首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Receptor-mediated endocytosis is a constitutive high capacity pathway for the reabsorption of proteins from the glomerular filtrate by the renal proximal tubule. ClC-5 is a voltage-gated chloride channel found in the proximal tubule where it has been shown to be essential for protein uptake, based on evidence from patients with Dent's disease and studies in ClC-5 knockout mice. To further delineate the role of ClC-5 in albumin uptake, we performed a yeast two-hybrid screen with the C-terminal tail of ClC-5 to identify any interactions of the channel with proteins involved in endocytosis. We found that the C-terminal tail of ClC-5 bound the actin depolymerizing protein, cofilin, a result that was confirmed by GST-fusion pulldown assays. In cultured proximal tubule cells, cofilin was distributed in nuclear, cytoplasmic, and microsomal fractions and co-localized with ClC-5. Phosphorylation of cofilin by overexpressing LIM kinase 1 resulted in a stabilization of the actin cytoskeleton. Phosphorylation of cofilin in two proximal tubule cell models (porcine renal proximal tubule and opossum kidney) was also accompanied by a pronounced inhibition of albumin uptake. This study identifies a novel interaction between the C-terminal tail of ClC-5 and cofilin, an actin-associated protein that is crucial in the regulation of albumin uptake by the proximal tubule.  相似文献   

2.
In this article, we describe a ratiometric intravital two-photon microscopy technique for studying glomerular permeability and differences in proximal tubule cell reabsorption. This quantitative approach is based on the Generalized Polarity (GP) concept, in which the intensity difference between two fluorescent molecules is normalized to the total intensity produced by the two dyes. After an initial intravenous injection of a mixture of 3-, 40-, and 70-kDa fluorescently labeled dextrans into live Munich-Wistar-Frömter (MWF) rats, we were able to monitor changes in the GP values between any two dyes within local regions of the kidney, including the glomerulus, Bowman's capsule, proximal tubule lumens and proximal tubule cells, and individual capillary vessels. We were able to quantify accumulations of different dextrans in the Bowman's space and in tubular lumens as well as reabsorption by proximal tubular cells at different time points in the same rat. We found that for 6- to 8-wk-old MWF rats that developed spontaneous albuminuria, the 40- and 70-kDa dextrans, with hydrodynamic radii larger than albumin, were differentially filtered, but both were able to pass the glomerular filtration barrier and enter into the urinary space of the Bowman's capsule within a few seconds after intravenous infusion. Using GP image analysis, we found that negatively charged dextrans of both 40 and 70 kDa were better reabsorbed by the proximal tubule cells than the neutrally charged 40-kDa dextran. These results demonstrate the potential power of the GP imaging technique for quantitative studies of glomerular filtration and tubular reabsorption. glomerular permeability; tubular reabsorption; charge selectivity; two-photon excitation; multiphoton  相似文献   

3.
The aim of this study is to investigate the role of the proximal tubule in microalbuminuria in the early stage of diabetic nephropathy. Diabetes was induced in male Sprague-Dawley rats by an injection of streptozotocin (50 mg/kg, i.v.). After 2 weeks, albumin delivery in the proximal tubule was measured using micropuncture and the endocytosis process of FITC-labeled albumin was evaluated with immunoelectron microscopy. Albumin was significantly reabsorbed in the proximal convoluted tubule (PCT) of controls (0.39+/-0.05 ng/min at early PCT to 0.17+/-0.08 at late PCT, P<0.05), whereas albumin reabsorption was inhibited in diabetic rats (0.27+/-0.05 to 0.21+/-0.08). Immunogold study revealed that FITC-albumin was significantly less reabsorbed in endosomes and lysosomes of S1 segments in diabetic rats than in controls (endosome: 1.20+/-0.10 vs 2.16+/-0.15 microm-1, P<0.0001; lysosome: 0.26+/-0.03 vs 0.83+/-0.07, P<0.0001). The expression of megalin, an endocytosis receptor, was decreased at the apical membrane of PCT in diabetic rats. The lipid peroxidation production in the proximal tubule was significantly increased in diabetic rats. In conclusion, albuminuria in early-stage diabetic rats can be partly explained by a decreased albumin endocytosis with reduced megalin expression and with increased lipid peroxidation in the proximal tubule.  相似文献   

