首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Although intraoperative rapid diagnosis is conventionally performed using hematoxylin–eosin (HE)-stained specimens, the use of additional special staining, together with immunostaining techniques, has been examined in recent years to improve diagnostic accuracy. In intraoperative rapid diagnosis, immunostaining should be completed within 7–10 min, because the pathologist is typically presented with an HE-stained specimen within the same time period. We hypothesized that ultrasound may enhance antigen–antibody reactions and reduce the number of immunostaining steps. To clarify the ability of ultrasound to support immunostaining, we first created an ultrasonic generator specifically for immunostaining. Next, we explored the optimal conditions for immunostaining of formalin-fixed specimens to examine the utility of the ultrasonic generator. Finally, we tried immunostaining with the ultrasonic generator using frozen specimens to simulate intraoperative rapid diagnosis. We report herein that ultrasound enables immunostaining of frozen specimens in ∼10 min. (J Histochem Cytochem 58:421–428, 2010)  相似文献   

2.
The effects of temperature on ultrasound-assisted tryptic protein digestion were comprehensively investigated using matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry. Three standard proteins, cytochrome c, myoglobin, and bovine serum albumin, were digested at 4 °C (ice), room temperature (20–25), 37, and 55 °C for 0 s, 30 s, 1 min, and 5 min, in an ultrasonic bath. We found that the number of identified peptides generally increased with increasing temperature or digestion time. Compared with conventional overnight digestion at 37 °C without ultrasonication, digestions performed under ultrasonication generally produced more peptides under most of the above listed conditions, mainly due to miscleaved peptides. Tryptic digestions were also performed under all the conditions evaluated without using ultrasound, where the most significant improvement with the application of ultrasound in terms of sequence coverage and the number of identified peptides was observed at 4 °C, followed by room temperature, and 37 °C, while no improvement was observed at 55 °C with the application of ultrasound, which may be due to the fact that the current experiments were performed in an ultrasonic bath.  相似文献   

3.
The solutions of liposome made of l-α-dilauroyl phosphatidylcholine are sonicated at various powers and frequencies (43-480 kHz), and the resultant change in the size of liposome is measured by the dynamic light scattering method. The ultrasonic power dissipated into the solution is determined by the calorimetric method in order to compare the effects of ultrasound of different frequencies. The faster reduction of the mean size of liposome is achieved at the lower frequency. Comparing at the same frequency and total energy, short-time irradiation of strong ultrasound is more efficient than long-time irradiation of weak ultrasound. These results indicate that the small number of cavitation events with stronger physical disturbance on liposome can reduce the size of the liposome more efficiently than the large number of cavitation events with weaker disturbance.  相似文献   

4.
Measurement of the acoustic power in high-energy ultrasonic devices is complex due to occurrence of the strong cavitation in front of the sonotrode tip. In our research we used three methods for characterization of our new ultrasonic probe for neuroendoscopic procedures. The first method is based on the electromechanical characterization of the device measuring the displacement of the sonotrode tip and input electrical impedance around excitation frequency with different amounts of the applied electrical power The second method is based on measuring the spatial pressure magnitude distribution of an ultrasound surgical device produced in an anechoic tank. The acoustic reciprocity principle is used to determinate the derived acoustic power of equivalent ultrasound sources at frequency components present in the spectrum of radiated ultrasonic waves. The third method is based on measuring the total absorbed acoustic power in the restricted volume of water using the calorimetric method. In the electromechanical characterization, calculated electroacoustic efficiency factor from equivalent electrical circuits is between 40-60%, the same as one obtained measuring the derived acoustic power in an anechoic tank when there is no cavitation. When cavitation activity is present in the front of the sonotrode tip the bubble cloud has a significant influence on the derived acoustic power and decreases electroacoustic efficiency. The measured output acoustic power using calorimetric method is greater then derived acoustic power, due to a large amount of heat energy released in the cavitation process.  相似文献   

