首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gene knockout is a widely used approach to evaluate loss-of-function phenotypes and it can be facilitated by the incorporation of a DNA cassette having a drug-selectable marker. Confirmation of the correct knockout cassette insertion is an important step in gene removal validation and has generally been performed by polymerase chain reaction (PCR) assays following a time-consuming DNA extraction step. Here, we show a rapid procedure for the identification of Trypanosoma cruzi transfectants by PCR directly from liquid culture - without prior DNA extraction. This simple approach enabled us to generate PCR amplifications from different cultures varying from 106-108 cells/mL. We also show that it is possible to combine different primer pairs in a multiplex detection reaction and even to achieve knockout confirmation with an extremely simple interpretation of a real-time PCR result. Using the “culture PCR” approach, we show for the first time that we can assess different DNA sequence combinations by PCR directly from liquid culture, saving time in several tasks for T. cruzi genotype interrogation.  相似文献   

2.
The family B DNA polymerase gene was amplified from Thermococcus celer genomic DNA by using the degenerate primers and DNA walking PCR. The Tce DNA polymerase gene was cloned and sequenced. The gene contains an ORF of 2,325 bp encoding 774 amino acid residues with a calculated molecular weight of 89,788.9 kDa. The Tce DNA polymerase was purified by heat treatment and heparin column chromatography. The optimal conditions for PCR were determined. Long-range PCR and time-saving PCR were performed using various specific ratios of Taq and Tce DNA polymerases (Tce plus DNA polymerase). Tce plus DNA polymerase surpassed the PCR performance of Tce, Taq and Pfu DNA polymerases in terms of yield and efficiency.  相似文献   

3.
Here we present a simple, highly efficient, universal automatic kinetics switch (AKS) gene synthesis method that enables synthesis of DNA up to 1.6 kbp from 1 nM oligonucleotide with just one polymerase chain reaction (PCR) process. This method eliminates the interference between the PCR assembly and amplification in one-step gene synthesis and simultaneously maximizes the amplification of emerged desired DNA by using a pair of flanked primers. In addition, we describe an analytical model of PCR gene synthesis based on the thermodynamics and kinetics of DNA hybridization. The kinetics difference between standard PCR amplification and one-step PCR gene synthesis is analyzed using this model and is validated using real-time gene synthesis with eight gene segments (318-1656 bp). The effects of oligonucleotide concentration, stringency of annealing temperature, annealing time, extension time, and PCR buffer conditions are examined systematically. Analysis of the experimental results leads to new insights into the gene synthesis process and aids in optimizing gene synthesis conditions. We further extend this method for multiplexing gene assembly with a total DNA length up to 5.74 kbp from 1 nM oligonucleotide.  相似文献   

4.
Aims: To verify the specificity of a PCR assay for the identification and diagnosis of Edwardsiella ictaluri. Methods and Results: An Edwardsiella ictaluri‐specific PCR assay was developed utilizing two features of the ribosomal DNA gene clusters. The first feature is the presence of two ribosomal gene clusters located in tandem to one another (the inter‐ribosomal spacer, IRS). This characteristic is present in the Edwardsiella genus but absent in the other sequenced members of the Enterobacteriaceae. The second feature is the presence of an intervening sequence (IVS) in the 23S rRNA gene of Edw. ictaluri. To verify the specificity of this assay, we tested genomic DNA from a variety of bacterial species. The IVS/IRS PCR assay results in an c. 2000‐bp product from all Edw. ictaluri isolates tested, but not from any other species including Edwardsiella tarda. Conclusions: The IVS/IRS PCR assay is highly specific for Edw. ictaluri and useful as a tool for identifying this pathogen. Significance and Impact of the Study: This research verifies the specificity of PCR‐based assay for Edw. Ictaluri, and we describe this assay as a highly versatile diagnostic tool for its identification.  相似文献   

5.
In this study, we found that deoxyinosine triphosphate (dITP) could inhibit polymerase chain reaction (PCR) amplification of various family B-type DNA polymerases, and 0.93% dITP was spontaneously generated from deoxyadenosine triphosphate during PCR amplification. Thus, it was hypothesized that the generated dITP might have negative effect on PCR amplification of family B-type DNA polymerases. To overcome the inhibitory effect of dITP during PCR amplification, a dITP pyrophosphatase (dITPase) from Thermococcus onnurineus NA1 was applied to PCR amplification. Genomic analysis of the hyperthermophilic archaeon T. onnurineus NA1 revealed the presence of a 555-bp open reading frame with 48% similarity to HAM1-like dITPase from Methanocaldococcus jannaschii DSM2661 (NP_247195). The dITPase-encoding gene was cloned and expressed in Escherichia coli. The purified protein hydrolyzed dITP, not deoxyuridine triphosphate. Addition of the purified protein to PCR reactions using DNA polymerases from T. onnurineus NA1 and Pyrococcus furiosus significantly increased product yield, overcoming the inhibitory effect of dITP. This study shows the first representation that removing dITP using a dITPase enhances the PCR amplification yield of family B-type DNA polymerase.  相似文献   

