首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fifteen-day-old variety NA 56-79 sugar cane seedlings were inoculated with Azospirillum brasilense and Glomus intrarradix. This article aims at examining changes in sugar cane root seedlings inoculated with Glomus intrarradix and Azospirillum brasilense, the increase in microbial biomass and the acetylene reduction process as well. The internal root colonization was studied 20 days after inoculation using scanning and a transmission electron microscope. Both microorganisms entered the sugar cane root through the emergent lateral roots. The microorganisms were capable of coexisting both intra and intercellularly, producing changes in the cell wall, thus allowing colonization and interaction between the organisms. These changes increased the number of microorganisms inside the root as well as acetylene nitrogen reduction. Sugar cane plant biomass increased with joint-inoculation. The number of endophytic microorganisms and nitrogen fixing activity increased when they were colonized by Azospirillum and Glomus together.  相似文献   

2.
【目的】通过对酸性矿山环境中嗜酸硫杆菌属(Acidithiobacillus)、脱硫弧菌属(Desulfovibrio)、钩端螺旋菌属(Leptospirillum)、硫化杆菌属(Sulfobacillus)、酸原体属(Acidiplasma)和铁质菌属(Ferroplasma)的100株冶金微生物基因组中CRISPR-Cas系统的结构特征和同源关系进行生物信息学分析,在基因组水平上解析冶金微生物基于CRISPR系统对极端环境的适应性免疫机制。【方法】从NCBI网站下载基因组序列,采用CRISPR Finder定位基因组中潜在的CRISPR簇。分析CRISPR系统的组成结构与功能:利用Clustal Omega对重复序列(repeat)分类;将间隔序列(spacer)分别与nr数据库、质粒数据库和病毒数据库比对,获得注释信息;根据Cas蛋白的种类和同源性对酸性矿山环境微生物的CRISPR-Cas系统分型。【结果】在100株冶金微生物基因组中共鉴定出415个CRISPR簇,在176个c CRISPR簇中共有80种不同的重复序列和4147条间隔序列。对重复序列分类,发现12类重复序列均能形成典型的RNA二级结构,Cluster10中的重复序列在冶金微生物中最具有代表性。间隔序列注释结果表明,这些微生物曾遭受来自细菌质粒与病毒的攻击,并通过不同的防御机制抵抗外源核酸序列的入侵。冶金微生物细菌的大部分CRISPR-Cas系统属于I-C和I-E亚类型,而古菌的CRISPR-Cas系统多为I-D亚类型,两者基于CRISPR-Cas系统的进化过程中存在显著差异。【结论】酸性矿山环境微生物的CRISPR结构可能采用不同免疫机制介导外源核酸序列与Cas蛋白的相互作用,为进一步揭示极端环境微生物的适应性进化机理奠定了基础。  相似文献   

3.
Biological nitrogen fixation plays an important role in the nitrogen balance of agricultural ecosystems and provides an essential part of nitrogen nutrition for plants, even in conditions of intensive fertilization. The main agrobiotechnological method for soybean cultivation (Glycine max (L.) Merril) is an application of microbial preparations based on Bradyrhizobium japonicum. Successful inoculation strongly depends on the interactions between the introduced microorganism and the aboriginal rhizosphere microorganisms. To evaluate the composition of diazotrophic communities, a study of the diversity of the molecular marker for nitrogen fixation, the nifH gene, in the samples of soybean rhizosphere soil was carried out. Experiments were performed in the variants when soybean was cultivated without inoculation and after adding bacterial preparations, as well as in enrichment cultures of diazotrophs. The revealed diazotrophic microorganisms demonstrated low level of similarity to the known microorganisms (74–95% identity by nucleotides), and were identified as species of the phyla Firmicutes and Proteobacteria. In the composition of nitrogen-fixing communities in the rhizosphere soil, the microorganisms of the genera Clostridium, Paenibacillus, and Spirochaeta were shown to prevail.  相似文献   

