首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rebecca L. Peer 《Oecologia》1986,68(2):308-314
Summary The effects of herbivorous microcrustaceans on algal succession and diversity were studied in replicated 200 ml freshwater microcosms. Three different experiments were conducted. Two experiments used laboratory microcosms in growth chambers. Rotenone was used to kill the microcrustaceans in one-half of the cultures. Diversity (H') and succession were monitored over a 60 day period. The third experiment used similar microcosms, but they were kept out of doors. In this experiment, microcrustaceans became extinct in some cultures because of a mechanical disturbance. In all three experiments, succession from a community dominated by green algae to one dominated by blue-green algae was significantly slower when microcrustaceans were present. Diversity was higher in grazed cultures at some times during succession, but not at all times. The dynamics of diversity during succession appear to be governed principally by the change in the relative frequency or green and blue-green algae, rather than by the dynamics of individual species. Nutrient recycling by the microcrustaceans may favor green algae, partially mitigating mortality on green algae due to grazing pressure.  相似文献   

2.
A UV‐absorbing mycosporine‐like amino acid (324 nm‐MAA), so far only known from the green macroalgal genus Prasiola (Trebouxiophyceae), was also identified in other morphologically diverse green algae closely related to Prasiola spp. in 18S rDNA phylogenies. Using HPLC, a second UV‐absorbing compound was found only in Myrmecia incisa Reisigal among all studied strains. This substance showed an absorption maximum at 322 nm and hence was designated as putative 322 nm‐MAA. Preliminary UV‐exposure experiments indicated that all species containing one or the other MAA showed a strong accumulation of the respective compound, thus supporting their function as putative UV sunscreen. Both UV‐absorbing substances were only identified in the studied members of the Trebouxiophyceae but were absent in members of the Ulvophyceae and Chlorophyceae. When mapped on an 18S rDNA phylogeny, the distribution of 324 nm‐MAA was found to be scattered within the Trebouxiophyceae but was consistent with a distribution that follows phylogenetic patterns rather than ecological adaptations. The 324 nm‐MAA was also detected in two phylogenetically related species from freshwater as well as from subaerial habitats, Watanabea reniformis Hanagata et al. and isolate UR7/5, which were phylogenetically independent of Prasiola and its closer allies. MAAs were absent in another Trebouxiophyceae clade comprising lichen photobionts (Coccomyxa pringsheimii Jaag) as well as freshwater picoplanktonic algae (Choricystis minor (Skuja) Fott). The data presented suggest a chemotaxonomic value of the 324 nm‐MAA in green algal taxonomy. To address the paraphyly of the genus Myrmecia Printz as presently circumscribed, we propose the new combination Lobosphaera incisa.  相似文献   

3.
The impact of submerged macrophytes or their extracts on planktonic algae was studied under experimental conditions. Live Ceratophyllum demersum L., its extract, and extracts of four other plant species induced modifications in the phytoplankton dominance structure. These modifications were: a decline in the number of Oscillatoria limnetica Lemm., which was the most numerous cyanobacterian species, and a decline in biomass and percentage contribution of all cyanobacteria to total algal biomass. This was accompanied by an increase in biomass and percentage contribution of green algae, especially Chlorella sp. and Chlamydomonas sp. Also, there was an increase in biomass and percentage contribution of nanoplankton (under 50 µm) to total phytoplankton biomass.The isolation of planktonic algae from direct influence of C. demersum by means of dialysis membranes caused an increase in number, biomass and percentage contribution of cyanobacteria. Release of organic compounds of over 3000 daltons by macrophytes apparently contributed to a decline of cyanobacteria by changing the phytoplankton dominance structure.  相似文献   

4.
Abundances of picoplankton groups were determined by flow cytometryin the Northern South China Sea (SCS) in winter 2004 to studythe dynamics of picoplankton at a coastal front region. Prochlorococcusis more abundant in relatively high temperature and salinitywaters than in nearshore area. Heterotrophic bacteria dominatein total picoplanktonic biomass but keep rather stable in biomassand surface/bottom biomass ratio on both sides of the front.Increases of picophytoplanktonic biomass and their surface/bottombiomass ratio are remarkable mainly owing to the contributionof Synechococcus on the offshore open SCS waters. Temperatureis found to limit the growth of Synechococcus and Prochlorococcus.Picoeukaryotes and heterotrophic bacteria are less sensitiveto the change in hydrographic conditions across the front. Theautotrophic/heterotrophic biomass ratio of picoplankton is lowerin eutrophic coastal waters on the nearshore side relative tothe offshore and oligotrophic open SCS.  相似文献   