6.
Genetic modification of human mesenchymal stem cells (MSC) is a powerful tool to improve the therapeutic utility of these cells and to increase the knowledge on their regulation mechanisms. In this context, strong efforts have been made recently to develop efficient nonviral gene delivery systems. Although several studies addressed this question most of them use the end product of a reporter gene instead of the DNA uptake quantification to test the transfection efficiency. In this study, we established a method based on quantitative real‐time PCR (RT‐PCR) to determine the intracellular plasmid DNA copy number in human MSC after lipofection. The procedure requires neither specific cell lysis nor DNA purification. The influence of cell number on the RT‐PCR sensitivity was evaluated. The method showed good reproducibility, high sensitivity, and a wide linear range of 75–2.5 × 106 plasmid DNA copies per cell. RT‐PCR results were then compared with the percentage of transfected cells assessed by flow cytometry analysis, which showed that flow cytometry‐based results are not always proportional to plasmid cellular uptake determined by RT‐PCR. This work contributed for the establishment of a rapid quantitative assay to determine intracellular plasmid DNA in stem cells, which will be extremely beneficial for the optimization of gene delivery strategies. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

7.
疏棉状嗜热丝孢菌Thermomyces lanuginosus可产生具有重要工业生产价值的脂肪酶。根据已报道的相应序列设计特异引物,综合运用PCR、RT-PCR技术克隆到脂肪酶基因的全长DNA和cDNA序列。其中DNA序列长1071bp,包含876bp的开放阅读框以及3段内含子;cDNA序列长885bp。结构基因编码蛋白包含292个氨基酸,前17个氨基酸构成信号肽。序列提交GenBank,登录号分别为EU022703和EU370914。将脂肪酶基因cDNA序列的开放阅读框克隆到酵母分泌型表达载体pPIC9K中,转化毕赤酵母GS115得到重组子且实现了分泌表达。将重组子诱导产酶,在培养温度30℃、甲醇添加量1%的情况下,小规模发酵量达0.93mg/mL,其分泌表达的最高酶活为7.2U/mL。重组酶最适反应温度和pH分别是60℃和8.0。表达蛋白在60℃保温1h后仍有完全酶活,具有较高的热稳定性。  相似文献   

8.
We describe a rapid and cost-effective technique for the in vitro removal of introns and other unwanted regions from genomic DNA to generate a single sequence of continuous coding capacity, where tissues required for RNA extraction and complementary DNA synthesis are unavailable. Based on an overlapping fusion-PCR strategy, we name this procedure SPLICE (for swift PCR for ligating in vitro constructed exons). As proof-of-principle, we used SPLICE successfully to generate a single piece of DNA containing the coding region of a five-exon gene, the short-wavelength-sensitive 1 (SWS1) opsin gene, from genomic DNA extracted from the brown lemur, Eulemur fulvus, in only two short rounds of PCR. Where the genomic structure and sequence is known, this technique may be universally applied to any gene expressed in any organism to generate a practical unit for investigating the function of a particular gene of interest. In this report, we provide a detailed protocol, experimental considerations, and suggestions for troubleshooting.  相似文献   

9.
10.
Noninvasive sampling is of increasing importance for the molecular genetic monitoring of wild animal populations, although reduced quality and quantity of such samples’ DNA can affect genetic data and their subsequent interpretation. Consequently, we performed a pilot study to establish a feasible approach for the genetic investigation of free-ranging Alpine ibex Capra ibex Linnaeus, 1758 populations. Establishing an ibex-specific PCR-RFLP based on Cytochrome b gene differences allowed the discrimination of noninvasive ibex samples from those of other sympatric ungulates. In addition, we established a quantitative PCR for ibex samples. The quantification of 35 faecal samples clearly exhibited a strong variability of DNA contents among samples and individuals. Furthermore, we performed threefold genotyping experiments on six microsatellite loci to determine the extent of genotyping errors in reference to blood samples of the respective individuals. The analyses exhibited a strong dependence of erroneous microsatellite genotypes on the starting amount of template DNA. Variability in reliability was observed between individual loci, resulting in a mandatory high DNA concentration necessary for consistent genotyping. This study serves as basis for further ibex research and we propose the application of DNA quantification of faecal samples to focus genotyping efforts solely on suitable samples.  相似文献   