5.
Ultrasound enhanced glucose release from corn in ethanol plants   总被引:2,自引:0,他引:2  
This work evaluated the use of high power ultrasonic energy to treat corn slurry in dry corn milling ethanol plants to enhance liquefaction and saccharification for ethanol production. Corn slurry samples obtained before and after jet cooking were subjected to ultrasonic pretreatment for 20 and 40 s at amplitudes of vibration ranging from 180 to 299 microm(pp) (peak to peak amplitude in microm). The resulting samples were then exposed to enzymes (alpha-amylase and glucoamylase) to convert cornstarch into glucose. A comparison of scanning electron micrographs of raw and sonicated samples showed the development of micropores and the disruption of cell walls in corn mash. The corn particle size declined nearly 20-fold following ultrasonic treatment at high power settings. The glucose release rate from sonicated samples increased as much as threefold compared to the control group. The efficiency of ultrasound exceeded 100% in terms of energy gain from the sugar released over the ultrasonic energy supplied. Enzymatic activity was enhanced when the corn slurry was sonicated with simultaneous addition of enzymes. This finding suggests that the ultrasonic energy did not degrade or denature the enzymes during the pretreatment.  相似文献   

6.
R Cagiano  G D Sales  G Renna  G Racagni  V Cuomo 《Life sciences》1986,38(15):1417-1423
The effects of prolonged postnatal administration of haloperidol (H) on ultrasonic vocalization elicited by the removal of rat pups from their nest were investigated. The results show that the number of ultrasonic calls was significantly reduced by H exposure from the 8th until the 14th day after birth. Conversely, this neuroleptic significantly increased the duration of ultrasound from the 4th up to the 16th day of age. Moreover, changes in the frequency of calls were produced by early postnatal treatment with H. These alterations could be due to an impaired functional maturation of the dopaminergic system produced by neonatal exposure to H. Furthermore, the present data suggest that ultrasonic vocalization may be considered as an early sensitive indicator of subtle changes elicited by the postnatal treatment with a dopamine receptor blocking agent at dose levels below those associated with overt signs of neurotoxicity.  相似文献   

7.
Summary The kinetics of yeast hexokinase activity exposed to 1 MHz ultrasound of therapeutic intensities 0.1–1.5 W/cm2 was studied using traditional physico-chemical methods and by the thermoinactivation approach. Analysis of the kinetic curves and the kinetic parameters, obtained by two independent methods, suggested specific perturbation processes provoked by the ultrasonic waves, viz., the mechanical breakdown of the contact site between monomer units and the subsequent sonochemical modification of the active enzyme site. Low intensity ultrasound also caused the destabilization of the molecular structure of hexokinase as revealed by the apparent thermolability of the sonicated enzyme.  相似文献   

8.
Cholesterol oxidation to cholestenone by resting cells of Rhodococcus erythropolis ATCC25544 was investigated under a computer-controlled ultrasonic irradiation at a frequency of 20 kHz. The optimization of the ultrasound intensity and its mode of application to a stirred bioreactor was first established at a level which preserved the structural integrity of the cells and enabled their metabolic activity. A significant enhancement in the kinetic rates of the biotransformation was observed in microbial slurries of 1.0 and 2.5 g/L cholesterol when sonicated for 5 s every 10 min with a power output of 2.2 W/cm(2). In contrast, ultrasound had no effect on the enzymatic oxidation of cholesterol (2.5 g/L) by cholesterol oxidase. A high loading of cholesterol (5.0 g/L) in sonicated microbial systems had, however, an adverse effect. The ultrasound enhancement is discussed in terms of an increased dissolution rate of the sustrate crystals and more importantly, in terms of the uniquely ultrasound-induced enhancement of mass transfer inside and outside a cell.  相似文献   

9.
Using acoustic cavitation to improve the bio-activity of activated sludge   总被引:1,自引:1,他引:0  
This paper studied a new method to improve the microbial activity of the activated sludge for wastewater treatment. Concentrated sludge was sonicated in an extra chamber for short period and then returned to the activated sludge system. The results showed that the bio-activity of the activated sludge, expressed as oxygen utilization rate (OUR), could be enhanced by ultrasonic irradiation. Powerful ultrasound (in the magnitude of W/ml) was much more effective than weak ultrasound (in the magnitude of W/L) in stimulating the activated sludge, but too strong sonication (power density higher than 0.5 W/ml) disintegrated the sludge and thus decreased the sludge activity. Low frequency (25 kHz) was more effective than higher ones (80 kHz and 150 kHz), indicating that mechanical effects, instead of free radicals, were responsible for the bio-activity enhancement. The optimal sonication conditions were sound frequency of 25 kHz, power density of 0.2 W/ml and duration of 30s; under which the sludge OUR increased by 28%, the bio-mass growth rate increased by 12.5%, and the wastewater chemical oxygen demand (COD) and total nitrogen removal efficiency increased by 5-6%.  相似文献   