5.
The seasonal occurrence of picocyanobacteria in the Greenland Sea and Arctic Ocean was investigated during four expeditions in May–June 1987 and 1988, August–October 1991, and November–December 1988 by epifluorescence microscopy. In early summer, the abundance of picocyanobacteria was related to water masses: they were nearly absent in polar water, whereas they occurred in high concentrations (up to 5470 cells ml–1) in Atlantic Water. During autumn and beginning of winter, the abundances of picocyanobacteria remained around 103 cells ml–1. Their relative contribution to total picoplanktonic algal abundance increased from 0% during spring/summer to 70–80% in late autumn, as a result of a decrease in the abundance of eucaryotic picoalgae. Consequently, the impact of picocyanobacteria on Arctic epipelagic carbon and energy flow is of minor importance, and the strong contribution of picoplankton algae to biomass and primary productivity in Arctic seas has to be attributed to eucaryotic species.  相似文献   

6.
Abstract Results obtained with Hydrodictyon africanum, and data from the literature, show that most green algae of the chlorophyte type (e.g. Chlorella, Chlamydomonas, Hydrodictyon) differ in their photosynthetic C fixation characteristics from most green algae of the charophyte type (e.g. Spirogyra, Chara) and from C3 higher plants. The chlorophyte algae fix inorganic carbon by the photosynthetic carbon reduction cycle pathway, but have a low CO2 compensation point in 250 μM O2, a low inhibition of CO2 fixation from 10 μM CO2/250 μM O2 when compared with 10 μM CO2/zero O2, and a low half-saturation constant for CO2. These three characteristics are different from those of charophytes and C3 higher plants, and resemble those of C4 higher plants. It is suggested that these characteristics of chlorophyte algae are the result of a ‘CO2 concentrating mechanism’ which increases the CO2/O2 ratio at the site of ribulose bisphosphate carboxylase-oxygenase action in a similar way to that achieved by the C4?C3 acid cycle in C4 plants. In the chlorophyte algae, however, CO2 concentration probably involves active HCO3? transport at the inner membrane of the chloroplast envelope. Active HCO3? transport can occur at the plasmalemma of charophyte algae and submerged aquatic higher plants as well as chlorophyte algae, so it is unlikely to explain the differences between the two groups of aquatic green plants. Differences in the properties of ribulose bisphosphate carboxylase-oxygenase, and differences in CO2 production in the light, also seem inadequate to account for the different photosynthetic characteristics. The chlorophyte type of ‘C02 concentrating mechanism’ appears to be common in other classes of eukaryotic algae, and in cyanophytes. Some of the ‘advanced’ members of these eukaryotic algal classes (including the chlorophytes) may lack the mechanism, while some ‘primitive’ charophytes may retain the mechanism which their ancestors presumably possessed.  相似文献   

7.
The seasonal development of autotrophic picoplankton was investigated in seven Danish lakes representing a eutrophication gradient. Highest cell abundance between 1.5 to 6 × 105 cells ml−1 were found in mid-summer. Minor peaks were observed in spring. In winter, densities were below 103 ml−1. The highest relative picoplankton contribution to total autotrophic biomass also occurred in mid-summer. In the eutrophic lakes and one humic lake the average seasonal contribution of picoplankton to total chlorophyll was below 1% increasing to 5-8% in the meso- and oligotrophic clear water lakes. During short periods the proportion of picoplankton did reach 25%. The higher relative importance of picoplankton in less productive lakes was not due to higher actual chlorophyll concentrations, but due to a much more pronounced response by larger algae at higher nutrient loading. Both cyanobacteria and eukaryote organisms were present as picoplankton. Only eukaryotes were found in one eutrophic lake and an acidic, humic lake. In the eutrophic lakes eukaryote picoplankton was dominant; both with respect to cell densities and biovolume, whereas cyanobacteria dominated the two meso-oligotrophic lakes. Autotrophic picoplankton were present in all lake types, however their importance seemed to be less in most eutrophic lakes than in less productive, meso-oligotrophic lakes.  相似文献   

