNT-AtNHX1 导入农杆菌LBA4404,用农杆菌介导法将AtNHX1 基因导入豆科牧草草木樨状黄芪中,共获得103株Kan抗性再生植株.通过对农杆菌茵液浓度、侵染时间和乙酰丁香酮浓度等影响转化效率的因素进行优化,初步建立了稳定的草木樨状黄芪农杆菌转化体系.经过PCR检测、Southern杂交和RT-PCR检测表明,AtNHX1 基因已被成功整合到草木樨状黄芪基因组中,并且能够正常转录.野生型和转基因株系诱发的愈伤组织进行耐盐生长实验,结果显示相同盐胁迫条件下,转基因愈伤组织的相对生长率显著高于野生型愈伤组织.施加梯度NaCl胁迫后,植株叶片K ,Na 含量和叶片相对电导率测定结果显示,转基因植物叶片比野生型积累更多的Na 和K ,维持较高的K /Na ;转基因株系叶片相对电导率显著低于野生型.上述结果表明,AtNHX1 基因的导入和表达在提高草木樨状黄芪耐盐性的同时减轻了盐胁迫对植物细胞膜的伤害.关键词: AtNHX1 草木樨状黄芪农杆菌遗传转化耐盐性.  相似文献   

12.
The effect of enhanced cytokinin synthesis due to expression of the ipt gene from Agrobacterium tumefaciens on plant tolerance to root flooding was studied. Transgenic wheat (Triticum aestivum L.) plants carrying the ipt gene were more tolerant to flooding than wild-type plants. The effect of transformation was manifested in the higher yield and less growth inhibition during flooding. The measurements of activities of antioxidant enzymes, superoxide dismutase and catalase, as well as MDA content during flooding revealed differences between wild-type and transgenic plants that correlated with their tolerance. These results point to the protective role of cytokinins during wheat root flooding.  相似文献   

13.
14.
Some plant-growth-promoting bacteria encode the enzyme 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, which breaks down ACC, the direct precursor of ethylene biosynthesis in all higher plants, into ammonia and α-ketobutyrate and, as a result, reduces stress ethylene levels in plants caused by a wide range of biotic and abiotic stresses. It was previously shown that ACC deaminase can inhibit crown gall development induced by Agrobacterium tumefaciens and can partially protect plants from this disease. Agrobacterium tumefaciens D3 has been previously reported to contain a putative ACC deaminase structural gene (acdS) and a regulatory gene (acdR = lrpL). In the present study, it was found that A. tumefaciens D3 is an avirulent strain. ACC deaminase activity and its regulation were also characterized. Under gnotobiotic conditions, wild-type A. tumefaciens D3 was shown to be able to promote plant root elongation, while the acdS and lrpL double mutant strain A. tumefaciens D3-1 lost that ability. When co-inoculated with the virulent strain, A. tumefaciens C58, in wounded castor bean plants, both the wild-type A. tumefaciens D3 and the mutant A. tumefaciens D3-1 were found to be able to significantly inhibit crown gall development induced by A. tumefaciens C58.  相似文献   

15.
16.
hrp genes, encoding type III secretion machinery, have been shown to be key determinants for pathogenicity in the vascular phytopathogenic bacterium Ralstonia solanacearum GMI1000. Here, we show phenotypes of R. solanacearum mutant strains disrupted in the prhJ, hrpG, or hrpB regulatory genes with respect to root infection and vascular colonization in tomato plants. Tests of bacterial colonization and enumeration in tomato plants, together with microscopic observations of tomato root sections, revealed that these strains display different phenotypes in planta. The phenotype of a prhJ mutant resembles that of the wild-type strain. An hrpB mutant shows reduced infection, colonization, and multiplication ability in planta, and induces a defense reaction similar to a vascular hypersensitive response at one protoxylem pole of invaded plants. In contrast, the hrpG mutant exhibited a wild-type level of infection at secondary root axils, but the ability of the infecting bacteria to penetrate into the vascular cylinder was significantly impaired. This indicates that bacterial multiplication at root infection sites and transit through the endodermis constitute critical stages in the infection process, in which hrpB and hrpG genes are involved. Moreover, our results suggest that the hrpG gene might control, in addition to hrp genes, other functions required for vascular colonization.  相似文献   

17.
Transgenic tomato plants expressing wild-type or mutated BV1 or BC1 movement proteins from Bean dwarf mosaic virus (BDMV) were generated and examined for phenotypic effects and resistance to Tomato mottle virus (ToMoV). Fewer transgenic plants were recovered with the wild-type or mutated BC1 genes, compared with the wild-type or mutated BV1 genes. Transgenic tomato plants expressing the wild-type or mutated BV1 proteins appeared normal. Interestingly, although BDMV induces only a symptomless infection in tomato (i.e., BDMV is not well adapted to tomato), transgenic tomato plants expressing the BDMV BC1 protein showed a viral disease-like phenotype (i.e., stunted growth, and leaf mottling, curling, and distortion). This suggests that the symptomless phenotype of BDMV in tomato is not due to a host-specific defect in the BC1 protein. One transgenic line expressing the BC1 gene did not show the viral disease-like phenotype. This was associated with a deletion in the 3' region of the gene, which resulted in expression of a truncated BC1 protein. Several R0 plants, expressing either wild-type or mutated BV1 or BC1 proteins, showed a significant delay in ToMoV infection, compared with non-transformed plants. R1 progeny plants also showed a significant delay in ToMoV infection, but this delay was less than that in the R0 parents. These results also demonstrate that expression of viral movement proteins, in transgenic plants, can have deleterious effects on various aspects of plant development.  相似文献   

18.
19.
20.
Agrobacterium rhizogenes is the etiological agent for hairy-root disease (also known as root-mat disease). This bacterium induces the neoplastic growth of plant cells that differentiate to form “hairy roots.” Morphologically, A. rhizogenes-induced hairy roots are very similar in structure to wild-type roots with a few notable exceptions: Root hairs are longer, more numerous, and root systems are more branched and exhibit an agravitropic phenotype. Hairy roots are induced by the incorporation of a bacterial-derived segment of DNA transferred (T-DNA) into the chromosome of the plant cell. The expression of genes encoded within the T-DNA promotes the development and production of roots at the site of infection on most dicotyledonous plants. A key characteristic of hairy roots is their ability to grow quickly in the absence of exogenous plant growth regulators. As a result, hairy roots are widely used as a transgenic tool for the production of metabolites and for the study of gene function in plants. Researchers have utilized this tool to study root development and root–biotic interactions, to overexpress proteins and secondary metabolites, to detoxify environmental pollutants, and to increase drought tolerance. In this review, we provide an up-to-date overview of the current knowledge of how A. rhizogenes induces root formation, on the new uses for A. rhizogenes in tissue culture and composite plant production (wild-type shoots with transgenic roots), and the recent development of a disarmed version of A. rhizogenes for stable transgenic plant production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号