4.
A nonobstructing optical method was developed to measure proximal tubular fluid reabsorption in rat nephron at 0.25 Hz. The effects of uncaging luminal nitric oxide (NO) on proximal tubular reabsorption were investigated with this method. Proximal fluid reabsorption rate was calculated as the difference of tubular flow measured simultaneously at two locations (0.8-1.8 mm apart) along a convoluted proximal tubule. Tubular flow was estimated on the basis of the propagating velocity of fluorescent dextran pulses in the lumen. Changes in local tubular flow induced by intratubular perfusion were detected simultaneously along the proximal tubule, indicating that local tubular flow can be monitored in multiple sites along a tubule. The estimated tubular reabsorption rate was 5.52 +/- 0.38 nl.min(-1).mm(-1) (n = 20). Flash photolysis of luminal caged NO (potassium nitrosylpentachlororuthenate) was induced with a 30-Hz UV nitrogen-pulsed laser. Release of NO from caged NO into the proximal tubule was confirmed by monitoring intracellular NO concentration using a cell-permeant NO-sensitive fluorescent dye (DAF-FM). Emission of DAF-FM was proportional to the number of laser pulses used for uncaging. Photolysis of luminal caged NO induced a dose-dependent inhibition of proximal tubular reabsorption without activating tubuloglomerular feedback, whereas uncaging of intracellular cGMP in the proximal tubule decreased tubular flow. Coupling of this novel method to measure reabsorption with photolysis of caged signaling molecules provides a new paradigm to study tubular reabsorption with ambient tubular flow.  相似文献   

5.
Despite the central role of tubular plasma proteins that characterize progressive kidney diseases, protein concentrations along the nephron in pathological conditions have not been quantified so far. We combined experimental techniques and theoretical analysis to estimate glomerular and tubular levels of albumin in the experimental model of 5/6 nephrectomy (Nx) in the rat, with or without angiotensin-converting enzyme (ACE) inhibition. We measured glomerular permselectivity by clearance of fluorescent Ficoll and albumin and used theoretical analysis to estimate tubular albumin. As expected, 5/6 Nx induced an elevation of the fractional clearance of the largest Ficoll molecules (radii >56 ?, P < 0.05), increasing the importance of the shunt pathway of the glomerular membrane and the albumin excretion rate (119 ± 41 vs. 0.6 ± 0.2 mg/24 h, P < 0.01). ACE inhibition normalized glomerular permselectivity and urinary albumin (0.5 ± 0.3 mg/24 h). Theoretical analysis indicates that with 5/6 Nx, an increased albumin filtration overcomes proximal tubule reabsorption, with a massive increase in average albumin concentration along the tubule, reaching the highest value of >2,500 μg/ml at the end of the collecting duct. ACE inhibition improved glomerular permselectivity, limiting albumin filtration under proximal tubule reabsorption capacity, with low albumin concentration along the entire nephron, averaging <13 μg/ml at the end of the collecting duct. These results reinforce our understanding of the mechanisms of renal disease progression and the effects of angiotensin II antagonism. They also suggest that evaluation of tubular protein concentration levels could help to identify patients at risk of kidney disease progression and to improve clinical management.  相似文献   

