首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Sedimentation rates of organic and inorganic matter, chlorophyll a, P fractions, Ca, Mn, Fe and Al, were determined by sediment traps in a tropical oligo‐mesotrophic reservoir of São Paulo (Brazil). Vertical profiles of the sediments were analyzed for organic content, metals, P and surface P fraction composition. Estimated mean sedimentation rates, corrected for resuspension were: total solids, 1068 g m—2 y—1 (OM = 44.7%); chlorophyll a, 2.1 g m—2 y—1 and total phosphorus, 2.9 g m—2 y—1. The predominant P fraction in the settling flux was associated with aluminum minerals while surface sediments were dominated by organic P. The reservoir exhibited low sediment retention of P (13.0%), Al (9.9%), Fe (9.9%), Mn (1.4%) and Ca (traces), compared to trap sedimentation. This feature was related with a high vertical dynamics (resuspension and bottom release) and with the low retention time of the system.  相似文献   

2.
1. Lake Kinneret is a warm (13–30°C) monomictic lake. Between January and June a heavy annual bloom of the dinoflagellate Peridinium gatunense dominates phytoplankton biomass (250 g m?2). At the beginning of the summer, degradation and decomposition of the Peridinium biomass occurs, serving as a trigger for intense sulphate reduction in the hypolimnion and sediments. 2. The rates of sulphate reduction in the sediments varied seasonally from 12 to 1700 nmol SO4.?2 reduced cm?3 day?1 in December and July, respectively. The availability of organic matter and sulphate is high in June after the crash of the Peridinium bloom and the beginning of stratification and is lowest in December before overturn. 3. Sulphate concentrations in the hypolimnion range between 0.52 mM and 0.20 mM during mixing (January-April) and before overturn (December), respectively. The depletion in sulphate in the hypolimnion is stoichiometrically correlated to the increase in sulphide. The lake is not depleted of sulphate at any time, so the sulphate reduction process in Lake Kinneret is not limited by sulphate concentrations except in the sediments just before overturn.  相似文献   

3.
Lake Kinneret, Israel, is a warm (13–30°C) monomictic lake that stratifies in April and turns over in December. Between January and June each year, a heavy bloom (up to 250 g wet weight n–2 2) of the dinoflagellate Peridinium gatunense dominates the phytoplankton biomass. In early summer, the bloom collapses, and the sinking Peridinium biomass serves as a trigger for intense sulfate-reduction activity throughout the hypolimnion and within the sediments. The availability of organic matter and sulfate was high shortly after the bloom crash and the beginning of stratification and was lowest in December before overturn. Sulfate-reduction rates at three different sites in the lake were studied. In the sediments, the rates varied seasonally and among stations from 5 to 1600 nmol SO4 –2 reduced cm–3 day–1, with respect to the distance from the Jordan River, depth, organic content, and stratification period. During years of low lake water levels, intense sulfate reduction occurred in the hypolimnion, resulting in anoxia and high concentrations of H2S (>400 m). In years with high water levels, early bloom, and delayed stratification, higher rates of sulfate reduction were recorded in the sediments, probably as a result of a greater fraction of the primary production (organic matter) reaching the bottom. Correspondence to: O. Hadas.  相似文献   

4.
ABSTRACT. Testate amoebae occur in diverse environments including well aerated streams and anoxic bottom sediments. They consume a wide variety of food including algal prey, bacteria, and detritus. Since little is known about the physiological ecology of many of these widespread organisms, some respiratory and digestive enzyme activities were assessed using Netzelia tuberculata, which is readily cultivated in the laboratory. Activities, expressed as units/μg protein are as follows: acid aryl phosphatase, 19.0 × 10?1; acid protease, 26 × 10?3; cytochrome oxidase, 2.3 × 10?4; and lactate dehydrogenase, 3.6 × 10?4. No amylase was detected in these specimens, which may help to explain why starch grains, apparently consumed from algal prey, are expelled from the cytoplasm and used as wall-construction particles.  相似文献   