10.
To potentially replace the conventional destructive extraction process, we have shown the feasibility of devising a novel technique that uses ultrasound to nonlethally and repeatedly extract menthol from biologically viable peppermint plants (Mentha x piperita). Our results show that plants ultrasonicated for 1 h at 22 degrees C in a standard 40 kHz ultrasonic bath could release approximately 17.8 microg of menthol per gram of leaf tissue (2% of total product). The amount of menthol release increases with the time of treatment and is greatly affected by the temperature of the ultrasonic bath water. An increase from 2% to 12% of total product was observed when the temperature was increased from 22 degrees C to 39 degrees C. When the temperature effects were isolated, the mechanism of the product release was found to be that of cavitation. The treated plants remained viable and were ready for the subsequent ultrasound extraction after approximately 4 days of recuperation. However, the amount of product released is reduced in subsequent extractions. Scanning electron micrographs indicate that there are two mechanisms involved in extraction: (1) the diffusion of product through the cuticle of peppermint glandular trichomes and (2) the exudation of the product from broken and damaged trichomes. This study has shown the possibility of using an on-line ultrasonic, nondestructive extraction method to continuously release intracellular plant metabolites from the plants while maintaining the plant's viability.  相似文献   

11.
Sediments contaminated with organics compounds due to past disposal practices threaten the environment and require remediation. This study was an attempt to develop a technology to decontaminate organics in dredged sediments using ultrasound coupled with vacuum pressure. A set of laboratory scale experiments were carried out using simulated dredged sediments from New York/New Jersey harbor, category III sediments that failed to meet USEPA requirements for toxicity or bioaccumulation, and required secure disposal. Acoustic cavitation due to ultrasound energy coupled with vacuum pressure was used to facilitate the removal of p-terphenyl (the selected organic contaminant) from the sediments. Two coupled processes were used to separate and to treat both coarse (Process 1) and fine (Process 2) fractions of sediments. Selected variables for evaluation of Process 1 were ultrasound power, solvent to sediment ratio, vacuum pressure, and sonication time. Process 2 was evaluated without and with surfactants. Process 2 without surfactant had three variables: power, solvent to sediment ratio, and sonication time, while Process 2 with surfactant had four variable contributing to its performance: power, solvent to sediment ratio, surfactant concentration, and sonication time. Laboratory-scale experiments were carried out with various combinations of these parameters according to the factorial design. Experimental test results showed that Process 1 had 99% contaminant removal efficiency at 60% power (900 Watts), 15:1 solvent to sediment ratio, 15?psi vacuum pressure, and 9?min of sonication time. Similarly, Process 2 without the surfactant had 55% contaminant removal efficiency at 80% power (1200 Watts), 50:1 solvent to sediment ratio, and 90?min of sonication time. Modification of Process 2 with the addition of a surfactant produced 89% contaminant removal efficiency at 80% power (1200 Watts), 50:1 solvent to sediment ratio, 0.1% surfactant concentration, and 60?min of sonication time. The study showed that the proposed treatment technique is effective for treating dredged sediments.  相似文献   

12.
Hydroxyl radicals and hydrogen atoms were produced in argon-saturated aqueous solutions exposed to ultrasound using clinical dental equipment. .OH and .H radicals were detected and identified by ESR and were spin trapped with 5,5-dimethyl-1-delta-pyrroline-N-oxide (DMPO) and alpha-4-pyridyl-1-oxide-N-tert-butylnitrone (POBN). The observed ESR spectra were compared with those obtained from sonolysis of argon-saturated water in an ultrasonic bath, from gamma radiolysis of air-saturated water, and from uv photolysis of aqueous hydrogen peroxide solutions.  相似文献   