6.
Using quantitative cytochemistry, activities of Na, K-ATPase, succinate dehydrogenase (SDH) and alpha-keto-glutarate dehydrogenase (alpha-KDH) was investigated in cells of renal tubules at different levels of sodium reabsorption in the kidney. The activity of these enzymes in mammals and birds renal tubule cells was found to be higher than in the cells of corresponding renal tubules of cold-blooded vertebrates. This corresponds to the increased total amount of reabsorbed sodium in the kidney of warm-blooded animals. The summer frogs, as compared to the winter ones, exhibit higher activities of SDH and Na,K-ATPase in the proximal tubule cells where changes in sodium reabsorption are also noted. In the kidney of marine teleosts, a negative correlation between U/PNa and the activity of SDH and Na,K-ATPase in the cells of proximal and distal tubule was observed. Aldosterone was found to stimulate sodium reabsorption and to activate Na,K-ATPase.SDH and alpha-KDH mainly in the distal convoluted tubule. Furosemide was observed to inhibit sodium reabsorption and to reduce SDH and Na,K-ATPase activities in cells of the proximal tubule and Henle's loop. In the kidney of adrenalectomized rats, both sodium reabsorption and activities of Na,K-ATPase, SDH, alpha-KDH decreased in all the segments of the nephron. The data obtained suggest that changes in sodium reabsorption may be coupled with those in the activities of the investigated enzymes.  相似文献   

7.
A significant role for nitric oxide (NO) in proximal tubule physiology and pathophysiology has been revealed by a series of in vivo and in vitro studies. Whether the proximal tubule produces NO under basal conditions is still controversial; however, evidence suggests that the proximal tubule is constantly exposed to NO that might include NO from nonproximal tubule sources. When challenged with a variety of stimuli, including hypoxia, the proximal tubule is able to produce large quantities of NO. In vivo studies generally indicate that NO inhibits fluid and sodium reabsorption by the proximal tubule. However, the final effect of NO on proximal tubular reabsorption appears to depend on the concentration of NO and involve interaction with other regulatory mechanisms. NO regulates Na(+)-K(+)-ATPase, Na(+)/H(+) exchangers, and paracellular permeability of proximal tubular cells, which may contribute to its effect on proximal tubular transport. Enhanced production of NO, perhaps depending on macrophage type inducible NO synthase, participates in hypoxic/ischemic proximal tubular injury. In conclusion, NO plays a fundamental role in both physiology and pathophysiology of the proximal tubule.  相似文献   

8.
In recent decades, evidence has confirmed the crucial role of albumin in the progression of renal disease. However, the possible role of signaling pathways triggered by physiologic concentrations of albumin in the modulation of proximal tubule (PT) sodium reabsorption has not been considered. In the present work, we have shown that a physiologic concentration of albumin increases the expression of the α1 subunit of (Na(+) + K(+))-ATPase in LLC-PK1 cells leading to an increase in enzyme activity. This process involves the sequential activation of PI3K/protein kinase B and protein kinase C pathways promoting inhibition of protein kinase A. This integrative network is inhibited when albumin concentration is increased, similar to renal disease, leading to a decrease in the α1 subunit of (Na(+) + K(+))-ATPase expression. Together, the results indicate that variation in albumin concentration in PT cells has an important effect on PT sodium reabsorption and, consequently, on renal sodium excretion.  相似文献   

9.
The present study deals with the dose- and time-dependent uptake of cytochrome c (CYT c) in the proximal tubule of the rat kidney, and shows that there are segment and sex differences in the reabsorption of CYT c. Rats of both sexes were intravenously injected with different doses of CYT c (0.75-9.0 mg per 100 g body weight), and the kidneys were investigated by light and electron microscopy at different times (3 min, 10 min, and 2 h) after the injection. After 3 and 10 min, CYT c was demonstrated in apical vacuoles of different sizes and in some lysosomes of the S1 and S2 segments, whereas after 2 h, CYT c was found only in lysosomes of all three segments of the proximal tubule. At these times, the S1 segment contained more CYT c than the S2 and S3 segments. However, 2 h after the injection of 6 or 9 mg CYT c, the differences between the S1 and S2 segments disappeared almost completely, due to a strong lysosomal accumulation of CYT c in the S2 segment. At all studied times and CYT-c doses, the S3 segment contained less CYT c than the S1 and S2 segments. On the whole, different levels of CYT-c reabsorption were found in the different segments of the proximal tubule, which was saturable with increasing CYT-c doses, i.e. firstly in the proximal and then in the distal parts of the proximal tubule. Two hours after the injection of CYT c, a difference between males and females was observed, with the lysosomes of the S1 and S2 segments of females containing more CYT c than those of males. Thus, more CYT c was reabsorbed in the proximal tubule of females than in that of males.  相似文献   