8.
Early stages of biofilm succession in a lentic freshwater environment   总被引:1,自引:0,他引:1  
Sekar  R.  Venugopalan  V.P.  Nandakumar  K.  Nair  K.V.K.  Rao  V.N.R. 《Hydrobiologia》2004,512(1-3):97-108
Initial events of biofilms development and succession were studied in a freshwater environment at Kalpakkam, East Coast of India. Biofilms were developed by suspending Perspex (Plexiglass) panels for 15 days at bimonthly intervals from January 1996 to January 1997. Changes in biofilm thickness, biomass, algal density, chlorophyll a concentration and species composition were monitored. The biofilm thickness, biomass, algal density and chlorophyll a concentration increased with biofilms age and colonization was greater during summer (March, May and July) than other months. The initial colonization was mainly composed of Chlorella vulgaris, Chlorococcum humicolo (green algae), Achnanthes minutissima, Cocconeis scutellum, C. placentula (diatoms) and Chroococcus minutus (cyanobacteria) followed by colonial green algae such as Pediastrum tetras, P. boryanumand Coleochaete scutata, cyanobacteria (Gloeocapsa nigrescens), low profile diatoms (Amphora coffeaeformis, Nitzschia amphibia, and Gomphonema parvulum) and long stalked diatoms (Gomphoneis olivaceumand Gomphonema lanceolatum). After the 10th day, the community consisted of filamentous green algae (Klebshormidium subtile, Oedogonium sp., Stigeoclonium tenue and Ulothrix zonata) and cyanobacteria (Calothrix elenkinii, Oscillatoria tenuis and Phormidium tenue). Based on the percentage composition of different groups in the biofilm, three phases of succession could be identified: the first phase was dominated by green algae, the second by diatoms and the third phase by cyanobacteria. Seasonal variation in species composition was observed but the sequence of colonization was similar throughout the study period.  相似文献   

9.
In the Schelde continuum, a succession in the phytoplankton community is observed along the transition from the river to the freshwater tidal reaches of the estuary and from the freshwater to brackish reaches of the estuary. The goal of this study was to experimentally evaluate the contribution of changes in salinity and light climate to this succession. In summer 2000 and in spring 2001, phytoplankton communities from the river, the freshwater tidal reaches and the brackish reaches of the estuary were incubated under high or low light intensities and exposed to a change in salinity. HPLC analysis was used to evaluate the response of different algal groups to changes in light intensity and salinity. When incubated at a light intensity corresponding to the mean underwater light intensity of the freshwater tidal reaches, growth of phytoplankton from the river as well as from freshwater tidal reaches was significantly lower than when incubated at a light intensity corresponding to the mean underwater light intensity of the river. The phytoplankton community from the freshwater tidal reaches did not appear to be better adapted to low light intensities than the phytoplankton community from the river. Although diatoms were expected to be less sensitive to a reduction in light intensity than green algae, the opposite response was observed. Freshwater and brackish water phytoplankton were negatively affected by respectively an increase or decrease in salinity. However, the effect of salinity was not strong enough to explain the disappearance of freshwater and brackish water phytoplankton between a salinity of 0.5 and 10 psu, suggesting that other factors also play a role. In the freshwater phytoplankton communities from the river and the freshwater tidal reaches, green algae and diatoms responded in a similar way to an increase in salinity. In the brackish water phytoplankton community, fucoxanthin displayed a different response to salinity than lutein and chlorophyll a.  相似文献   

10.
Abstract The retention of algal picoplankton by Nuclepore polycarbonate filters of 0.2, 1.0, 2.0 and 3.0 μm pore size was tested in 2 marine and 3 freshwater sites. When 1 μm Nuclepore filters were used, the percentage of the total cyanobacterial cells passing the filter varied between sites and with increasing depth within sites. As much as 99% of the Synechococcus -like cells was retained by a 1 μm filter. This could lead to an underestimation of the picoplanktonic contribution or, more seriously, an apparent distribution pattern that is an artifact of the choice of filter pore size. Filter retention was also dependent on vaccum pressure during filtration. This study emphasizes the need for direct observation of picoplankton numbers in filter fractionation studies.  相似文献   