4.
生物脱氮是由微生物主导的地球氮循环中的重要环节之一,主要包括硝化、反硝化和厌氧氨氧化(anaerobic ammonium oxidation,anammox)等过程。在微生物联合作用下,污水中的有机氮及氨氮经一系列作用转化为氮气,这种经济高效、环境友好的处理工艺在世界范围内得到广泛应用。群体感应(quorum sensing,QS)以信号分子为媒介通过改变菌群密度和周围环境变化来调节微生物的各种行为。大量的研究已证实调控QS信号分子在生物脱氮中具有应用潜力。本文介绍了各种信号分子类型,从基因组学、实际应用等方面综述了各类信号分子以及检测方法,同时针对酰基高丝氨酸内酯(acyl homoserine lactones,AHLs)类信号分子在生物脱氮中的作用进行详细介绍。然而不足之处在于信号分子研究只是停留在实验室阶段,仅仅研究了单一信号分子对生物脱氮的影响。未来可将信号分子应用于实际污水,研究多种信号分子共同作用以及多种微生物之间的QS现象。  相似文献   

5.
Planktonic microorganisms are affected by various size-dependent processes both from the bottom up and from the top down. We developed a simple resource-consumer model to explore how size-dependent resource uptake and resource loss influence the growth of, and competition between, planktonic microorganisms. We considered three steps of resource uptake: diffusive transport of resource molecules, uptake by membrane transporters, and cellular enzymatic catalysis, and we investigated optimal cell size when one, two, or three of those steps limit resource uptake. Optimal cell size depends negatively on the size of resource molecules when resource uptake is limited by diffusive transport and membrane uptake. When competing for two resources of different molecular sizes, two different-sized consumers can coexist if the inputs of resources and sizes of consumers are correctly chosen. The model suggests that mixtures of various-sized resources can promote coexistence and size diversity of microorganisms even if the availability of one element, such as carbon, nitrogen, or phosphorus, limits the whole community. Model predictions include that bacteria grown on maltose or polysaccharides should be smaller compared with those grown on glucose under carbon limitation. Our results suggest that size of resource molecules can be an important factor in microbial resource competition in aquatic environments.  相似文献   

6.
Competition for nitrogen between plants and soil microorganisms   总被引:7,自引:0,他引:7  
Experiments suggest that plants and soil microorganisms are both limited by inorganic nitrogen, even on relatively fertile sites. Consequently, plants and soil microorganisms may compete for nitrogen. While past research has focused on competition for inorganic nitrogen, recent studies have found that plants/mycorrhizae in a wide range of ecosystems can use organic nitrogen. A new view of competitive interactions between plants and soil microorganisms is necessary in ecosystem where plant uptake of organic nitrogen is observed.  相似文献   

7.
本文采用原位诱导有益微生物(污水菌、芽胞杆菌、硝化菌和副球菌等),复合添加外源的有益微生物(金藻、栅藻、硅藻、芽胞杆菌、光合菌、酵母菌和EM(effective microorganisms)菌等),在养殖水体中建立稳定的有益微生物复合菌群,使水体中亚硝酸氮和氨氮清除率分别可达100%和99%。并进一步利用这些菌群在小红鲫鱼(red crucian carp)和南美白对虾(Penaeus vannamei)养殖中进行原位水质净化应用。在小红鲫鱼养殖水质原位自净中,无需清污和换水,就可长期维持水环境完全稳定,连续养殖50 d以上,水中未检测出亚硝酸氮,氨氮低于0.2 mg/L,稳定在优质安全的养殖环境;在南美白对虾养殖中,投菌后初期水体亚硝酸氮较快下降,第10 d后氨氮浓度也降至养殖安全范围内,形成稳定安全的养殖水质环境。实验效果显著,表明微生物菌群原位水质自净技术具有推广应用前景。  相似文献   

8.
The sorption capacity of silver on different biological materials has been investigated depending on physico-chemical pretreatments. The maximum silver loading values measured were compared with the values obtained with nontreated biomasses. The results show an increase of the loading capacity up to a factor of 10 in case of the alkalitreated biomasses. When the biomasses are extracted before being used as adsorbent with a solvent mixture of chloroform/methanol in a ratio of 2:1 the efficiency of the silver adsorbing power can be increased. Beyond that, the ability to adsorb silver can also be influenced when microorganisms are used as biocatalysts in a product synthesis before they are used as adsorbents. A strain of Acetobacter methanolicus possesses 1.8 times higher affinity to silver when it is employed in a process of gluconic acid production before adsorption. Physico-chemical pretreatments influence not only the loading capacity of the biological material, but also the contacting time required for the establishment of the adsorption equilibrium can be considerable reduced.  相似文献   