13.
Mangrove sediment is well known for its susceptibility to anthropogenic pollution, including polycyclic aromatic hydrocarbons (PAHs), but knowledge of the sediment microbial community structure with regards to exposure to PAHs is limited. The study aims to assess the effects of PAHs on the bacterial community of mangrove sediment using both 16s rDNA polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and traditional enrichment methods. Both the exposure time and the PAH concentration reduced the microbial diversity, as determined by the DGGE bands. Although PAHs could act as carbon sources for microorganisms, PAHs, at a concentration as low as 20 mg l−1, posed a toxic effect to the microbial community. Sequencing of DGGE bands showed that marine bacteria from the genera of Vibrio, Roseobacter, and Ferrimonas were most abundant after PAH exposure, which suggests that both marine and terrestrial bacteria coexisted in the mangrove sediment, but that the marine microbes were more difficult to isolate using the traditional culture method. DGGE determination further demonstrated that the consistency among triplicates of the enriched consortia was significantly less than that of the sediment slurries. The present study reveals that the mangrove sediment microbial structure is susceptible to PAH contamination, and complex microbial community interactions occur in mangrove sediment.  相似文献   

14.
The blood-retinal barrier (BRB) prevents most systemically-administered drugs from reaching the retina. This study investigated whether burst ultrasound applied with a circulating microbubble agent can disrupt the BRB, providing a noninvasive method for the targeted delivery of systemically administered drugs to the retina. To demonstrate the efficacy and reversibility of such a procedure, five overlapping targets around the optic nerve head were sonicated through the cornea and lens in 20 healthy male Sprague-Dawley rats using a 690 kHz focused ultrasound transducer. For BRB disruption, 10 ms bursts were applied at 1 Hz for 60 s with different peak rarefactional pressure amplitudes (0.81, 0.88 and 1.1 MPa). Each sonication was combined with an IV injection of a microbubble ultrasound contrast agent (Definity). To evaluate BRB disruption, an MRI contrast agent (Magnevist) was injected IV immediately after the last sonication, and serial T1-weighted MR images were acquired up to 30 minutes. MRI contrast enhancement into the vitreous humor near targeted area was observed for all tested pressure amplitudes, with more signal enhancement evident at the highest pressure amplitude. At 0.81 MPa, BRB disruption was not detected 3 h post sonication, after an additional MRI contrast injection. A day after sonication, the eyes were processed for histology of the retina. At the two lower exposure levels (0.81 and 0.88 MPa), most of the sonicated regions were indistinguishable from the control eyes, although a few tiny clusters of extravasated erythrocytes (petechaie) were observed. More severe retinal damage was observed at 1.1 MPa. These results demonstrate that focused ultrasound and microbubbles can offer a noninvasive and targeted means to transiently disrupt the BRB for ocular drug delivery.  相似文献   

15.
一株养殖水体中亚硝酸盐去除菌的鉴定及其去除条件   总被引:2,自引:0,他引:2  
【目的】从养殖污泥中分离筛选优良亚硝酸盐去除菌,并对其去除条件进行研究。【方法】从养殖污泥中分离亚硝酸盐去除菌,进一步通过测定比较分离菌株对亚硝酸盐的去除率,筛选优良的亚硝酸盐去除菌,通过API ID32GN细菌鉴定系统以及16S rDNA序列分析法对其进行鉴定,并采用单因子法研究其去除亚硝酸盐的条件。【结果】从养殖污泥中分离筛选了一株优良的亚硝酸盐去除菌AQ-3,其对50 mg/L亚硝酸盐的去除率高达99.47%。菌株AQ-3被鉴定为鲍曼氏不动杆菌(Acinetobacter baumannii)(GenBank登录号:JF751054.1),其16S rDNA序列与基因库中不动杆菌属菌株的16S rDNA序列有99%?100%的同源性,而且与鲍曼氏不动杆菌KF714株(GenBank登录号:AB109775)的亲缘关系最近。菌株AQ-3去除亚硝酸盐的最适初始pH范围为7?9,最佳碳源为乙酸钠和丁二酸钠,而且随着初始菌浓度的不断增大,菌株AQ-3对亚硝酸盐的去除率显著升高;随着亚硝酸盐浓度的不断增大,菌株AQ-3对亚硝酸盐的去除率逐渐降低。【结论】在丰富亚硝酸盐去除菌种质资源的同时,为该菌在养殖水体中的实际应用提供了理论基础。  相似文献   