11.
The green lineage (Viridiplantae) comprises the green algae and their descendants the land plants, and is one of the major groups of oxygenic photosynthetic eukaryotes. Current hypotheses posit the early divergence of two discrete clades from an ancestral green flagellate. One clade, the Chlorophyta, comprises the early diverging prasinophytes, which gave rise to the core chlorophytes. The other clade, the Streptophyta, includes the charophyte green algae from which the land plants evolved. Multi-marker and genome scale phylogenetic studies have greatly improved our understanding of broad-scale relationships of the green lineage, yet many questions persist, including the branching orders of the prasinophyte lineages, the relationships among core chlorophyte clades (Chlorodendrophyceae, Ulvophyceae, Trebouxiophyceae and Chlorophyceae), and the relationships among the streptophytes. Current phylogenetic hypotheses provide an evolutionary framework for molecular evolutionary studies and comparative genomics. This review summarizes our current understanding of organelle genome evolution in the green algae, genomic insights into the ecology of oceanic picoplanktonic prasinophytes, molecular mechanisms underlying the evolution of complexity in volvocine green algae, and the evolution of genetic codes and the translational apparatus in green seaweeds. Finally, we discuss molecular evolution in the streptophyte lineage, emphasizing the genetic facilitation of land plant origins.  相似文献   

12.
In a study on the dynamics and trophic role of the heterotrophic nanoflagellate (HNAN) assemblage in the microbial food web of a eutrophic oxbow lake abundances, biomass, and production rates of HNAN and their potential prey organisms, namely heterotrophic bacteria and autotrophic picoplankton, were monitored for a period of 2 years. No coupling between HNAN abundance and biomass and the abundance and biomass of their picoplanktonic prey was observed for the investigation period. The ratio of heterotrophic bacterial to HNAN abundance ranged from 2.2 x 103 to 8.6 x 103 (mean: 4.2 x 103 +/- 1.8 x 103). HNAN carbon consumption could account for only 10% to 40% of bacterial secondary production. The lack of coupling between HNAN and their potential prey and the low HNAN abundance relative to bacterial abundance suggested (a) that HNAN grazing was an insignificant factor in the regulation of bacterial abundance and (b) that HNAN abundance was regulated by predation rather than by prey abundance. This hypothesis was supported by the fact that HNAN growth rates were high (in the range of 0.45 d-1 to 1.00 d-1 during spring and summer, yearly mean: 0.52 d-1), and only weakly correlated with prey abundance and biomass. The results indicated strong top-down control of HNAN and consequently a weak coupling of HNAN and picoplankton in the investigated eutrophic freshwater environment.  相似文献   

13.
Cytological and genetic investigations of two major groups of green algae, chlorophyte and streptophyte green algae, show a predominance of uniparental inheritance of the plastid and mitochondrial genomes in most species. However, in some crosses of isogamous species of Ulva compressa, these genomes are transmitted from mt+, mt, and both parents. In species with uniparental organelle inheritance, various mechanisms can eliminate organelles and their DNA during male gametogenesis or after fertilization. Concerning plastid inheritance, two major mechanisms are widespread in green algae: (1) digestion of plastid DNA during male gametogenesis, during fertilization, or after fertilization; and (2) disintegration or fusion of the plastid in the zygote. The first mechanism also eliminates the mitochondrial DNA in anisogamous and oogamous species. These mechanisms would ensure the predominantly uniparental inheritance of organelle genomes in green algae. To trace the evolutionary history of cytoplasmic inheritance in green algae, the relations between uniparental inheritance and sex type were considered in isogamous, anisogamous, and oogamous species using sex-specific features that might be nearly universal among Chlorophyta.  相似文献   

14.
A recent meta‐analysis indicates that trophic cascades (indirect effects of predators on plants via herbivores) are weak in marine plankton in striking contrast to freshwater plankton ( Shurin et al. 2002 , Ecol. Lett., 5, 785–791). Here we show that in a marine plankton community consisting of jellyfish, calanoid copepods and algae, jellyfish predation consistently reduced copepods but produced two distinct, opposite responses of algal biomass. Calanoid copepods act as a switch between alternative trophic cascades along food chains of different length and with counteracting effects on algal biomass. Copepods reduced large algae but simultaneously promoted small algae by feeding on ciliates. The net effect of jellyfish on total algal biomass was positive when large algae were initially abundant in the phytoplankton, negative when small algae were dominant, but zero when experiments were analysed in combination. In contrast to marine systems, major pathways of energy flow in Daphnia‐dominated freshwater systems are of similar chain length. Thus, differences in the length of alternative, parallel food chains may explain the apparent discrepancy in trophic cascade strength between freshwater and marine planktonic systems.  相似文献   