9.
Many animals, plants and protists contain non-parasitic microorganisms and these endosymbioses are widely assumed to be mutualistic. Most of the microorganisms possess metabolic capabilities, such as the ability to fix nitrogen, photosynthesize or degrade cellulose, that their partners utilize. However, as discussed in this article, there is scant evidence that the microorganisms benefit from such associations, and it is unclear how the benefit or harm incurred by microorganisms that require the association can be demonstrated.  相似文献   

10.
Summary Copper is a required trace element for growth of microorganisms since it is a cofactor for numerous enzymes. Also, proteins containing copper are important electron transfer carriers. However, at elevated concentrations, copper can be highly toxic to microorganisms. This review examines copper toxicity and uptake in microorganisms, with an emphasis on copper-resistance mechanisms.  相似文献   

11.
This article provides an overview of the free-living and plant-associated nitrogen (N)-fixing bacterial communities in wet rice fields, with a focus on describing the elements affecting community assemblages in this waterlogged soil–plant system. Nitrogen is a crucial nutrient for rice yield and growth. Characteristics of the rice paddy ecosystem promote N-fertilizer losses, resulting in negative impacts on the environment. Public concerns on sustainable rice crop production and food security have accentuated interest in exploring biological supplementary nitrogen sources. Biological N-fixation is a significant source of the nitrogen in agroecosystems. The nitrogen requirement of rice crops can be partly remedied by managing and promoting the activities of N-fixing microorganisms. These changes are leading towards a cleaner approach that maintains sustainability while simultaneously improving crop production targets. The use of N-fixing microorganisms as biofertilizers and the factors driving the success of this technology in wet rice paddies are also discussed.  相似文献   

12.
13.
Biological nitrogen fixation is an important source of fixed nitrogen for the biosphere. Microorganisms catalyse biological nitrogen fixation with the enzyme nitrogenase, which has been highly conserved through evolution. Cloning and sequencing of one of the nitrogenase structural genes, nifH, has provided a large, rapidly expanding database of sequences from diverse terrestrial and aquatic environments. Comparison of nifH phylogenies to ribosomal RNA phylogenies from cultivated microorganisms shows little conclusive evidence of lateral gene transfer. Sequence diversity far outstrips representation by cultivated representatives. The phylogeny of nitrogenase includes branches that represent phylotypic groupings based on ribosomal RNA phylogeny, but also includes paralogous clades including the alternative, non-molybdenum, non-vanadium containing nitrogenases. Only a few alternative or archaeal nitrogenase sequences have as yet been obtained from the environment. Extensive analysis of the distribution of nifH phylotypes among habitats indicates that there are characteristic patterns of nitrogen fixing microorganisms in termite guts, sediment and soil environments, estuaries and salt marshes, and oligotrophic oceans. The distribution of nitrogen-fixing microorganisms, although not entirely dictated by the nitrogen availability in the environment, is non-random and can be predicted on the basis of habitat characteristics. The ability to assay for gene expression and investigate genome arrangements provides the promise of new tools for interrogating natural populations of diazotrophs. The broad analysis of nitrogenase genes provides a basis for developing molecular assays and bioinformatics approaches for the study of nitrogen fixation in the environment.  相似文献   

14.
The silver sorption capacity of three methylotrophic bacteria and one gelatinotrophic Pseudomonas strain has been investigated in dependence of the cultivation conditions. Whereas the maximum loading capacity of the microorganisms was not appreciable influenced by the variation of the dilution rate in the range between 0.05 h?1 to 0.5 h?1, a change of the carbon source or the modification of the limitation conditions during the chemostatic cultivation process provokes a strong alteration in the sorption behaviour. The maximum silver loading values were obtained, when the microorganisms are cultivated under N-limitation and the minimum values were measured under P-limitation.  相似文献   