16.
G Scherba  R M Weigel    W D O'Brien  Jr 《Applied microbiology》1991,57(7):2079-2084
Propagated (free-field) ultrasonic energy at a frequency of 26 kHz was used to expose aqueous suspensions of bacteria (Escherichia coli, Staphylococcus aureus, Bacillus subtilis, and Pseudomonas aeruginosa), fungus (Trichophyton mentagrophytes), and viruses (feline herpesvirus type 1 and feline calicivirus) to evaluate the germicidal efficacy of ultrasound. There was a significant effect of time for all four bacteria, with percent killed increasing with increased duration of exposure, and a significant effect of intensity for all bacteria except E. coli, with percent killed increasing with increased intensity level. There was a significant reduction in fungal growth compared with that in the controls, with decreased growth with increased ultrasound intensity. There was a significant reduction for feline herpesvirus with intensity, but there was no apparent effect of ultrasound on feline calicivirus. These results suggest that ultrasound in the low-kilohertz frequency range is capable to some degree of inactivating certain disease agents that may reside in water. The physical mechanism of inactivation appears to be transient cavitation.  相似文献   

17.
Quantitative assessment of the germicidal efficacy of ultrasonic energy   总被引:3,自引:0,他引:3  
Propagated (free-field) ultrasonic energy at a frequency of 26 kHz was used to expose aqueous suspensions of bacteria (Escherichia coli, Staphylococcus aureus, Bacillus subtilis, and Pseudomonas aeruginosa), fungus (Trichophyton mentagrophytes), and viruses (feline herpesvirus type 1 and feline calicivirus) to evaluate the germicidal efficacy of ultrasound. There was a significant effect of time for all four bacteria, with percent killed increasing with increased duration of exposure, and a significant effect of intensity for all bacteria except E. coli, with percent killed increasing with increased intensity level. There was a significant reduction in fungal growth compared with that in the controls, with decreased growth with increased ultrasound intensity. There was a significant reduction for feline herpesvirus with intensity, but there was no apparent effect of ultrasound on feline calicivirus. These results suggest that ultrasound in the low-kilohertz frequency range is capable to some degree of inactivating certain disease agents that may reside in water. The physical mechanism of inactivation appears to be transient cavitation.  相似文献   

18.
目的:验证甲苯胺蓝介导超声对龈上牙菌斑中细菌的抑制作用。方法:从门诊20例牙周炎病人下前牙区取龈上菌斑一份,每个患者的菌斑于实验室培养后,在同一甲苯胺蓝浓度下与不同超声强度联合作用,利用涂板计数法分析其对菌斑中细菌的抑制作用。实验分组:空白组、单独甲苯胺蓝组、单独超声组、甲苯胺蓝+超声组。结果:单独超声作用时没有灭菌效果,细菌数目反而有所增长(P〈0.05),超声联合甲苯胺蓝作用时取得明显的灭菌效果,超声强度2W/CM2灭菌率可达到79%。结论:低强度超声能够促进细菌生长,甲苯胺蓝介导一定强度的超声疗法对龈上牙菌斑中的细菌有良好的抑制作用。  相似文献   

19.
Ultrasonic velocity and attenuation measurements were performed on mango juices at 25 MHz in order to estimate longitudinal viscosity. Juices were extracted from fruits, removed periodically from fruit batches undergoing ripening for 3 weeks under controlled conditions. The correlation between longitudinal viscosity and apparent dynamic shear viscosity, obtained from flow tests, showed that up to 12–13 wt.% of Soluble Solids Content (SSC), the juices presented a Newtonian behavior. In this case the relation between longitudinal viscosity measured by ultrasound and shear viscosity measured by flow tests was very simple leading to the conclusion that ultrasound could replace rotating viscosimeters for specific applications. Over this limit, the results were also clearly correlated but the correlation depended on the shear rate because of the shear thinning behavior of the juices certainly due to soluble pectins. The use of longitudinal ultrasonic waves as a tool for viscosity determination on large batches of samples is discussed at the end of this communication.  相似文献   

20.
Nitric oxide, nitrosonium ions, nitrites, and nitrates are formed in water saturated with air under the action of ultrasound. Nitrosonium ions react with water and hydrogen peroxide to form nitrites and nitrates in sonicated solution, correspondingly. Nitric oxide is practically completely released from sonicated water into the atmosphere and reacts with air oxygen, forming NOx compounds. The oxidation of nitric oxide in aqueous medium by hydroxyl radicals and dissolved oxygen is a minor route of the formation of nitrites and nitrates in ultrasonic field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号