11.
Park JY  Lee JH  Choi SA  Kim KJ  Lee IB  Kim MK 《Zoological science》2011,28(10):740-742
The aim of this study was to develop a rapid, simple, sensitive, and accurate duplex polymerase chain reaction (PCR) to sex Nipponia nippon, a monomorphic bird. Amplification by duplex PCR of a sex-related gene on the female chromosome and the 12S rRNA gene yielded good results using genomic DNA extracted from a feather follicle or the membranes of eggshell samples. To simplify the DNA extraction procedure, a simple boiling method was used. Our simple boiling DNA extraction method produced similar PCR amplification results as when using DNA extracted using TRIzol. Sex determination in the endangered Nipponia nippon is of crucial value to breeding programs. The duplex PCR protocol that we developed provides a simple sex identification method that is based on amplification of a sex-related gene, and we anticipate that it will facilitate effective conservation and management of Nipponia nippon.  相似文献   

12.
Mitochondrial gene transfer to the nuclear genome could affect the accuracy of results in population genetics and evolutionary studies using mitochondrial gene markers. In a population genetics study of the red turpentine beetle (Dendroctonus valens), an invasive species in China, we found numerous ambiguous sites existing in the Cytochrome Oxidase I (COI) gene sequences obtained directly from polymerase chain reaction (PCR) products amplified from total genomic DNA using universal primers. By comparing the profiles of restriction endonuclease digestions and the sequences of PCR products amplified from mitochondrial DNA and nuclear DNA of the same individuals, we confirmed it was a phenomenon of mitochondrial gene transfer to the nuclear genome. Large numbers of COI pseudogenes were detected in this species. According to different levels of condon position bias and phylogenetic analysis, these should have originated from independent integration events. The impact of nuclear mitochondrial DNA sequences on population genetics analyses was discussed.  相似文献   

13.
The polymerase chain reaction (PCR) is an in vitro method for the primer-directed enzymatic amplification of specific DNA sequences. Ordinarily, sources with obvious DNA content such as cells, viruses, and plasmids serve as the origin of templates for the PCR. Here we report a simple and efficient method to obtain cellular DNA from serum suitable for use in PCR reactions or gene analysis. This procedure should facilitate the detection of disease and provide a basis for the examination of mutations in genes before the onset as well as during the progression of various diseases.  相似文献   

14.
Fusarium wilt is an important soilborne disease of pigeonpea, caused by Fusarium udum. In this study, we have designed a real-time PCR assay for the detection of Fusarium udum from infected pigeonpea plants. Based on Topoisomerase-II gene sequence data from Fusarium udum and other related Fusarium species, a pair of primer was designed. The species-specific primers were tested in real-time PCR SYBR green assay. No increasing fluorescence signals exceeding the baseline threshold was observed with tested microbes, except Fusarium udum DNA. A single dissociation peak of increased fluorescence was obtained for the specific primers at melting temperature of 81.25°C. The real-time PCR showed a lowest detection of 0.1 pg genomic DNA. The assay was more sensitive, accurate and less time consuming for detection of Fusarium udum in infected plants root.  相似文献   

15.
Chan MW  Chu ES  To KF  Leung WK 《Biotechnology letters》2004,26(16):1289-1293
Although methylation-specific PCR (MSP) is a sensitive technique in the detection of DNA hypermethylation, it is not quantitative. Here we described a modified PCR protocol to quantify methylated SOCS-1 gene by real time MSP using SYBR green, which involves an additional PCR step after the 72 degrees C extension step. This modified protocol is also useful in the quantitative detection of methylated SOCS-1 gene in serum samples of gastric cancer patients.  相似文献   

16.
To assist in the analysis of plant gene functions we have generated a new Arabidopsis insertion mutant collection of 90 000 lines that carry the T-DNA of Agrobacterium gene fusion vector pPCV6NFHyg. Segregation analysis indicates that the average frequency of insertion sites is 1.29 per line, predicting about 116 100 independent tagged loci in the collection. The average T-DNA copy number estimated by Southern DNA hybridization is 2.4, as over 50% of the insertion loci contain tandem T-DNA copies. The collection is pooled in two arrays providing 40 PCR templates, each containing DNA from either 4000 or 5000 individual plants. A rapid and sensitive PCR technique using high-quality template DNA accelerates the identification of T-DNA tagged genes without DNA hybridization. The PCR screening is performed by agarose gel electrophoresis followed by isolation and direct sequencing of DNA fragments of amplified T-DNA insert junctions. To estimate the mutation recovery rate, 39 700 lines have been screened for T-DNA tags in 154 genes yielding 87 confirmed mutations in 73 target genes. Screening the whole collection with both T-DNA border primers requires 170 PCR reactions that are expected to detect a mutation in a gene with at least twofold redundancy and an estimated probability of 77%. Using this technique, an M2 family segregating a characterized gene mutation can be identified within 4 weeks.  相似文献   