15.
Feedstuffs are routinely supplemented with various selenium sources, where organic forms of Se are more bio-available and less toxic than the inorganic forms (selenites, selenates). When the algae are exposed to environmental Se in the form of selenite, they are able as other microorganisms to incorporate the element to different levels, depending on the algae species. Technology of heterotrophic fed-batch cultivation of the microalga Chlorella enriched by organically bound Se was developed, where the cultivation proceeds in fermentors on aerated and mixed nutrient solution with urea as a nitrogen and glucose as a carbon and energy source. High volumetric productivity and high cell concentrations (about 70–100 g Chlorella dry mass l−1) can be attained if nutrients and oxygen are adequately supplied. Addition of a small quantity of a new selenoprotein source-spray-dried Se-Chlorella biomass to the diet of farm animals had better effects on specific physiological and physical parameters of animals than selenite salt and was comparable with Se yeast added to the diet. This review introduces the importance of selenium for humans and animals, methods of Se determination, heterotrophic production of selenium-enriched Chlorella biomass in a fed-batch culture regime on organic carbon, and use of the biomass in animal nutrition.  相似文献   

16.
The nitrogen-fixing activity, nitrogen (N) and carbon (C) contents, and the number of microorganisms in the forestomach, cecum, and colon were detected in two gerbil species, granivorous Meriones meridianus and M. tamariscinus, which consume a large amount of green parts of the plants. M. meridianus had higher levels of nitrogen-fixation activity in all investigated parts of the gastro-intestinal tract compared with M. tamariscinus. The highest levels were detected in the colon of M. meridianus. The C/N ratios in the forestomach of M. tamariscinus were higher than in M. meridianus, which is consistent with the greater role of the green parts of plants in its diet. A gradual increase in the nitrogen content from the forestomach to the colon of M. tamariscinus was noted. The amount of microorganisms in the forestomach and intestine of the studied gerbil species was similar.  相似文献   

17.
„Biofilm”︁ describes microbial aggregates such as flocs, films and sludges; most microorganisms on earth prefer the mode of life in aggregates.They all have in common that the organisms are embedded in a matrix of extracellular polymeric substances (EPS) in which they can establish synergistic microconsortia. In this matrix, they are protected against biocides. Furthermore, the matrix acts as a sorbent for nutrients, retains exoenzymes and can be considered as a recycling yard for cellular components as well as for nutrients. Biofilms are ubiquitous and can be found even in extreme environments. In many cases, they are dominated by bacteria and/or algae, but they can also harbor higher trophical levels and represent a nutrient source for protozoa and metazoa. Biofilms are systems characterized by a vast spatial heterogeneity and temporal dynamics. Genes and signals are exchanged intensively. Thus, biofilms bear similarities to multicellular organisms.  相似文献   

18.
非共生生物固氮微生物分子生态学研究进展   总被引:3,自引:0,他引:3  
氮是限制生态系统生产力的主要元素,生物固氮是自然生态系统中氮的主要来源.生物固氮包括共生、联合和自生固氮3种类型,其中联合固氮和自生固氮统称为非共生固氮.相对于共生固氮而言,非共生固氮速率虽然较低,但其不需要与其他生物形成共生体系就可以生存并进行固氮,在时空分布上更加广泛,因此对生态系统氮循环特别是素输入具有重要贡献.本文对近年有关非共生固氮微生物的多样性、土壤和叶际固氮微生物的分布特征及影响因素等研究进展进行了综述,并在此基础上阐述了现有研究中存在的问题和发展前景.  相似文献   

19.
20.
荆晓姝  丁燕  韩晓梅  王哲  高德艳 《微生物学报》2021,61(10):3026-3034
氮素是作物生长过程中最重要的元素,氮素缺乏将会严重影响作物生长。随着人类对粮食的需求量增加,化学氮肥的施用量越来越多。生物固氮在全球氮素循环中有着重要的作用,60%的氮来源于生物固氮。因此,生物固氮,尤其是能够在作物中定殖的联合固氮菌,最有可能代替氮肥成为粮食作物的主要氮源。长期以来,如何提高生物固氮效率以及在作物中实现生物固氮是生物学家的重要研究方向。合成生物学的出现和发展为能够生物固氮的研究带了新的机遇,有望缓解粮食作物对化学氮肥的大量需求。本文概述了固氮菌的种类、联合固氮菌中固氮基因岛的组成以及转录调控机理,阐述了合成生物学在生物固氮领域中的研究现状,对未来的联合固氮菌合成生物学的发展方向作出了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号