10.
The mechanisms and control of transepithelial inorganic sulfate (Si) transport by primary cultures of chick renal proximal tubule monolayers in Ussing chambers were determined. The competitive anion, S2 O 3 2- (5 mM), reduced both unidirectional reabsorptive and secretory fluxes and net Si reabsorption with no effect on electrophysiological properties. The carbonic anhydrase (CA) inhibitor ethoxzolamide decreased net Si reabsorption approximately 45%. CAII protein and activity were detected in isolated chick proximal tubules by immunoblots and biochemical assay, respectively. Cortisol reduced net Si reabsorption up to approximately 50% in a concentration-dependent manner. Thyroid hormone increased net Si reabsorption threefold in 24 h, and parathyroid hormone (PTH) acutely stimulated net Si reabsorption approximately 45%. These data indicate that CA participates in avian proximal tubule active transepithelial Si reabsorption, which cortisol directly inhibits and T3 and PTH directly stimulate.  相似文献   

11.
12.
13.
The human Na(+)/D-glucose cotransporter 2 (hSGLT2) is believed to be responsible for the bulk of glucose reabsorption in the kidney proximal convoluted tubule. Since blocking reabsorption increases urinary glucose excretion, hSGLT2 has become a novel drug target for Type 2 diabetes treatment. Glucose transport by hSGLT2 was studied at 37°C in human embryonic kidney 293T cells using whole cell patch-clamp electrophysiology. We compared hSGLT2 with hSGLT1, the transporter in the straight proximal tubule (S3 segment). hSGLT2 transports with surprisingly similar glucose affinity and lower concentrative power than hSGLT1: Na(+)/D-glucose cotransport by hSGLT2 was electrogenic with apparent glucose and Na(+) affinities of 5 and 25 mM, and a Na(+):glucose coupling ratio of 1; hSGLT1 affinities were 2 and 70 mM and coupling ratio of 2. Both proteins showed voltage-dependent steady-state transport; however, unlike hSGLT1, hSGLT2 did not exhibit detectable pre-steady-state currents in response to rapid jumps in membrane voltage. D-Galactose was transported by both proteins, but with very low affinity by hSGLT2 (≥100 vs. 6 mM). β-D-Glucopyranosides were either substrates or blockers. Phlorizin exhibited higher affinity with hSGLT2 (K(i) 11 vs. 140 nM) and a lower Off-rate (0.03 vs. 0.2 s?1) compared with hSGLT1. These studies indicate that, in the early proximal tubule, hSGLT2 works at 50% capacity and becomes saturated only when glucose is ≥35 mM. Furthermore, results on hSGLT1 suggest it may play a significant role in the reabsorption of filtered glucose in the late proximal tubule. Our electrophysiological study provides groundwork for a molecular understanding of how hSGLT inhibitors affect renal glucose reabsorption.  相似文献   