5.
A 48-h microstructure experiment captured the variation of turbulence in Lake Biwa, Japan, during a strong stratification period, 1 week after a typhoon event. A free-fall microstructure profiler (TurboMAP) and a fine-scale profiler (F-probe) were deployed. An array of five ADCPs positioned close to the experiment site provided current measurements associated with the internal-wave field for a period of one week. Strong winds related to the passage of a typhoon close to the lake generated two low-frequency internal waves: a Kelvin wave and an inertial wave. Both waves were in the first baroclinic mode. This study pictures the superposition of two large-scale internal waves and a stronger current resulting from the two waves being in phase. The synchronization of the waves provoked enhanced shear in the hypolimnion, more than 10 m above the bottom, as well as high dissipation (10?7 W kg?1) and vertical diffusivity reaching 10?4 m2 s?1. The enhanced shear event seems to be related to the current amplitude since it occurred when the current amplitude was increased by the diel wind. Assuming the same turbulence intensity for the enhanced hypolimnetic shear events, this superposition may affect nutrient transfer in the hypolimnion. Also, we witnessed sediment resuspension, consisting of high turbidity and high fluorescence intensity, likely due to a combination of bottom stress and enhanced turbulence.  相似文献   

6.
The daily range of feral goats varied in relation to social class and environmental variables. Mean daily ranges for 5 social classes were: male herd, 3.52 × 105 m2; female herd, 2.12 × 105 m2; composite herd, 1.86 × 105 m2; stayer female, 0.57 × 105 m2; creche group, 0.39 × 105 m2. Total recorded home range was male herd 14.8 × 105 m2 and female herd 9.65 × 105 m2. Female herd daily range varied seasonally in terms of size, location and habitat utilization. Female herd daily range area was correlated significantly with number of days since rain (r = 0.412), amount of rain in the past 30 days (r = ?0.296), maximum daily temperature (r = ?0.409), and minimum daily temperature (r = ?0.523), but not with wind velocity in the morning (r = ?0.064) or afternoon (r = ?0.137).  相似文献   

7.
Sediment traps were used to investigate the settling, resuspension, and decomposition of particulate organic matter in Lake Itasca, MN (USA). Traps were deployed in the epilimnion and hypolimnion of the deepest basin during June, 1988, sampled twice during stratified conditions (August, September) and once after the lake had mixed (October). The downward flux of particulate material increased from summer to fall. The net sedimentation of organic matter ranged from 0.6 to 2.3 g m–2 d–1 at 4 m and increased to 2.1 to 3.2 g m–2 d–1 two meters above the bottom sediment indicating that resuspended sediment was at least 33% of the settling mass during all periods. The C:N ratios of captured particles (6.8–9.5) were between the ratios of plankton (5.8 to 6.8) and the sediments (9.9 to 10.2) but smaller than the ratios of terrestrial organic materials (13.5 to 222). The monosaccharide compositions of the entrapped particles were similar to plankton samples and different from the distinct composition of the sediments. Capture of rebound particles similar to the primary flux and not decomposition may have been responsible for this similarity. Total monosaccharide concentrations were lower in the sediments than in entrapped particles. Individual sugars exhibited different patterns of accumulation in the sediments. Glucose was lowest in sediments when the relative concentrations were compared to those in source materials and entrapped particles. In contrast, sediments had the highest rhamnose and fucose concentrations. Bacterial biomass could only account for small portions of these sugars in the sediment. The distinct monosaccharide composition of resuspended sediments was not strongly recorded in materials captured by the sediment traps even after the lake had mixed.  相似文献   