15.
Non-siliceous algae in a five meter core from Lake Kinneret (Israel)   总被引:1,自引:1,他引:0  
U. Pollingher 《Hydrobiologia》1986,143(1):213-216
The composition and succession of non-siliceous algae, studied in a five meter core from Lake Kinneret (Israel), are described. Only Chlorophyta species were recorded, probably due to the standard palynological sample processing which was used. In the lower part of the core, from the bottom to 300 cm (interval 5500–2500 years B.P.), Botryococcus braunii was the only common alga. Relevant changes in algal diversity and abundance occur at 300 cm. Many species of green algae were recorded for the first time (Pediastrum, Scenedesmus, Coelastrum, etc.). These changes may be related to an increase in nutrient concentration as a consequence of cultural disturbance. In the interval 300-0 cm, a succession of Pediastrum species is followed. The recovered green algae are extant in the present plankton of Lake Kinneret. They also constitute an important part of the algae found in the profundal sediments today.  相似文献   

16.
Under certain culture conditions, cells of the chlorophyte Haematococcus pluvialis accumulate significant amounts of astaxanthin. This study describes biomass and carotenoid production during a sunlight cycle in a continuous culture of growing cells of H. pluvialis and shows that these two parameters are under the control of irradiance. The hourly carotenoid production increases with light intensity and, in our culture conditions, carotenoid accumulation occurs in a few hours and without any morphological change in the algae. These carotenoids seem to be efficient in protecting algal cells against photoinhibition damage if their content is greater than 1% dry biomass. Below this concentration, that is to say in the early hours of high light intensity, dry biomass decreases due to cell lysis. The results demonstrate that secondary carotenoid accumulation in H. pluvialis may occur in the active growth phase and is stimulated from the first hours of sunlight illumination.  相似文献   

17.
18.
The phytoplankton of the River Lujan (Buenos Aires, Argentina) was studied for a period of 18 months, together with physical and chemical variables, in relation to a pollution gradient. 167 taxa were recorded within a seasonal succession characterized by dominance of diatoms with a brief summer green algae facies. A combination of several biotic indices and multivariate analysis was employed to assess the impact of pollution on the phytoplankton community. The biotic indices used were species diversity and richness, algal quotients (green algae/diatom ratio, Centrales/Pennales ratio) and the SD succession rate index. Multivariate procedures included cluster analysis and ordination by PCA of both species and samples, stepwise discriminant analysis and multiple discriminant analysis of variance (MANOVA). Results indicate that community dynamism is attenuated at the more polluted sites, concomitant with an increased predominance of a broad-tolerance algal assemblage, co-dominated by Cyclotella meneghiniana and Nitzschia stagnorum. The changes in the community structure and dynamics described herein involved alterations in the distribution and relative proportions of the algae, rather than modifications in the basic species composition. These changes may not be readily detectable by methods which over-simplify the ecological information, such as systems of indicator species and biotic indices, designed to assess the degree of pollution. The suitability of multivariate analysis and biotic indices in river phytoplankton studies is further discussed.  相似文献   

19.
Eukaryotic picoplankton was isolated from Lake Kinneret, Israel. This green picoplankton is spheroidal or ovoidal in shape. The cell wall has a network of ribs on its surface. The chloroplast is cup- or mantel-shaped without a pyrenoid. The morphology and cellular structure of this autosporic alga is identical with Mychonastes homosphaera (Skuja) Kalina et Pun?ochá?ová. The phylogenetic tree based on 18S ribo-somal RNA gene sequence data showed that M. homosphaera is placed in the Chlorophyceae and located at the base of a branch leading to the other algae possessing directly opposed orientation of the flagellar apparatus.  相似文献   

20.
Usually marine algae are an excellent source of pigments for different commercial sectors. Freshwater macroalgae can be exploited as a good source of biologically active compounds provided an appropriate extraction method is developed. The efficiency of four methods, like microwave‐assisted (MAE), ultrasound‐assisted extraction (UAE), supercritical fluid extraction (SFE) with ethanol as a co‐solvent, as well as conventional Soxhlet extraction were studied in the same conditions (time, solvent and temperature) for the recovery of chlorophylls and carotenoids from three freshwater green algae species: Cladophora glomerata, Cladophora rivularis and Ulva flexuosa. UV‐Vis spectrophotometry was used to determine chlorophyll a, chlorophyll b and total carotenoid content in obtained extracts. The results of this study showed that the advantages of novel extraction techniques (MAE and UAE) include higher yield and, in consequence, lower costs compared to traditional solvent extraction techniques. These methods were much more efficient in freshwater green algae pigment recovery than the classic Soxhlet extraction as well as SFE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号