14.
The reabsorption of horseradish peroxidase (HRP) by the proximal tubule cells of rat kidneys was investigated by measuring the concentration of HRP in total particulate fractions of the cortex 1/4 and 1 hr after intravenous injection, and by correlated cytochemical observations. When compared to the corresponding values of the control animals, the concentration of HRP 1 hr after injection was decreased approximately 10-fold in the renal cortex of rats which had received an intravenous injection of hypertonic saline or two subcutaneous injections of mannitol. The plasma clearance and the urinary excretion of HRP were not altered significantly after injection of hypertonic saline, but the plasma clearance was decreased and the urinary excretion increased after injection of mannitol. When the dose of injected HRP was varied, the reabsorption of HRP by the renal cortex was proportional to the dose in the experimental and the control animals. Cytochemical staining for peroxidase activity also showed that the phagosomes and phagolysosomes of the proximal tubule cells contained much less peroxidase in the experimental rats than in the control rats. After injection of mannitol, large vacuoles appeared in the proximal tubule cells. The vacuoles often contained peroxidase-positive granules (phagosomes) which varied in diameter from the limit of microscopic visibility up to several microns. Most of the vacuoles did not react for acid phosphatase activity, but lysosomes were often aggregated around the vacuoles and seemed to release acid phosphatase into the cytoplasm. Certain analogies between the reabsorption of protein and that of water by the proximal tubule cells are discussed.  相似文献   

15.
The activities of N-acetyl-beta, D-glucosaminidase (NAG, EC 3.2.1.30), beta, D-galactosidase (beta-gal, EC 3.2.1.23) and acid phosphatase (ac-Pase, EC 3.1.3.2) were measured in the glomeruli, five segments of the proximal and four segments of the distal tubule of normal male Wistar rats. The activities of NAG and beta-gal are 3- to 5-fold higher in the first part of the proximal tubule than in other segments and very low in glomeruli. We propose that the distribution of these two glycosidases reflects the contribution of the different tubular segments to the reabsorption of glycoproteins. The maximal activity of ac-Pase was found in the straight part of the proximal tubule. It was only 1.5-fold higher than in the distal tubule. Moreover, the activity in glomeruli is rather high. We conclude that ac-Pase is not primarily involved in the handling of reabsorbed molecules.  相似文献   

16.
Renal function was studied in unanaesthetized fetal sheep aged 112-120 and 126-132 days and in adult nonpregnant ewes. The clearance of lithium was used to measure proximal and distal fractional sodium reabsorption. In five nonpregnant adult sheep, 80.6 +/- 1.7% (SE) of the filtered sodium load was reabsorbed proximally and 18.2 +/- 1.53% distally. This was different from all groups of fetal sheep (p less than 0.001). In younger fetuses, proximal fractional sodium reabsorption was less (51.3 +/- 2.3% (SE), p less than 0.05) and distal fractional sodium reabsorption greater (42.4 +/- 2.3% (SE), p less than 0.05) than older fetuses (126-132 days old) in which 61.4 +/- 2.4% (SE) was reabsorbed proximally and 33.6 +/- 2.5% (SE) distally. In another group of fetuses aged 125-137 days, in which proximal tubular sodium reabsorption was measured after distal tubular blockade, proximal fractional sodium reabsorption was 57.8 +/- 2.95% (SE) and distal fractional sodium reabsorption, 38.7 +/- 2.64% (SE). In adult sheep there was no relationship between distal tubular sodium reabsorption and glomerular filtration rate, i.e., proximal tubular function was responsible for glomerulotubular balance. However, in the fetuses, both proximal and distal tubular sodium reabsorption contributed to glomerulotubular balance. Thus in fetal life, the proximal tubule participates to a lesser extent in reabsorbing the filtered sodium load possibly because its function is suppressed by its relatively "volume-expanded" state or because it is functionally immature. Therefore, a greater proportion is reabsorbed distally and the distal nephron participates under physiological conditions in glomerulotubular balance.  相似文献   