8.
Marc W. Beutel 《Hydrobiologia》2001,466(1-3):107-117
Walker Lake (area = 140 km2, Z mean = 19.3 m) is a large, terminal lake in western Nevada. As a result of anthropogenic desiccation, the lake has decreased in volume by 75% since the 1880s. The hypolimnion of the lake, now too small to meet the oxygen demand exerted by decaying matter, rapidly goes anoxic after thermal stratification. Field and laboratory studies were conducted to examine the feasibility of using oxygenation to avoid hypolimnetic anoxia and subsequent accumulation of ammonia in the hypolimnion, and to estimate the required DO capacity of an oxygenation system for the lake. The accumulation of inorganic nitrogen in water overlaying sediment was measured in laboratory chambers under various DO levels. Rates of ammonia accumulation ranged from 16.8 to 23.5 mg-N m–2 d–1 in chambers with 0, 2.5 and 4.8 mg L–1 DO, and ammonia release was not significantly different between treatments. Beggiatoa sp. on the sediment surface of the moderately aerated chambers (2.5 and 4.8 mg L–1 DO) indicated that oxygen penetration into sediment was minimal. In contrast, ammonia accumulation was reversed in chambers with 10 mg L–1 DO, where oxygen penetration into sediment stimulated nitrification and denitrification. Ammonia accumulation in anoxic chambers (18.1 and 20.6 mg-N m–2 d–1) was similar to ammonia accumulation in the hypolimnion from July through September of 1998 (16.5 mg-N m–2 d–1). Areal hypolimnetic oxygen demand averaged 1.2 g O2 m–2 d–1 for 1994–1996 and 1998. Sediment oxygen demand (SOD) determined in experimental chambers averaged approximately 0.14 g O2 m–2 d–1. Continuous water currents at the sediment-water interface of 5–6 cm s–1 resulted in a substantial increase in SOD (0.38 g O2 m–2 d–1). The recommended oxygen delivery capacity of an oxygenation system, taking into account increased SOD due to mixing in the hypolimnion after system start-up, is 215 Mg d–1. Experimental results suggest that the system should maintain high levels of DO at the sediment-water interface (10 mg L–1) to insure adequate oxygen penetration into the sediments, and a subsequent inhibition of ammonia accumulation in the hypolimnion of the lake.  相似文献   

9.
The vertical and temporal distribution of metazooplankton in the small hypertrophic, strongly stratified, temperate Lake Verevi (Estonia) was studied during 1998–2001. The zooplankton of Lake Verevi is characteristic of hypertrophic lakes, with a small number of dominant species, rotifers being the main ones, and juveniles prevailing among copepods. In 1999–2001, the average abundance of metazooplankton in the lake was 1570 × 103 ind m−3; in the epilimnion 2320 × 103 ind m−3, in the metalimnion 2178 × 103 ind m−3, and in the hypolimnion 237 × 103 ind m−3. The average biomass of metazooplankton was 1.75 g m−3; in the epi-, meta- and hypolimnion, accordingly, 2.16, 2.85 and 0.26 g m−3. The highest abundances – 19,136 × 103 ind m−3 and 12,008 × 103 ind m−3 – were registered in the lower half of the metalimnion in 24 May and 5 June 2001, respectively. Rotifer Keratella cochlearis f. typica (Gosse, 1851) was the dominating species in abundance. In biomass, Asplanchna priodonta Gosse, 1850, among the rotifers, and Eudiaptomus graciloides (Lilljeborg, 1888), among the copepods, dominated. According to the data from 2000–2001, the abundance and biomass of both copepods and rotifers were highest in spring. Zooplankton was scarce in the hypolimnion, and no peaks were observed there. During the summers of 1998 and 1999, when thermal stratification was particularly strong, zooplankton was the most abundant in the upper half of the metalimnion, and a distinct peak of biomass occurred in the second fourth of the metalimnion. Probably, the main factors affecting the vertical distribution of zooplankton in L. Verevi are fish, Chaoborus larvae, and chemocline, while food, like phytoplankton, composition and abundance may affect more the seasonal development of zooplankton.  相似文献   

10.
To quantify bioturbation activity in Tikehau lagoon, a tracer made of black basaltic sand was poured over the natural white calcareous sediment surface. Three stations respectively located on the inner flat (-3m), the inner slope (-9m), and the lagoon floor (-19m), were studied for short periods of time (48 hours). Bioturbation by macrofauna was quantified by volume of sediment ejected onto the experimental surface and by volume of tracer incorporated into sediment. The results showed a rapid incorporation of sedimented particles at the interface by way of the funnels and burrows of surface deposit feeders and carnivores. Expelled quantities varied with respect to site location: 213 cm3 · m−2 · 24 h−1 in the inner flat; 98.9 cm3 · m−2 · 24 h−1 in the inner slope; 7.9 m3 · m−2 · 24 h−1 in the lagoon floor. Bioturbation by decapod megafauna appeared to be important in the dynamics of the sediments in the deepest areas of the lagoon. In these areas, with almost no hydrodynamical impacts on sediments, bioturbating events were responsible for sediment mixing (despite lower absolute rates than in shallow area). Hydrodynamics controlled the spatial distribution of macroinvertebrate trophic groups by its effects on sedimentation.  相似文献   