17.
Real time PCR assays were developed to detect and quantify the transgene DNA of a commercially released Bacillus thuringiensis (Bt) corn (Zea mays L.) hybrid (DKC42-23), which was derived from the event MON863 and also carried a neomycin phosphotransferase gene (the nptII gene). We applied the real time PCR assays to investigate the persistence of the transgene DNA in a field trial grown with DKC42-23 over 3 years, in combination with bacterial natural transformation. The results showed that under continuous cultivation of DKC42-23, its transgene DNA was detectable in the field plots all year around. Meanwhile, when soil DNA extracts from DKC42-23 plots were used as donor in bacterial natural transformation, successful recovery of kanamycin resistant (KmR) transformants indicated that the nptII gene carried by DKC42-23 could be taken up and integrated into naturally competent Pseudomonas stutzeri pMR7 cells, leading to the restoration of the antibiotic resistance of P. stutzeri pMR7. However, after the cultivation of a soybean line in the same plots for the subsequent growing season, the presence of transgene DNA of DKC42-23 was reduced to undetectable levels at the end of that growing season. Therefore, existing corn-soybean crop rotation practices reduce the availability of transgene DNA in soil and thus minimize the risks that might be attributable to horizontal gene transfer. The real time PCR assays are useful for investigating the persistence of transgene DNA derived from the MON863 event in soil environments.  相似文献   

18.
应用聚合酶链反应克隆马立克氏病病毒A抗原基因   总被引:1,自引:0,他引:1  
杨宝华  张鹰 《病毒学报》1993,9(1):73-77
  相似文献   

19.
Localized sets of random point mutations generated by PCR amplification can be transferred efficiently to the chromosome of Acinetobacter ADP1 (also known as strain BD413) by natural transformation. The technique does not require cloning of PCR fragments in plasmids: PCR-amplified DNA fragments are internalized by cells and directly incorporated into their genomes by homologous recombination. Previously such procedures for random mutagenesis could be applied only to Acinetobacter genes affording the selection of mutant phenotypes. Here we describe the construction of a vector and recipient that allow for mutagenesis, recovery, and expression of heterologous genes that may lack a positive selection. The plasmid carries an Acinetobacter chromosomal segment interrupted by a multiple cloning site next to a kanamycin resistance marker. The insertion of heterologous DNA into the multiple cloning site prepares the insert as a target for PCR mutagenesis. PCR amplifies the kanamycin resistance marker and a flanking region of Acinetobacter DNA along with the insert of heterologous DNA. Nucleotide sequence identity between the flanking regions and corresponding chromosomal segments in an engineered Acinetobacter recipient allows homologous recombination of the PCR-amplified DNA fragments into a specific chromosomal docking site from which they can be expressed. The recipient strain contains only a portion of the kanamycin resistance gene, so donor DNA containing both this gene and the mutagenized insert can be selected by demanding growth of recombinants in the presence of kanamycin. The effectiveness of the technique was demonstrated with the relatively GC-rich Pseudomonas putida xylE gene. After only one round of PCR amplification (35 cycles), donor DNA produced transformants of which up to 30% carried a defective xylE gene after growth at 37 degrees C. Of recombinant clones that failed to express xylE at 37 degrees C, about 10% expressed the gene when grown at 22 degrees C. The techniques described here could be adapted to prepare colonies with an altered function in any gene for which either a selection or a suitable phenotypic screen exists.  相似文献   

20.
Function studies of many proteins are waited to develop after genome sequencing. High‐throughout technology of gene cloning will strongly promote proteins' function studies. Here we describe a ligation‐independent cloning (LIC) method, which is based on the amplification of target gene and linear vector by PCR using phosphorothioate‐modified primers and the digestion of PCR products by λ exonuclease. The phosphorothioate inhibits the digestion and results in the generation of 3′ overhangs, which are designed to form complementary double‐stranded DNA between target gene and linear vector. We compared our phosphorothioate primer cloning methods with several LIC methods, including dU primer cloning, hybridization cloning, T4 DNA polymerase cloning, and in vivo recombination cloning. The cloning efficiency of these LIC methods are as follows: phosphorothioate primer cloning > dU primer cloning > hybridization cloning > T4 DNA polymerase cloning >> in vivo recombination cloning. Our result shows that the 3′ overhangs is a better cohesive end for LIC than 5′ overhang and the existence of 5′phosphate promotes DNA repair in Escherichia coli, resulting in the improvement of cloning efficiency of LIC. We succeeded in constructing 156 expression plasmids of Aeropyrum pernix genes within a week using our method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号