17.
18.
The renal and proximal tubule response to contralateral kidney exclusion was studied in a variety of circumstances. Recollection micropuncture studies were performed to assess the response to contralateral kidney clamping in the normal or a remnant kidney of the dog. Acute clamping of the contralateral kidney for a normal and unilateral remnant kidney resulted in marked reduction in proximal TF/P inulin ratios in the experimental kidney reflecting a 15 percent reduction in fluid reabsorption. Mean fractional excretion of sodium, potassium and water increased significantly in remnant kidney dogs but no significant change was observed in normal dogs except for potassium excretion. The marked reduction in proximal reabsorption occurred as soon as 5-15 minutes after contralateral kidney clamping and was compensated by distal reabsorption. Acute obstruction of the contralateral ureter results in a similar markedly reduced proximal tubular reabsorption. The reduction in proximal reabsorption induced by contralateral clamping occurred in the presence of reduced perfusion pressure and volume expansion and to some extent with renal denervation. When prostaglandin E2 or acetycholine were infused prior to contralateral kidney clamping, proximal reabsorption remained at control levels and the contralateral clamping response was blocked. Similar blockade occurred after treatment with indomethacin. Acute reduction in nephron mass causes a marked depression of proximal tubular sodium and fluid absorption not obviously accounted for by hemodynamicphysical factors and humoral factors may be involved. The level of distal reabsorption to increased proximal delivery following contralateral clamping, determines the net urinary excretion.  相似文献   

19.
Phosphate deprivation causes a resistance to the phosphaturic effect of parathyroid hormone (PTH). The present study determined whether acute phosphate deprivation alters basal or stimulated activities of key enzymes of the cyclic adenosine monophosphate (cAMP) metabolism in microdissected proximal convoluted and proximal straight tubules, since blunted cAMP levels in these proximal subsegments might account for refractoriness to the effect of PTH on phosphate reabsorption in the proximal convoluted and proximal straight tubule segments. In the proximal convoluted tubules of rats fed a normal-phosphate diet (NPD), PTH increased the adenylate cyclase activity by tenfold. In the proximal convoluted tubule of rats fed a low-phosphate diet (LPD), PTH also increased the adenylate cyclase activity by tenfold. In addition, forskolin increased the adenylate cyclase activity to levels similar to PTH in the proximal convoluted tubule of rats fed NPD or LPD. In the proximal straight tubule of rats fed NPD, PTH resulted in an approximately fivefold increase in adenylate cyclase activity. In the proximal straight tubule of rats fed LPD, PTH resulted in a fourfold increase in adenylate cyclase activity. The forskolin-stimulated adenylate cyclase activity was markedly decreased (46%) in the proximal straight tubule of phosphate-deprived rats. The cAMP-phosphodiesterase activity in the proximal convoluted tubule was significantly increased by 26% in phosphate-deprived rats. The cAMP-phosphodiesterase activities in the proximal straight tubules from rats fed NPD or LPD were similar. We conclude that distinct differences in key enzymes of cAMP metabolism exist in the proximal convoluted and proximal straight tubule subsegments. Further, phosphate deprivation affects the cAMP-phosphodiesterase and adenylate cyclase activities differently in these nephron subsegments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Summary The reabsorption of ovalbumin double labelled with fluorescein isothiocyanate (FITC) in the kidneys of normal and castrated male and female rats was investigated using fluorometry and fluorescence microscopy. The animals received an intravenous injection of either 2 or 7 mg fluorescein-thiocarbamyl (FTC)-ovalbumin per kilogram bodyweight (bw) and were killed 4 or 8 min post-injection. Animals injected with unlabelled ovalbumin (7.0 mg/kg bw) served as controls. Fluorescence microscopy revealed that FTC-ovalbumin was reabsorbed exclusively in the renal proximal tubule, the highest level of reabsorption being observed in its first part. Four and eight minutes after the mjection, FTC-ovalbumin was only observed in apical reabsorption vacuoles, with lysosomes exhibiting no specific fluoreseence. Fluorometric determinations for the renal homogenate supernatant showed that the renal reabsorption of FTC-ovalbumin was up to 24% higher in normal females than in normal males. Castration resulted in a significant increase in renal reabsorption in male rats (up to 38%; significant), whereas a minor decrease was observed in castrated females. The renal uptake differences in normal and castrated animals are discussed in the light of the sex-hormone-dependent catabolism of lysosomal proteins in the renal proximal tubule of rats.Supported by the Deutsche Forschungsgemeinschaft (SFB 105)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号