11.
A study on the bacterioplankton of Conceição Lagoon (27°34′ S–48°27′ W), Southern Brazil, was carried out in July 2005 (austral winter) and January 2006 (austral summer) to characterize the bacterial spatiotemporal distribution and to determine the heterotrophic and photoautotrophic bacterial dominance in hypoxic/oxic stratified waters. Bacterial abundance increased significantly (p?5 (winter) to 3.21?×?106 cells mL?1 (summer), heterotrophic coccus/rod-shaped (HCR) cells from 7.00?×?104 to 3.60?×?106 cells mL?1, and heterotrophic filamentous (HF) bacteria from 2.90?×?103 to 2.74?×?105 cells mL?1. Bacterial biovolumes also increased in summer with mean biovolumes of CCY ranging from 0.38 to 1.37 μm3, HCR cells from 0.31 to 1.12 μm3, and HF from 3.32 to 11.34 μm3. Principal component analysis showed that salinity, temperature, and light were the abiotic factors that better explained the temporal variability of bacterial assemblages. Bacterial heterotrophy dominated in the lagoon, excepted by the southern and part of central sector in January 2006, when autotrophic-dominated microbial community occurred. Spatially, bacterial assemblages were influenced by nutrient gradient, oxygen, and salinity with a positive relationship between biovolumes and nutrients and a negative relationship between abundance of coccus cyanobacteria and nutrients. area revealed a singular temporal pattern with hypoxic bottom waters in winter and oxygen-rich waters appearing in summer related with the availability of light and predominant microbes. Thus, oxygen consumption/production is likely to be regulated by the amount of light reaching the bottom, stimulating the production of oxygen by oxygenic phototrophs.  相似文献   

12.
The total number and morphological and size composition of viriobenthos, number of bacteria infected by viruses, and burst size, as well as virus-induced mortality, abundance, and production of bacteriobenthos, have been estimated in bottom sediments of the Rybinsk Reservoir. The total number of viriobenthos in the reservoir varies within (1.1–10.9) × 109 (on average, (5.9 ± 0.6) × 109) particles/cm3; the total number of virus-to-bacteria ratio ranges within 0.2–2.1 (on average 0.9 ± 0.3). A weak positive correlation is found between the abundance of benthic viruses and the abundance and production of benthic bacteria. In most surveyed parts of the reservoir, infected benthic bacteria were not found or the portion of visibly infected bacterial cells (FVIC) did not exceed 0.5% of the total abundance of bacteriobenthos (N B). A comparatively high infection of bacteria by viruses was recorded in bottom sediments only at one deep-water station, where FVIC was 2.5 of N B.  相似文献   

13.
K. R. Reddy 《Hydrobiologia》1983,98(3):237-243
Nitrogen and P interchange between the sediments and the overlying water of a simulated retention pond used for wastewater treatment were evaluated under conditions of seasonal temperature fluctuations and varying physico-chemical conditions (exposing floodwater surface to daylight vs. dark and turbulent vs. quiscent floodwater). Natural sediment columns obtained from two types of field retention ponds were used. One type of retention pond consisted of calcareous clay loam sediment while the sediment of second retention pond contained organic soil. Nutrient interchange between sediments and the overlying water was measured once a month over a period of one year. Nitrogen removal rates from floodwater were controlled by the initial floodwater NH 4 + and NO 3 ? concentration, rate of NH 4 + diffusion from the sediments to the overlying water, ammonification in the sediments, NH3 volatilization and nitrification at the sediment-water interface, and denitrification in the sediments. Under the conditions studied, NH 4 + concentrations of the floodwater were in the range of 0.01 to 0.05 µg/ml, while NO 3 ? concentrations were in the range of 0.27 to 0.78 µg/ml. Sediments with organic soil were found to be less effective in the removal of floodwater organic N, organic C and P, compared to the sediments with calcareous clay loam. Phosphorus exchange rates were dependent on the capacity of the sediment to adsorb or desorb P. Total P exchange rates were in the range of ?1.04 to 0.34 mg P/m2 day. Seasonal temperature fluctuations, turbulent vs. quiscent water conditions or exposing the floodwater surface to daylight or dark had very little effect on N and P exchange rates.  相似文献   

14.
Cyclic nucleotide phosphodiesterase was extracted from intact chloroplasts and partially purified. Peak 1c activity from Sephadex G-200 was resolved by electrophoresis into two major bands (MWs 1.87 × 105 and 3.7 × 105). Both also possessed acid phosphatase, ribonuclease, nucleotidase and ATPase. The chloroplast peak 1c cyclic nueleotide phosphodiesterase was located in the envelope. Peak 1m cyclic nucleotide phosphodiesterase obtained from the microsomal fraction had a MW of 2.63 × 105. Electrophoresis separated 1m into two bands of cyclic nucleotide phosphodiesterase activity (MWs 2.63 × 105 and 1.28 × 105). Both contain ATPase, ribonuclease, nucleotidase, but not acid phosphatase. Peak 1c has high activity towards 3′:5′-cyclic AMP and 3′:5′-cyclic GMP but little towards 2′:3′-cyclic nucleotides. Peak 1m showed most activity towards 2′:3′-cyclic AMP, 2′:3′-cyclic GMP and 2′:3′-cyclic CMP with little activity towards 3′:5′-cyclic nucleotides. With 1c, 3′:5′-cyclic AMP and 3′:5′-cyclic GMP exhibit mixed-type inhibition towards one another. The 2′:3′-cyclic AMP phosphodiesterase 1m was competitively inhibited by 2′:3′-cyclic GMP. p-Chloromercuribenzoate inhibits 1c but not 1m. Electrophoresis after dissociation indicates that 1c and 1m are both enzyme complexes. After dissociation, the 1c complex but not that of 1m could be reassociated. The ribonuclease of the 1m complex hydrolyses RNA to yield 2′:3′-cyclic nucleotides as the main products. These results are compatible with the 1c cyclic nucleotide phosphodiesterase complex being involved in the metabolism of 3′:5′-cyclic AMP, and the 1m complex being concerned with RNA catabolism.  相似文献   

15.
The diversity and abundance of sulfate-reducing bacteria (SRB) were investigated in Lake Suigetsu, a meromictic lake in Japan characterized by a permanent oxycline at a depth between 3 and 8 m separating the aerobic freshwater epilimnion from the anaerobic, saline, sulfidogenic hypolimnion. A quantitative competitive PCR targeting the gene coding for a portion of the α-subunit of dissimilatory sulfite reductase (dsrA) was used to assess the distribution of the SRB in the stratified water column and the surface sediments. The diversity of the SRB communities was assessed using a sequence analysis of the differing dsrA isomers. The dsrA gene copy numbers of SRB in the hypolimnic waters were from 9.6 × 103 to 7.5 × 105 copies ml−1, whereas higher dsrA copy numbers of SRB were observed in surface sediments, ranging from 1.8–8.1 × 107 copies ml−1 as estimated by competitive PCR. Phylogenetic analysis of the dsrA sequences retrieved from the surface sediments shows most belong to a deeply branching lineage of diverse dsrA sequences not related to any cultured SRB group. In contrast, dsrA sequences found in the oxycline waters were related to sequences of members of the genera Desulfonema, Desulfosarcina, and Dusulfococcus and to sequences of the incomplete oxidizers from the Desulfobulbaceae family. Diversity and abundance of dsrA genes significantly differed between the samples from the oxycline waters and the surface sediments of Lake Suigetsu, indicating habitat-specific SRB communities may contribute to the biogeochemical cycling of carbon and sulfur.  相似文献   

16.
Using image analysis, chlorophyll autofluorescence was measured in single cells of green alga Monoraphidium dybowskii and in filaments of cyanobacteria (Pseudanabaena sp. and Limnothrix sp.) in the vertical profile of small acidified mountain lake Ple?né jezero (Ple?né Lake) from May to November of 2003. Cell chlorophyll autofluorescence was converted to cell chlorophyll content using a conversion factor determined by comparing the total autofluorescence of phytoplankton in a microscope field with spectrophotometrically determined total chlorophyll concentration; the conversion factor did not differ between epilimnion (0.5 m depth) and hypolimnion (9 m depth). Vertical patterns of chlorophyll concentration and of cellular chlorophyll content depended on water column mixing: during the period of stable thermal stratification, a metalimnetic peak in total chlorophyll concentration was present and cellular chlorophyll contents in the metalimnion and hypolimnion were notably elevated compared to the surface. Monotonous vertical profiles of both total chlorophyll concentration and cell chlorophyll content were typical for the period of water column overturn. During the stratification period, hypolimnetic Monoraphidium cell chlorophyll content was on average twice as high (maximum difference 2.7-fold) compared to surface values (of 3.2–12.9 fg µm?3), while in filamentous cyanobacteria (surface cell chlorophyll content of 2.2–13.3 fg µm?3), the difference was much higher — six-fold on average, with an 11.6-fold maximum value. The values measured with image analysis in 2003 were compared to unpublished values of total phytoplankton biomass-specific chlorophyll concentrations obtained using manual phytoplankton biomass determination and spectrophotometric chlorophyll measurement in 1998 at the same locality. Good agreement was found in seasonal patterns and vertical profiles of chlorophyll between both seasons.  相似文献   

17.
Both nitrate and nitrous oxide accumulate in the hypolimnion of the oligotrophic Lake Taupo, New Zealand, throughout stratification. The two forms of oxidized nitrogen increase in concentration with increasing depth toward the sediments, where the dissolved concentrations of reduced nitrogen are two orders of magnitude higher than concentrations in the overlying water. Nitrification rates were measured by dark [14C]CO2 assays with and without the inhibitor nitrapyrin. The fastest rates were recorded for planktonic nitrifiers in the epilimnion and benthic species in the surficial 2.5 mm of the sediments. Nitrifying bacteria were least active in the deep hypolimnion. Deepwater accumulation of NO3 in Lake Taupo must therefore be a product of benthic rather than planktonic nitrification.  相似文献   

18.
The existence of egg banks not only ensures the survival of zooplankton through harsh periods, but could also affect microevolutionary dynamics. Whether zooplankton at high latitudes can build up an egg bank in sediments, as occurs at lower latitudes, is still unknown. The distribution and age of viable resting eggs of the calanoid copepod Boeckella poppei Mrázek in sediments of two small freshwater lakes on King George Island were determined by slicing sediment cores at 1-cm intervals. Most viable resting eggs were found near the sediment surface, with abundance sharply declining to very low values at the depth of 5?cm, although eggs were present as deep as 9?cm in the sediments of Yanouhu Lake. The egg abundances in Xihu Lake and Yanouhu Lake were estimated to be 9.2?×?104 and 7.2?×?104?eggs?m?2, respectively. 210Pb dating indicated a relatively constant sedimentation rate (0.023?cm?year?1) in Xihu Lake, which was used to estimate the mean age (46.8?year), the maximum age (195.7?year), and the mortality rate (1.64?% year?1) of resting eggs of B. poppei in Xihu Lake. The accumulation of resting eggs with long-term viability in sediments provided the first evidence for the existence of egg banks in two Antarctic maritime lakes. An egg bank may serve as an overwintering strategy for B. poppei in Antarctica, enhance their ability to cope with random extreme changes, and contribute to their broad distribution.  相似文献   

19.
20.
Myall Lakes has experienced algal blooms in recent years which threaten water quality. Biomarkers, benthic fluxes measured with chambers, and pore water metabolites were used to identify the nature and reactivity of organic matter (OM) in the sediments of Bombah Broadwater (BB), and the processes controlling sediment-nutrient release into the overlying waters. The OM in the sediments was principally from algal sources although terrestrial OM was found near the Myall River. Terrestrial faecal matter was identified in muddy sediments and was probably sourced via runoff from farm lands. The reactive OM which released nutrients into the overlying waters was from diatoms, dinoflagellates and probably cyanobacteria. Microcystis filaments were observed in surface sediments. OM degradation rates varied between 5.3 and 47.1 mmol m?2 day?1 (64–565 mg m?2 day?1), were highest in the muddy sediments and sulphate reduction rates accounted for 20–40% of the OM degraded. Diatoms, being heavy sink rapidly, and are an important vector to transport catchment N and P to sites of denitrification and P-trapping in the sediments. Denitrification rates (mean ~4 mmol N m?2 day?1), up to 7 mmol N m?2 day?1 (105 mg N m?2 day?1) were measured, and denitrification efficiencies were highest (mean = 86 ± 4%) in the sandy sediments (~20% of the area of BB), but lower in the muddy sediments (mean = 63 ± 15%). These differences probably result from higher OM loads and anaerobic respiration in muddy sediments. Most DIP (>70%) from OM degradation was not released into overlying waters but remained trapped in surface sediments. Biophysical (advective) processes were responsible for the measured metabolite (O2, CO2, DSi, DIN and DIP) fluxes across the sediment–water interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号